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1 Introduction

When considering a collection of random phenomena, typically, an important issue to confront is the issue of
(stochastic) dependence between these random phenomena.

1.1 Static vs Dynamic Approaches to Modeling Dependence

Suppose thatτ1 andτ2 are non-negative random variables, defined on some underlying probability space
(Ω,F ,P), and modeling (random) times of occurrence of two different random events. For example,τi may
represent tye time of default of an economic entityi. Now, for many different reasons, one may need to use
the joint probability distribution ofτ1 andτ2 (under the measureP). If, ideally, this distribution is known,
then the only problem at hand is to effectively apply the knowledge of the distribution. If however, as it is
typically the case, this distribution is not known, then one faces the issue of, first, modeling the distribution,
and, second, estimating/calibrating it. Unquestionably, there are many different ways in which modeling can
be done. All depends on what input information one wants to use in the model, what aspects of the model are
considered to be important, etc. .

We shall now briefly describe two possible approaches. The first one is the copula approach; we dub it a
static approach. The second one is the intensity approach; we dub it a dynamic approach.

In the copula approach one uses as model inputs the marginal distributions ofτ1 andτ2, sayF1 andF2,
as well as a copula functionC. Then one constructs the joint distribution ofτ1 andτ2, sayF , as

F (t1, t2) = C(F1(t1), F2(t2)).

In other words,
P(τi ≤ ti, i = 1, 2) = C(P(τ1 ≤ t1),P(τ2 ≤ t2)).

This of course is a very effective way of constructing joint distributions, especially when one uses tractable
copula functions.

What happens though if one wants to create the joint distribution so that certain conditional probabilities
are adequately modeled. For example, what if one is concerned with adequate modeling of

P(τ1 ∈ T1, τ2 ∈ T2|τ1 ∈ T̄1, τ2 ∈ T̄2), (1)

for variousT1, T2, T̄1 andT̄2. Or what if one wants to adequately model the intensities such as

lim
h↓0

1
h
P(t < τ1 ≤ t + h|τ1 > 1, τ2 ≤ t). (2)

It turns out that the copula approach can’t, in general, be effectively used for this purpose.

What comes as a rescue is what we call an intensity, or dynamic approach. We like to think about this
approach as a "bottom-up" approach, as opposed to the "top-down" copula approach. In the context of the toy-
example considered here, the dynamic approach starts with the observation that one can associate to random
timesτ1 andτ2 a random processX = (H1,H2), whereHi

t := 11{τi≤t}. The processX is obviously a
Markov chain (in its own filtration), taking values in the state spaceX = {(0, 0), (0, 1), (1, 0), (1, 1)}. Thus,
its complete probabilistic characterization is provided by its intensity matrix (infinitesimal generator), say
Λ(t) = [λxx′(t)]x,x∈X . Expressions in (1) and (2) can be easily represented in terms of functionΛ(·). In
particular, we have that

lim
h↓0

1
h
P(t < τ1 ≤ t + h|τ1 > t, τ2 ≤ t) = λ(0,1)(1,1)(t) + λ(0,1)(1,0)(t).

Thus, our dynamic approach takes as an input to the model the processX.

Just as in the copula approach the art lies in choice of the copula function, in the dynamic approach the
art lies in choice of the processX, and, in particular in choice of its infinitesimal characteristics. Various



4 VALUATION OF BASKET CREDIT DERIVATIVES AND STEP-UP BONDS

authors proposed various versions of the dynamic approach (cf. e.g. [1], [4], [7], [9], [10]). In this paper we
take the version proposed in[2]. This approach is relevant for what we do here in Sections 2–6. In Section 7
we deal with a somewhat different problem of modeling dependence; there we exploit the dynamic approach
developed in [3].

In the rest of this section we give some more reasons why we do not favor the copula approach over our
dynamic approach. We focus on the factor copula approach; nevertheless, at least one of our remarks below
(cf. (iii) below) applies to copula approach in general.

The factor copula approach, and in particular the one factor Li copula, has become a market standard
for pricing CDOs and other basket credit products. The factor copula framework has certain attractive fea-
tures, as it allows to specify separately marginal default probabilities and correlation structure, and leads to
numerically tractable pricing algorithms, that are sometimes dubbed "quasi-analytical." We refer to [5] for
discussion of copula models used in credit risk.

Inadequacy of the factor copula approach became apparent when the development of a liquid market of
standardized CDO tranches gave rise to the concept of so calledcorrelation skews. This "anomaly" reflected
the inability of such copula models to fit market data, and spurred a vast literature on correlation skew mod-
eling (cf. [6] and references therein). This literature, however, only attempts to extend the standard factor
copula model, by incorporating some skew features. In particular, systemic event (e.g. "end of the World"
scenario) and stochastic correlation models were introduced in an attempt to better fit market data by provid-
ing richer dynamics to the dependence structure. Basically, such models allow the correlation among default
times to switch between a high probability regime of low correlation and a low probability regime of high
correlation or even co-monotonicity (that is 100% correlation between default times (cf. [6])) . This behavior
can be regarded as a static counterpart of the effect of default contagion, and considerably improves the fit to
market data (cf. [6]). However, we believe that the copula framework still presents serious shortfalls, from
both the economic and modeling perspectives. Below, we briefly discuss some of them:

(i) In the factor copula approach, default times are some transformation of mixtures of latent factors, on
which an arbitrary correlation structure is imposed. This framework only allows to model theeffectof
default dependencies and does not attempt in any way to model thecausal relationshipamong defaults
events. The dependence among default times results from phenomena known asdefault contagionand
frailty, which reflect the financial inter-dependence among the underlying (reference) entities, and their
exposure to common market risk factors. In fact, we show next that contagion and frailty may not be
captured by the one factor copula approach.

(ii) A straightforward computation shows that he conditional independence assumption, underlying factor
copula models, may lead to counterintuitive assessments of conditional default probabilities. To justify
this statement we first need to briefly describe the commonly used approach to construct one factor
(Gaussian) copula. According to this approach the random default times are defined as follows:

τi = F−1(Φ(V i)),

where
V i =

√
1− ρ2Vi + ρV, i = 1, 2 . . . , L.

In the above formulaeVi’s are i.i.d. standard Normal random variables,V is a standard Normal latent
factor, independent ofVi for all i, ρ ∈ (−1, 1), andF is a prescribed (marginal) distribution of the
random timesτi. In particular, this construction makes it so that the random timesτi are conditionally
independent, given the common factorV .

Assume now thatτi represents the default time of obligori in the pool ofL obligors. Next, define
Nt =

∑L
i=1 Hi

t ; that is,Nt is the total number of obligors in the pool ofL obligors who defaulted by
time t. It is easy to see that, conditionally onV , Nt ∼ Binomial(L, pt(V )), where

pt(V ) = Φ

(
Φ−1(F (t))− ρV√

1− ρ2

)
,

whereΦ is the the standard Normal cumulative distribution function.
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Now, let us denote byP |V (A) the probability ofA, conditional on the knowledge of the value assumed
by the common factorV . Then, in view of the above construction, we obtain the following

P |V (Nt+h = 1, Nt = 0) = P |V




L⋃

i=1



{H

i
t+h = 1} ∩ {Hi

t = 0} ∩
⋂

j 6=i

{Hj
t+h = 0}








= L(pt+h(V )− pt(V ))(1− pt+h(V ))L−1,

P |V (Nt+h = L, Nt = L− 1) = P |V




L⋃

i=1



{H

i
t+h = 1} ∩ {Hi

t = 0} ∩
⋂

j 6=i

{Hj
t = 1}








= L(pt+h(V )− pt(V ))pL−1
t (V ),

P |V (Nt = 0) = (1− pt(V ))L, P |V (Nt = L− 1) = L(1− pt(V ))pL−1
t (V ).

Consequently, we obtain that

h(t, h, L, ρ, F ) :=
P (Nt+h = 1|Nt = 0)

P (Nt+h = L|Nt = L− 1)

= L

∫∞
−∞(pt+h(v)− pt(v))(1− pt+h(v))L−1dΦ(v)∫∞

−∞(pt+h(v)− pt(v))pt(v))L−1dΦ(v)

∫∞
−∞(1− pt(v))pL−1

t (v)dΦ(v)∫∞
−∞(1− pt(v))LdΦ(v)

.

We remark that, lettingh → 0, the limit of h(t, h, L) is the ratio between the jump intensity ofN on
the set{Nt = 0} and the jump intensity ofN on the set{Nt = L − 1}. Now, fixing t > 0, h > 0
(small) andL > 1, we want to show thath(t, h, L, ρ, F ) > 1 for some marginal distributionsF . (Note
that we always haveh(t, h, 1, ρ, F ) = 1.) Now, assuming that the default timesτi have exponential
marginal laws with intensityλ, that isF (t) = 1−exp(−λt), the quantityht(t, h, L, ρ, λ) can be easily
computed numerically. Below, we show a plot ofh(t, h, L, λ) for different values ofλ.1

We conclude that the factor copula framework may fail to produce satisfactory default contagion ef-
fects; as the above example shows the jump intensity of the cumulative default processN may be
much higher whenNt = 0 as compared to the the case whenNt = L − 1. This shortfall appears to
be a consequence of the fact that in the standard factor copula approach it is very hard to control the
dynamics of the default intensities. The literature (cf. [13]) attempted to overcome this shortcoming by
introducing copula based models, which allow the dynamics of the default intensities, and in particular
the distribution of the default times, to be dynamically updated to default information. Still, such mod-
els seem not to provide adequate control over dynamics of the default intensities. In addition, these
models are non-Markovian in the sense that the only conditioning information that can be effectively
use is the information about the events of the form{τi = ti}, rather than information about the events
of the form{τi ≤ ti}. In practice, within this framework, knowledge of the current state of the basket
of reference entities is not sufficient to form conditional expectations. This obviously excludes the use
of any of the Markovian technology, and in a Monte Carlo implementation, requires storing the entire
history of the default processes.

(iii) The copula approach, as it stands now, appears to be useless when it comes to dealing with modeling
dependence between random times of credit migrations, that is, dependence between random times
when credit ratings of various obligors change, rather than just modeling dependence between random
default times. In a credit migrations setting, one needs to model dependence structure between a
possibly infinite collection of stopping times, which, to our knowledge, the existing copula technology
cannot handle. New derivative products, such as some European corporate bonds, explicitly link their
cash-flows to migrations in the ratings issued by one or more rating agencies. We believe that, in the
near future, rating based products will become as popular as default driven derivatives and, for this
reason, models that can handle such complex dynamics need to be studied.

1We plot the value ofht(L) for h=.01. By taking h smaller, the computation becomes unstable, however, from the numerical results
h(t, h, L, λ) is a decreasing function of h, and thus presumably the same conclusions are valid in the limit.
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Figure 1:Plot ofh(t, h, L, ρ, λ) with t = 1, h = .05, L = 10, ρ = .6 for different values of the intensityλ.

1.2 What We Do in This Paper

The above reasons led us to abandon the standard copula framework and to attempt to make the step towards a
second generationof basket credit models, which sacrifice some of the numerical tractability of factor copula
approaches, to adopt more rigorous modeling assumptions and describe the causal relationships that drive the
dependence among default events.

In Bielecki et al. [2] a fully Markovian model was presented so to provide a basis for systematic approach
to valuation and hedging of basket credit derivatives. In this paper, we adopt the approach of [2] and adapt it
to efficiently price some selected basket credit derivatives, such as CDOs, CDO2s, FSTDs, as well as credit
quality triggered corporate step-up bonds.

The pricing models are calibrated to credit data provided by the GFI Group and the Citigroup. Bond
data were provided by Bloomberg, through the direct feed available at the IIT’s Stuart School of Business.
The calibration and pricing results presented in Section6 indicate extreme efficiency and robustness of our
approach.2

In Bielecki et al. [3] the problem of dependence for some classes of random processes is studied. It turns
out that some of the results derived in [3] are very well suited for application to pricing of ratings triggered
corporate step-up bonds and we shall make use of them for this purpose.

In Section2 we provide a formal description of the credit products that we discuss in this paper, represent-
ing relevant cash flows in terms of formulae that we find well suited for calibration and valuation applications.
In Section3 we summarize these aspects of the modeling approach presented in [2], which are relevant for
practical implementations presented in this paper. A brief description of a simulation algorithm and of the
calibration methodology we use, are given in Section4 and in Section5, respectively. Section6 presents cali-
bration and pricing results for selected credit products. Finally, Section7 deals with step-up bonds. Valuation
of related bond options will be dealt with in a future paper, as well as hedging issues will be addressed in a

2The pricing and calibration libraries are implemented in C++ interfaced through Excel spreadsheet.



T.R. BIELECKI , A. V IDOZZI , L. V IDOZZI 7

follow-up paper.

2 Description of Relevant Credit Products

In this section, we describe the cash-flows associated to the main-stream basket credit products, focusing
in particular on the recently developed standardized instruments like the Dow Jones Credit Default Swap
indices (iTraxx and CDX), and the relative derivative contracts. In particular we will discuss Collateralized
Debt Obligations (CDO), CDO squared and First to Default Swaps. We shall also describe credit quality
triggered corporate step-up bonds.

2.1 CDS Indices

CDS indices3 are static portfolios of equally weighted credit default swaps (CDSs) with standard maturities of
five to ten years. Typically, the index matures few months before the underlying CDSs. The debt obligations
underlying the CDSs in the pool are selected from among those with highest CDS trading volume in the
respective industry sector. We will typically refer to the underlying debt obligations as to reference entities.
CDS indices are typically issued by a pool of licensed financial institutions, known as the market makers. At
the time of issuance, the market makers determine an annual rate known as(index) spread, to be paid out to
investors on a periodic basis. By purchasing the index, an investor enters into a binding contract, whose main
provisions are summarized below:

(i) The inception time of the contract is time4 t = 0; the maturity time of the contract isT . At inception, the
pool is composed ofN reference credit names and its notional value5 is N .

(ii) By purchasing the index, the investor sells protection to the market makers. Thus, the investor assumes
the role of a protection seller and the market makers assume the role of protection buyers. In practice,
the investors agrees to absorb all losses due to defaults in the reference portfolio, occurring between
the time of inception and maturity. In case of default of a reference entity, the protection seller pays
to the market makers the protection payment in the amount of(1 − δ), whereδ ∈ [0, 1] is the agreed
recovery rate (typically 40%). The notional on which the market maker pays the spread, henceforth
referred to asresidual protection, is then reduced by such amount. For instance, after the first default,
the residual protection is updated as follows (recall that, at inception, the notional isN ):

N → N − (1− δ).

(iii) In exchange, the protection seller receives from the market maker a periodic fixed premium on the
residual protection6 at the annual rate ofη. If, at inception, the market index spread is different from
the issuance spread, the present value of the difference is settled through an upfront payment.

We denote byτi the random default time of theith name in the index and byHi
t the right continuous

process defined asHi
t = 11{τi≤t}, i = 1, 2, ..., N . Also, let{tj , j = 0, 1, ..., J} with 0 = t0 andtJ ≤ T

denote the tenor of the premium leg payments dates. The discounted cumulative cash flows associated to a
CDS index are as follows:

Premium Leg= η

J∑

j=0

βtj

(
N∑

i=1

1−Hi
tj

(1− δ)

)
,

3We obtained description of rules governing CDS indices from www.iboxx.com. The rules described here apply to Series 3 iTraxx.
4Throughout the paper we shall set the inception dates of various products discussed here tot = 0. This is done so to simplify the

notation; our discussion generalizes in a straightforward manner to any inception datet ≥ 0. Note that with this convention the time of
issuance of the index, saytissuance, satisfiestissuance ≤ 0. This of course may be unpleasing from the esthetics point of view, but
has no bearing for both the qualitative and quantitative results of our paper.

5We henceforth assume that the face value of each reference entity is one. Thus the total notional of the index isN .
6Whenever a reference entity defaults, its weight in the index is set to zero. By purchasing one unit of index the protection seller

owes protection only on those names that have not yet defaulted at time of inception.
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Protection Leg=
N∑

i=1

βτi(1− δ)Hi
T ,

whereβt := exp(− ∫ t

0
rsds) is the discount factor.

2.2 Collateralized Debt Obligations

Collateralized Debt Obligations (CDO) are credit derivatives backed by portfolios of assets. If the underlying
portfolio is made up of bonds, loans or other securitized receivables, such products are known ascashCDOs.
Alternatively, the underlying portfolio may consist of credit derivatives referencing a pool of debt obligations.
In the latter case, CDOs are said to besynthetic. Because of their recently acquired popularity, we focus our
discussion on standardized (synthetic) CDO contracts backed by CDS indices. We begin with an overview of
the product:

(i) The time of inception of the contract ist = 0, the maturity isT . The notional of the CDO contract is the
residual protection (as defined above) of the underlying CDS index at the time of inception. We shall
assume that, at inception, the CDO notional isN .

(ii) The credit risk (the potential loss due to credit events) borne by the reference pool is layered into different
risk levels. The range in between two adjacent risk levels is called atranche. The lower bound of a
tranche is usually referred to asattachment pointand the upper bound asdetachment point. The credit
risk is sold in these tranches to protection sellers. For instance, in a typical CDO contract on iTraxx,
the credit risk is split into equity, mezzanine, and senior tranches, corresponding to0−3%, 3−6%, 6−
9%, 9−12%, and12−22% of the losses, respectively. At inception, the notional value of each tranche
is the CDO notional weighted by the respectivetranche width.

(iii) The tranche buyer sells partial protection to the pool owner, by agreeing to absorb the pool’s losses
comprised in between the tranche attachment and detachment point. This is better understood by
an example: Assume that, at inception, the protection seller purchases one currency unit worth of the
6−9% tranche. One year later, as a consequence of a series of default events, the cumulative loss breaks
through the tranche attachment point, reaching8%. The protection seller fulfills his/her obligation by
paying out two thirds (= 8%−6%

9%−6% ) of a currency unit to the market maker. The tranche notional is then
reduced to one third of its pre-default event value. We refer to the remaining tranche notional as to
residual tranche protection.

(iv) In exchange, up until maturity, the CDO issuer (protection buyer) makes periodic spread payments to
the tranche buyer on the residual tranche protection. Returning to our example, after the loss reaches
8%, premium payments are made on one third (= 9%−8%

9%−6% ) of the tranche notional, until the next credit
event occurs or the contract matures.

We denote byLl andUl the lower and upper attachment points of thelth tranche and byκl its market
spread. It is convenient to introduce the cumulative loss process,

Γt =
N∑

i=1

Hi
t(1− δ). (3)

Also, let Al = N Ll , Bl = N Ul andCl = Bl − Al denote, respectively, the monetary values of the
attachment point, detachment point and width of thelth tranche. The cumulative default payments process
on thelth tranche of the CDO is then:

M l
t = (Γt −Al)11[Al,Bl](Γt) + Cl11(Bl,N ](Γt).

Purchasing one unit of thelth tranche generates the following discounted cash flows:

Premium Leg= κl

J∑

j=0

βtj (Cl −M l
tj

), Protection Leg=
∫ T

0

βtdM l
t
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We remark here, that the equity tranche of the CDO on iTraxx or CDX is quoted as an upfront rate, sayκ0,
on the total tranche notional, in addition to 500 basis points (5% rate) paid annually on the residual tranche
protection. The premium leg payment, in this case, is as follows:

κ0C0 +
J∑

j=0

βtj (.05)(C0 −M0
tj

).

Note that, in the above, we assume that premium payments start immediately at inception of the CDO
contract, and no accrual convention is in force. This may not be always the case, and the cash flow formulas
should be adjusted accordingly.

Finally, we remark that, although in the above we discussed standardized CDOs on CDS indexes, in
section6.2.1, we will also compute the fair spreads of bespoke tranches (tranches of CDO’s on customized
pools of CDS contract, and/or tranches with customized attachment and detachment points).

2.3 CDO Squared

Squared CDOs (also denoted as CDO2, CDO-2 or CDO2) have gained considerable popularity in the last
twelve to eighteen months. A prototypical synthetic CDO-2 is backed by a portfolio ("outer" CDO) consisting
of other synthetic CDO tranches ("inner" CDOs). The outer CDO may refer to up to 1000 (not necessarily
distinct) names, although, in general the number of referenced obligors ranges between 250 and 400. Due to
the limited number of liquid CDS in the market, there might be a considerable amount of overlapping among
the inner CDOs. This means that an underlying reference name might be present in more than one of the
inner CDO contracts. As a consequence, a default event might simultaneously affect more than one of the
inner CDO tranches, and this leads to the necessity of keeping track of the identity of the defaulted entities.
In what follows, we provide a brief description of this very exotic product:

(i) The time of inception of the contract ist = 0, the maturity isT . Clearly, the outer CDO matures at or
before the maturity dates7 of the inner CDOs. The notional of the outer CDO is the sum of the notionals
of the inner CDO tranches (as defined in the previous section).

(ii) The notional of the outer CDO is, again, layered into credit levels, or tranches. We shall call the tranches
of the outer and inner CDOs outer and inner tranches, respectively. Each outer tranche is responsible
for a portion of the losses suffered by the outer CDO notional, which arise as a consequence of the
losses incurred by the inner tranches.

(iii) The buyer of a tranche in the outer CDO sells partial protection, by agreeing to absorb the losses
comprised in between the outer tranche attachment and detachment points. This is better understood
by a simplistic example: Consider a CDO squared backed by the mezzanine tranches of three CDO
contracts. The protection seller purchases the equity outer tranche (having, for example, attachment
points0 − 5%). Assume that credit name XYZ is referred to by all of the inner CDOs. Assume, in
addition, that at the default time of XYZ, sayτXY Z , the cumulative loss in two out of three inner CDOs
breaks through the attachment point of the respective mezzanine tranche. Then, assuming a recovery
rate ofδ, at τXY Z the protection seller pays2(1 − δ) and the residual protection of the outer equity
tranche is reduced by the same amount.

(iv) In exchange, the protection seller makes periodic spread payments on the residual notional of the outer
tranche.

We shall need the following notation. Let the outer CDO be backed bym = 1, . . . , M inner CDO tranches,
with respective attachment pointsLl(m), Ul(m). LetNm denote the size (and notional) of themth inner CDO,
Al(m) = Nm Ll(m) , Bl(m) = Nm Ul(m) andCl(m) = Bl(m) −Al(m).

7The inner CDOs may mature at different dates.
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The cumulative loss in themth pool is defined as (cf. (3)):

Γm
t =

Nm∑

i=1

Hi
t(1− δ).

and the relative default payments process is

M
l(m)
t = (Γm

t −Al(m))11[Al(m),Bl(m)](Γ
m
t ) + Cl(m)11(Bl(m),Nm](Γm

t ).

In addition, we define the cumulative loss in the outer CDO as

Γsq
t =

M∑
m=1

M
l(m)
t

and the relative "outer" default payment process:

Msq
t = (Γsq

t −Ap)11[Ap,Bp](Γ
sq
t ) + Cp11(Bp,Nsq ](Γ

sq
t )

where,Nsq =
∑M

m=1 Cl(m) is the notional of the outer CDO, and, analogously to aboveAp = NsqLp , Bp =
NsqUp andCp = Bp−Ap are the (monetary values of) upper, lower attachments, and width of thepth outer
tranche.

Purchasing one unit of thepth outer tranche (paying periodic premiumυp) generates the following dis-
counted cash flows:

Premium Leg= υp
J∑

j=0

βtj (Cp −Msq
tj

), Protection Leg=
∫ T

0

βtdMsq
t .

2.4 Nth-to-default Swaps

Nth-to-default swaps (NTDS) are basket credit instruments backed by portfolios of single name CDSs. Since
the growth in popularity of CDS indices and their associated derivatives, NTDS have become rather illiquid.
Currently, such products are typically customized bank to client contracts, and hence relatively bespoke to
the client’s credit portfolio. For this reason, we focus our attention on First to Default Swap contracts issued
on the iTraxx index, which are the only ones with a certain degree of liquidity8. Standardized FTDS are now
issued on each of the iTraxx sector sub-indices. Each FTDS is backed by an equally weighted portfolio of five
single name CDSs in the relative sub-index, chosen according to some liquidity criteria. The main provisions
contained in a FTDS contract are the following:

(i) The time of inception of the contract ist = 0, the maturity isT .

(ii) By investing in a FTDS, the protection seller agrees to absorb the loss produced by the first default in
the reference portfolio

(iii) In exchange, the protection seller is paid a periodic premium, known as FTDS spread, computed on the
residual protection. The premium is paid through the first default time. We denote the FTDS spread by
ϕ.

Recall that{tj , j = 0, 1, ..., J} with 0 = t0 andtJ ≤ T denotes the tenor of the premium leg payments dates.
Also, denote byτ (1) the (random) time of the first default in the pool. The discounted cumulative cash flows
associated to a FTDS on an iTraxx sub-index containingN names are as follows (again we assume that each
name in the basket has notional equal to one):

Premium Leg= ϕ

J∑

j=0

βtj 11{τ(1)≥tj}, Protection Leg= βτi(1− δ)11{τ(1)≤T}.

8Thanks to Matt Woodhams from GFI Group for his valuable comments in this regard.
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2.5 Ratings Triggered Corporate Step-Up Bonds

These bonds were issued by some European telecom companies in the recent 5-6 years. As of now, to
our knowledge, these products are not traded in baskets , however they are of interest because they offer
protection against credit events other than defaults. In particular, ratings triggered corporate step-up bonds
(step-up bonds for short) are corporate coupon issues for which the coupon payment depends on the issuer’s
credit quality: in principle, the coupon payment increases when the credit quality of the issuer declines. In
practice, for such bonds, credit quality is reflected in credit ratings assigned to the issuer by at least one credit
ratings agency (Moody’s-KMV or Standard&Poor’s). The provisions linking the cash flows of the step-up
bonds to the credit rating of the issuer have different step amounts and different rating event triggers. In some
cases, a step-up of the coupon requires a downgrade to the trigger level by both rating agencies. In other cases,
there are step-up triggers for actions of each rating agency. Here, a downgrade by one agency will trigger
an increase in the coupon regardless of the rating from the other agency. Provisions also vary with respect
to step-down features which, as the name suggests, trigger a lowering of the coupon if the company regains
its original rating after a downgrade. In general, there is no step-down below the initial coupon for ratings
exceeding the initial rating. Next, we give a brief summary of the most common provisions characterizing
the payoff of a step-up bond (typically, a step-up bond is subject to a selection of the provisions listed below):

(i) Step-up: The coupon increases if the rating decreases and hits the rating-trigger.

(ii) Step-down: The coupon decreases if the rating increases over the rating-trigger after the trigger level
was previously hit.

(iii) One-off: The coupon increases only once, even if the rating falls further below the rating-trigger; for
bonds that are not one-off, each further decrease in the rating, causes a further increase in the coupon.

(iv) And/or: Determines whether the coupon is adjusted if both Moody’s and S&P ratings hit the trigger, or
whether the adjustment occurs if either Moody’s or S&P ratings hit the trigger level.

(v) Accrual: the coupon increases may be enforced either starting from the next coupon payment or imme-
diately following a rating action.

Let Xt stand for some indicator of credit quality at timet (note that in this case, the processX may be
composed of two distinct rating processes). Assume thatti, i = 1, 2, . . . , n are coupon payment dates. In
this paper we assume the convention that coupon paid at datetn depends only on the rating history through
datetn−1, that is:cn = c(Xt, t ≤ tn−1) are the coupon payments. In other words, we assume that no accrual
convention is in force.

Assuming that the bond’s notional amount is1, the cumulative discounted cash flow of the step-up bond
is (as usual we assume that the current time is 0):

(1−HT )βT +
∫

(0,T ]

(1−Hu)βu dCu + βτZτHT , (4)

whereCt =
∑

ti≤t ci, τ is the bond’s default time,Ht = 11τ≤t, and whereZt is a (predictable) recovery
process.

3 Markovian Market Model

In this section, we give a brief description of the Markovian market model we implement for valuation and
hedging of basket credit instruments. This framework is a special case of the more general model introduced
in Bielecki et al.[2], which allows to incorporate information relative to the dynamic evolution of credit
ratings in the pricing of basket instruments. We begin with some notation.

Let the underlying probability space be denoted by(Ω,G,G,Q), whereQ is a risk neutral measure in-
ferred from the market (we shall discuss this in further detail when addressing the issue of model calibration),
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G = H∨ F is a filtration containing all information available to market agents. The filtrationH carries infor-
mation about the evolution of credit events, such as changes in credit ratings or defaults of respective credit
names. The filtrationF is a reference filtration containing information pertaining to the evolution of relevant
macroeconomic variables.

We considerN obligors (or credit names) and we assume that the current credit quality of each reference
entity can be classified intoK := {1, 2, . . . ,K} rating categories. By convention, the categoryK corresponds
to default. LetX l, l = 1, 2, . . . , N be processes on(Ω,G,Q) taking values in the finite state spaceK. The
processX l represents the evolution of credit ratings of thelth reference entity. We define thedefault timeτl

of thelth reference entity by setting

τl = inf{ t > 0 : X l
t = K} (5)

We assume that the default stateK is absorbing, so that for each name the default event can only occur once.

We denote byX = (X1, X2, . . . , XN ) the joint credit rating process of the portfolio ofN credit names.
The state space ofX isX := KN and the elements ofX will be denoted byx = {x1, . . . , xN}. We postulate
that the filtrationH is the natural filtration of the processX and that the filtrationF is generated by aRn

valued factor process,Y , representing the evolution of relevant economic variables, like short rate or equity
price processes.

We assume that the processM = (X,Y ) is jointly Markov underQ, so that we have, for every0 ≤ t ≤
s, x ∈ X , and any setY from the state space ofY ,

Q(Xs = x, Ys ∈ Y |Ht ∨ FY
t ) = Q(Xs = x, Ys ∈ Y |Xt, Yt). (6)

The processM is constructed as a Markov chain modulated by a Lévy process. We shall refer toX (Y ) as
theMarkov chain(Lévy) component ofM . GivenXt = x andYt = y, the intensity matrix of the Markov
chain component is given byΛt = [λ(x, x′; y)]x′∈X . The Lévy component satisfies the SDE:

dYt = b(Yt) dt + σ(Yt) dWt +
∫

Rn
g(Yt−, y′)N(dy′, dt),

where, for a fixedy ∈ Rn, N(dy′, dt) is a counting process with Lévy measureν(dy′) andσ(y) satisfies
σ(y)σ(y)T = a(y). We provide the following structure to the generator of the processM .

Af(x, y) = (1/2)
n∑

i,j=1

aij(y)∂i∂jf(x, y) +
n∑

i=1

bi(y)∂if(x, y)

+
∫

Rn

(
f(x, y + g(y, y′))− f(x, y)

)
ν(dy′) (7)

+
N∑

l=1

∑

ξ∈K
λl(x, xξ

l ; y)f(xξ
l , y),

where we writexξ
l = (x1, x2, . . . , xl−1, ξ, xl+1, . . . , xN ).

Note that the model specified by (7) does not allow for simultaneous jumps of the componentsX l andX l′

for l 6= l′. In other words, the ratings of different credit names may not change simultaneously. Nevertheless,
this is not a serious lack of generality, as the ratings of both credit names may still change in an arbitrarily
small time interval. The advantage is that, for the purpose of simulation of paths of processX, rather than
dealing withX ×X intensity matrix[λ(x, x′; y)], we shall deal withN intensity matrices[λl(x, xξ

l ; y)], each
of dimensionK × K (for any fixedy). We stress that, within the present set-up, the current credit rating of
the credit namel directly impacts the intensity of transition of the rating of the credit namel′, and vice versa.
This property, known asfrailty, may contribute to default contagion.

3.1 Valuation of Basket Credit Derivatives in the Markovian Framework

We now discuss the pricing of the basket instruments introduced in section two of the paper. In particular,
computing the fair spreads of such products involves evaluating the conditional expectation, under the risk
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neutral measureQ, of some quantities related to the cash flows associated to each instrument. In the case of
CDS indices, CDOs, CDO2s and FTDS, the fair spread is such that, at inception, the value of the contract is
exactly zero, i.e the risk neutral expectations of the fixed leg and protection leg payments are identical. The
following expressions are derived from the discounted cumulative cash flows given in Section 2 (refer to this
section for the precise definitions of the quantities appearing in the formulae below). They represent initial
(at timet = 0) values of spreads and prices, given the state of the market at inception,(X0, Y0) = (x, y):

• the fair spread of a single name CDS is:

ηl =
Ex,y
Q

(
βτl

H l
T

)
(1− δ)

Ex,y
Q

( ∑J
j=0 βtj

(1−H l
tj

)
)

• the fair spread of a CDS index is:

η =
Ex,y
Q

∑L
i=1 βτi

(1− δ)Hi
T

Ex,y
Q

∑J
j=0 βtj

(∑N
i=1 1−Hi

tj
(1− δ)

)

• the fair spread of the CDO equity tranche is:

κ0 =
1
C0

Ex,y
Q

( ∫ T

0

βtdM0
t −

J∑

j=0

βtj .05(C0 −M0
tj

)
)

• the fair spread of thelth CDO tranche is:

κl =
Ex,y
Q

( ∫ T

0
βtdM l

t

)

Ex,y
Q

( ∑J
j=0 βtj (Cl −M l

tj
)
)

• the fair spread of thepth tranche of the CDO squared is:

υp =
Ex,y
Q

( ∫ T

0
βtdMsq

t

)

Ex,y
Q

( ∑J
j=0 βtj (Cp −Msq

tj
)
)

• the fair spread of a First To Default Swap is:

ϕ =
Ex,y
Q

(
βτi(1− δ)11{τ(1)≤T}

)

Ex,y
Q

( ∑J
j=0 βtj 11{τ(1)≥tj}

)

• fair value of the step-up bond is:

D = Ex,y
Q

(
(1−HT )βT +

∫

(0,T ]

(1−Hu)βu dCu + βτZτHT

)

Depending on the dimensionality of the problem, the above conditional expectations will be evaluated either
by means of Monte Carlo simulation, or by means of some other numerical method and, in the low dimen-
sional cases, even analytically . In the next sections we address the practical issues of implementing the
proposed theoretical framework.
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4 Model Implementation

In this section, we discuss the practical implementation of our model. In particular we provide further struc-
ture to the generator of the Markov chain component of the joint process(X, Y ) and specify a general
functional form for its transition intensities. We then briefly describe a recursive procedure for simulating the
evolution of the processX.

4.1 Specification of Credit Ratings Transition Intensities

Because we need to simulate the joint process(X, Y ), it is important to specify its form in such a way to avoid
unnecessary computational complexity. As noted earlier, the structure of the generatorA that we postulate
makes it so that simulation of the evolution of processX reduces to recursive simulation of the evolution
of processesX l, whose state spaces are only of sizeK each. In order to facilitate simulations even further,
we also postulate that each migration processX l behaves like a birth-and-death process with absorption at
default, and with possible jumps to default from every intermediate state. In addition, we shall assume that
the factor process,Y, is independent ofX. Conditional upon(Xt, Yt) = (x, y), the infinitesimal generator
governing the evolution of the credit ratings of thelth name is the sub-stochastic matrix:




1 2 3 · · · K − 1 K
1 λl

1,1 λl
1,2 0 · · · 0 λl

1,K

2 λl
2,1 λl

2,2 λl
2,3 · · · 0 λl

2,K

3 0 λl
3,2 λl

3,3 · · · 0 λl
3,K

...
...

...
...

. ..
...

...
K − 1 0 0 0 · · · λl

K−1,K−1 λl
K−1,K

K 0 0 0 · · · 0 0




,

where, with a slight change of notation,λl
xl,ξ = λl

xl,ξ(x, y) = λl(x, xξ
l ; y).

The functional form of the transition intensities should reflect the specific characteristics of the instruments
we need to price and should be chosen to obtain the best possible fit in the calibration phase.

4.2 Simulation Algorithm

In general, a simulation of the evolution of the processX entails high computational costs, as the the cardi-
nality of the state space ofX is equal toKN . Thus, for example, in case ofK = 18 rating categories, as
in Moody’s ratings, and in case of a portfolio ofN = 100 credit ratings, the state space has18100 elements.
However, the specific assumptions on the structure of the generator allow to simulate the process in a recur-
sive fashion, which has a relatively low computational complexity. We consider here simulations of sample
paths over a generic time interval,[t1, t2], where0 ≤ t1 < t2, and assume that the timet1 state of the process
(X,Y ) is (x, y). Generating one sample path will, in general, involve the following steps:

Step 1: in Step 1, a sample path of the processY is simulated. Recall that the dynamics of the factor process
are described by the SDE

dYt = b(Yt) dt + σ(Yt) dWt +
∫

Rn
g(Yt−, y′) N(dy′, dt)

Yt1 = y

Any standard procedure can be used to simulate a sample path ofY (the reader is referred, for example,
to Kloeden and Platen [11]). We denote bŷY the simulated sample path ofY .

Step 2: generate a sample path ofX on the interval[t1, t2].
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Step 2.1: simulate the first jump time of the processX in the time interval[t1, t2]. Towards this end, draw
from a unit exponential distribution. We denote byη̂1 the value of the first draw. The simulated value
of the first jump time,τ , is then given by:

τ = inf
{

t > t1 :
∫ t

t1

λ(x, Ŷu) du ≥ η̂1

}
,

where

λ(x, Ŷt) := −
N∑

i=1

λi
xi,xi(x, Ŷt)

and
λl

xl,xl(x, Ŷt) = −λl
xl,xl−1(x, Ŷt)− λl

xl,xl+1(x, Ŷt)− λl
xl,K(x, Ŷt).

If τ > t2 return to step 1, otherwise go to Step 2.2.

Step 2.2: simulate which component of the vector processX jumps at timeτ , by drawing from the condi-
tional distribution:

Q(X l
τ 6= X l

τ−) = −
λl

xl,xl(x, Ŷτ )

λ(x, Ŷτ )

Recall thatλl
xl,xl(x, Ŷt) = 0 if xl = K, sinceK is an absorbing state.

Step 2.3: assume theith obligor jumps atτ. Simulate the direction of the jump by drawing from the condi-
tional distribution

Qi(Xi
τ = ξ) = −

λi
xi,ξ(x, Ŷτ )

λi
xi,xi(x, Ŷτ )

where
ξ = {xi − 1;xi + 1; K}

Step 2.4: update the state ofX and sett1 = τ . Repeat Steps 2.1-2.3 on[t1, t2] until τ > t2

Step 3: calculate the simulated value of a relevant functional. For instance, assume thatY represents the

short rate process, and is used as a discount factor, i.e
∫ t

0
Yt = − ln Bt. In order to compute the protection

leg of a CDS index, one would evaluate

L∑

i=1

Bτi

Bt
(1− δ)(Hi

T −Hi
t)(ω)

at each runω, and obtain the Monte Carlo estimate by averaging over all sample paths.

5 Model Calibration

In the previous sections we assumed a risk neutral pricing measure as given. Arbitrage free pricing, in fact,
requires the existence of a risk neutral measure, under which the price processes in the underlying market
are martingales. In our market model, relevant assets are the single name CDSs contained in the indices, the
indices themselves, and the relative derivative products. It is a standing assumption that financial markets
actually are arbitrage free, and a risk neutral measure can thus be inferred from the prevailing market prices.
Choosing a risk-neutral probability measure such as to reproduce the prices of traded derivative prices is
known as model calibration.

This "inverse" problem is seldom feasible thus, typically, calibrating reduces to achieving the best approx-
imation to market prices within a given model class. The quality of such approximation is a good indicator of
the ability of the model to reproduce and explain the workings of the underlying markets. The main-stream
copula models are known not to provide a good fit to market data, giving rise to the concept of correla-
tion skews and other market inconsistencies, which really reflect the inability of these models to capture the
market risk factors. Calibration provides an important test for our proposed framework.
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5.1 Calibration Procedure

Calibration of the risk neutral parameters of the model, that is, the parameters corresponding to the risk
neutral measure, can be split into two separate problems: calibration of the dynamics of the factor process9

Y , and calibration of the transition intensities of the processX. Since, in general, the dynamics of the rating
process need to be simulated, calibration becomes a delicate phase. We denote the output of the simulation
(which may include individual CDS spreads, index spread, the CDO tranche spreads, etc.) by10

EΘ
(
f

(
X̂t, Ŷt; t≤T

))
,

whereΘ ∈ Θ ⊂ Rn is a vector of parameters to be calibrated. Calibrating the model is done by means of
solving the following minimization problem:

inf
Θ∈Θ

∣∣∣
∣∣∣EΘ

(
f

(
X̂t, Ŷt; t≤T

))
−M

∣∣∣
∣∣∣

whereM ∈ Rn is a vector of market data corresponding to the simulation output and‖ · ‖ is a norm inRn.

Since the degree of smoothness of the mapΘ → EΘ
(
f

(
X̂t, Ŷt; t≤T

))
is unknown and function evalua-

tions are typically done by Monte Carlo simulation, it is best to use algorithms that do not require computation
of gradients. In particular we suggest using the downhill simplex method (also known as the Nelder-Mead
algorithm) or Powell Golden Search method to perform the minimization. The need for computational speed
becomes evident in this phase, since each function evaluation requires simulating a large number of sample
paths.

6 Applications of the Markovian Set Up to Pricing Basket Credit Deriv-
atives via Simulation

In the following, we specialize the general Markovian framework to pricing selected credit derivatives. First,
in Section6.1we shall calibrate a Markovian model to market quotes on individual CDSs, CDS indices, and
synthetic CDOs derived from CDS indices. Then, in Sections6.2.2and6.2.3we shall apply this framework
and the calibration results for pricing FTDSs, customized CDOs, and CDO2. In Section7 we shall calibrate
another version of our model to market quotes relative to one step-up bond and price different (step-up bond)
issues.

6.1 Calibration of a Two State Markov Model for Pricing Basket Credit Derivatives

In this section, we consider a special version of the general Markov model described above and we calibrate
its parameters to market data.

Recall thatXt = (X1
t , X2

t , . . . , XN
t ) denotes the joint credit ratings process of the portfolio ofN credit

names. We assume that the current credit quality of each name in the pool can be classified into two rating
categories, i.e.K := {0, K}, where,0 is a pre-default state11, and as usual,K denotes the default state.
Under the term default, we encompass all credit events that warrant a protection payment. In this case, these
include actual bankruptcy of the obligor, as well as situations of extreme financial distress (i.e. the obligor
files for chapter 11 ).

Note that we have decided to reduce the state space of each ratings processXi to two states only. This
modeling decision rests upon empirical reasons, and appears to be adequate with regard to (basket) credit
instruments whose cash flows are not explicitly tied to changes in credit quality of underlying credit names,

9Calibration of Levy models is discussed in [8].
10Functionf represents the simulation output that is relevant to the given application,bX, bY denote simulated paths of processesX

andY andEΘ is the MonteCarlo estimate of the expected value off under the "measure"Θ.
11Thus, the "state"0 represents all the ratings1, 2, . . . , K − 1.
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but rather depend only on occurrence of default. It needs to be stressed though that credit quality of an
obligor, as reflected in the value of the corresponding CDS spread, provides a useful implicit quantification
of credit ratings of the obligor, and as such is in some way used in our specialized model.12

We postulate that, under the risk neutral measureQ, the jump intensities (default intensities, in this case)
of the Markov chain componentX are as follows:

λl
0,K(t) = h(ηl, Xt; Θ), (8)

whereh is a judiciously chosen function,Θ is a vector of model parameters andηl denotes the spread
of the CDS corresponding to thelth reference name, at inception. Recall that stateK is absorbing, so that
λl

K,0(t) = 0. The discount factorβt is obtained by interpolation of the term structure of T-Bonds at inception.

In order to price consistently the underlying CDSs and the CDO tranches, we calibrate the intensity
parameter vectorΘ to univariate and multivariate default information, provided by the single name CDS
spreads and by the CDO tranche spreads, respectively.13 The model fits both single name CDS spreads and
CDO tranche spreads. The simulation scheme converges rather quickly, with the (relative) standard error of
the estimate ranging between1% and4%, after 100000 simulation runs. As for computational speed, 100000
paths can be generated in few seconds on a 1.5 mhz computer. In addition, the calibration of the model takes
only few minutes of computing time, provided that the optimization algorithm starts from a sensible initial
guess. A comparison of market and model generated spreads are illustrated in Table 1, Table 2 and Table 3.
As usual, the equity tranche is quoted as an up-front premium, in addition to the contractual 500 bps.

Tranche Model Spreads Market Spreads
0-3% 23.79 % 24 %
3-6% 83.83 83
6-9% 24.55 27
9-12% 14.58 14
12-22% 8.43 9

Table 1:Fit of two state Markov model to iTraxx market data on 31-August-2005. All values are quoted in
bps

Tranche Model Spreads Market Spreads
0-3% 24.52 % 24.9 %
3-6% 71.75 71.5
6-9% 22.04 24
9-12% 12.68 11.5
12-22% 6.41 6.65

Table 2:Fit of two state Markov model to iTraxx market data on 05-November-2005.

Tranche Model Spreads Market Spreads
0-3% 42.46 % 43.5 %
3-7% 123.15 123
7-10% 27.07 30
10-15% 14.04 13
15-30% 6.28 6.5

Table 3:Fit of two state Markov model to DJ CDX market data on 10-November-2005.

12 In order to deal with instruments whose cash flows explicitly depend on changes in credit ratings, such as credit quality triggered
step-up bonds (cf. Section7), explicit quantification of relevant credit ratings will be needed.

13The market data is relative to CDO on iTraxx as quoted on August 31 2005 and November 5 2005 and on DJ CDX as quoted on
November 10 2005. The data was courteously provided by GFI
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Once the risk neutral parameters are calibrated, one can price other credit instruments referring to some
or all of the names in the iTraxx index. In the next section, we use the calibrated model to price a CDO on
iTraxx with customized tranche attachments, a CDO squared and an FTDS.

6.1.1 Correlation Skew

Due to space limitation we do not provide here results regarding fitting to market data of the individual CDS
spreads generated by the model. As we said, we obtain a very good fit, which is illustrated by the following
figure of implied correlation skew,
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Figure 2:Correlation skew

6.2 Pricing of Selected Basket Credit Derivatives via Simulation

6.2.1 Pricing of Bespoke CDOs: Bespoke Pools and Tranchelets

Bespoke Pools

Our methodology is easily applicable to pricing bespoke CDOs where the customization is done with
respect to names in the pool. The catch is, however, that we can deal with such bespoke CDOs given the
customization is done relative to the pools of names that were used for calibration purposes. That means, for
example, that we can deal with a bespoke CDO referring to a subset of names in any standard market index
(such as iTraxx-..., CDX, or a combination of those). Sample pricing results are presented in Table4

Tranchelets: Bespoke Attachment–Detachment Points

Using relevant calibrated data, we price a bespoke CDO on the iTraxx S3 index with customized attach-
ment points. The pricing results are shown in Table5.
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Tranche Model Spreads Composition
3-7% 172.26 consumers+telecom+auto
3-7% 108.42 consumers+industrial+telecom+auto
5-10% 433.27 hi-vol

Table 4:Mezzanine and Senior tranche spreads of bespoke CDO on sub-pools of iTraxx .

Tranche Model Spreads
0-3% 24.52 %
3-9% 40.75
9-16% 9.35
16-21% 4.15
21-35% 1.35

Table 5:Pricing of customized CDO tranches on iTraxx index S3, November 5 2005.

6.2.2 Pricing of FTDSs on CDS indices

Next, we price an FTDS on a portfolio of credit names referring to the iTraxx S3 index and listed in Table 6.,
along with market data and pricing results14:

Sector Entity Bid/Ask Market Spread Model Spreads
Autos VOLKSWAGEN 44 / 46 45.39
Energy SUEZ 26 / 27 25.01

Financials Bayerische Hypo 18 / 20 18.75
Industrials Bayer 24 / 26 25.23

TMT FRANCE TELECOM 42 / 44 43.87
Consumer MARKS AND SPENCER 63 / 65 65.82

FTDS Spread 78%/86% 85%

Table 6: November 5, 2005: Diversified FTDS composition and market quote v. model output. The FTDS
spread is quoted as a percentage of the sum of the underlying CDS spreads.

The table shows that the version of our model used here prices consistently FTDS when calibrated to
CDO and iTraxx data, and it suggests that the model is able to capture the dynamics of the credit market in a
realistic fashion.

6.2.3 Pricing of CDO2s

In this section, we price the5−20% (outer) tranche of a CDO squared comprising the3−6% (inner) tranche
of the standard iTraxx CDO and the5 − 10% (inner) tranche of a synthetic CDO referring to the iTraxx
Consumers sub-index. The total number of names referencing the outer CDO is125 + 30, thus the total
notional of the outer CDO is125(.06− .03) + 30(.1− .05). The average spread of the Consumers sub-index
and of the iTraxx index are 51.3333 and 39.562 bps., respectively. The pricing results are summarized in
table 7.

7 Pricing Ratings Triggered Step-Up Bonds via Simulation

Some of the results developed in Bielecki et al. [3] appear to be ideally suited for applications to pricing and
hedging of ratings triggered step-up bonds. Here, using results of [3], we shall apply a simulation approach

14The market data is relative to diversified FTDS contract as quoted on November 5 2005. The data was courteously provided by
Citigroup
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Tranche Model Spreads
(Inner) iTraxx 3-6% 71.85

(Inner) iTraxx-Cons 5-10% 123.66
(Outer) iTraxx + iTraxx-Cons 5-25% 447.625

Table 7:Pricing of 5− 25% CDO squared tranche on iTraxx3− 6% and iTraxx-Cons5− 10%, November
5 2005.

to pricing ratings triggered step-up bonds. Let us consider a ratings triggered step-up bond (cf. Section
2.5) issued by an obligorXY Z. Recall that, typically, cash-flows associated with a step-up bond depend
on ratings assigned toXY Z by both Moody‘s Investors Service (Moody’s in what follows) and Standard
& Poor’s (S&P in what follows). Thus, a straightforward way to model joint credit migrations would be
to consider a credit migration processX such thatXt = (Mt, SPt), whereMt andSPt denote the time
t credit rating assigned toXY Z by Moody’s andSPt, respectively. We assume that processM is a time-
homogeneous Markov chain w.r.t. its natural filtration, under the statistical probabilityP, and that its state
space isK = {1, 2, . . . ,K}. Likewise, we assume that processSP is a time-homogeneous Markov chain
w.r.t. its natural filtration, under the statistical probabilityP, and that its state space isK = {1, 2, . . . ,K}.

Typically, we are only provided with individual statistical characteristics of each of the processesM and
SP. Thus, in a sense, we know the marginal distributions of the joint processX under the measureP (where
M andSP are considered as the "univariate" margins). The crucial issue is thus the appropriate modeling of
dependence between processesM andSP . In particular, we want to model dependence, underP, between
M andSP so that the joint processX is a time-homogeneous Markov chain, and so that the components
M andSP are time-homogeneous Markov chains with givenP-generators, sayAM andASP , respectively.
Thus, essentially, we need to model aP-generator matrix, sayAX , so that processX is a time-homogeneous
Markov chain withP-generatorAX and that processesM andSP are time-homogeneous Markov chains
with P-generatorsAM andASP . An approach to deal with this problem has recently been developed in
Bielecki et al. [3] and it is summarized below.

7.1 Multivariate Markov Chains with Given Marginals, and Markov Copulae

We fix an underlying probability space(Ω,F ,P). On this space we consider a bivariate time-homogenous
Markov chain, sayX = (X1, X2), whose components take values in finite state spacesK1 andK2 with
cardinalitiesK1 andK2, respectively. The joint process will therefore live in a state spaceK = K1 ×K2 of
cardinalityK = K1 ×K2. Let us denote byAX = [aX

ih,jk]i,j∈K1, h,k∈K2 the infinitesimal generator matrix
for X, and let us introduce the following structural assumption,

Assumption (S)
∑

k∈K2

aX
ih,jk =: a1

ij , ∀i, j ∈ K1, i 6= j, ∀h ∈ K2, (9)

∑

j∈K1

aX
ih,jk =: a2

hk, ∀h, k,∈ K2, h 6= k, ∀i ∈ K1. (10)

Let us additionally define
a1

ii := −
∑

j∈K1,j 6=i

a1
ij , ∀i ∈ K1, (11)

a2
hh := −

∑

k∈K2,k 6=h

a2
hk, ∀h ∈ K2. (12)

The following result comes from Bielecki et al. [3],

Lemma 7.1 Suppose Assumption (S) is satisfied. Then, each marginal processXn, n = 1, 2, is a time-
homogeneous Markov chain w.r.t. to its own filtration. Moreover, the infinitesimal generator matrix forXn

is An = [an
ij ]i,j∈Kn , with an

ij , n = 1, 2 defined trough (9) –(12).
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Now, suppose we are given infinitesimalP-generatorsAM = [aM
ij ] andASP = [aSP

hk ] for univariate
chainsM andSP. Thus, lettinga1

ij = aM
ij anda2

ij = aSP
ij , we are given the right hand sides of equations

in the system (9) –(10). If we can now solve this system of equations foraX
ih,jk ’s, so that the resulting

matrix15 AX = [aX
ih,jk]i,j∈K1, h,k∈K2 satisfies conditions for a generator matrix of a Markov chain. Then,

using Lemma7.1we may conclude thatX is a bivariate Markov chain underP, whose marginals are Markov
chains with the same distributions asM andSP under underP. Thus, indeed, the system (9) –(10) essentially
serves as a "Markov copula" between the Markovian marginsM , SP and the bivariate Markov chainX.

Note that, typically, the system (9)–(10) contains many more variables than equations. Thus, one can
create several bivariate Markov chainsX with the given marginsM andSP . In financial applications this
feature leaves a lot of room for various modeling options and for calibration of the model. For example,
as observed by Lando and Mortensen [12] although the ratings assigned by S&P and Moody’s to the same
company do not necessarily coincide, split ratings are rare and are usually only observed in short time in-
tervals. This feature can easily be modelled using the Markovian copula system (9) –(10) via imposing side
constraints for the unknownsaX

ih,jk ’s. In order to model such observed behavior of the joint rating process,
we thus impose additional constraints on the variables in the system (9) –(10). Specifically, we postulate that

aX
ih,jk =

{
0, if i 6= j andh 6= k andj 6= k,
α min(aM

ij , aSP
hk ), if i 6= j andh 6= k andj = k,

(13)

whereα ∈ [0, 1] is a modelling parameter. Using constraint (13) we can easily solve system (9) –(10) (in
this case the system actually becomes fully decoupled) and we can obtain the generator of the joint process.
The interpretation of constraint (13) is the following: The componentsM andSP of the processX migrate
according to their marginal laws, but they tend to join, that is, they tend to both take the same values. The
strength of such tendency is measured by the parameterα. Whenα = 0 then, in fact, the two components are
independent processes; whenα = 1 the intensity of both components migrating simultaneously to the same
rating category is maximum (given the specified functional form for the intensities of common jumps).

7.2 Markovian Changes of Measure

For valuation purposes the statistical probability measure needs to be changed to an equivalent pricing mea-
sure. Typically, the Radon-Nikodym density is chosen in such a way that the resulting (risk-neutral) default
probabilities are consistent with the term structure of CDS spreads (default data). In addition, we require
that the processX, which is Markovian under the statistical measure, is also Markovian (w.r.t. its natural
filtration) under the pricing measure. As a consequence, such change of measure must be chosen with some
care. We refer the reader to [15] and [2] for a detailed discussion about Markovian changes of measure and
their relation to changes of numeraire. We remark that, although the choice of the new probability measure
is done so to preserve Markov property of the joint processX, the two componentsXM andXSP may not
be Markov (w.r.t. their natural filtration) under the new probability measure.

Recall thatAX = [aX
ih,jk] denotes the generator ofX under the statistical probability measureP. Given

any vectorh = [h11, · · · , hKK ] ∈ RK2
satisfying very mild conditions16, we can change statistical measure

P to an equivalent "risk-neutral" measureQ in such a way that processX is a time-homogeneous Markov
chain underQ, and itsQ-infinitesimal generator is given by

ÃX = [ãih,jk],

whereãih,jk = aih,jk
hjk

hih
for ih 6= jk andãih,jk = −∑

jk 6=ih aih,jk
hjk

hih
for ih = jk. An arbitrary choice of

vectorh may lead to a heavy parametrization of the pricing model. We suggest that the vectorhij be chosen
as follows:

hij = exp(α1i + α2j), ∀i, j ∈ K,

whereα1 andα2 are parameters to be calibrated. Calibration and pricing results indicate that this is a good
choice.

15System (9) –(10) does not include diagonal elements ofAX . These elements are obtained asaX
ih,ih = −P(j,k)∈K aX

ih,jk.
16It suffices that each component be positive and bounded
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7.3 Model Calibration

With the above choice of dependence structure and measure change, the model is fully specified by three
parameters, namelyα, α1, α2. In order to obtain risk neutral prices for rating triggered step–up bonds, these
parameters must be calibrated to market data.

Let us consider a vanilla bond, which is equivalent to the given step–up bond. By equivalent, we mean a
coupon bearing bond, backed by the same company, whose all provisions, other than the step-up provision,
are identical to those of the given step–up bond. That is, maturity and coupon dates are the same, and the
coupons of the equivalent bond are equal to the fixed coupons of the step–up bond. In addition, credit risk is
the same and liquidity risk is comparable. The term vanilla means that the step-up provision is not present.

One would presume, then, that the price of a step–up bond is equal to the price of the equivalent vanilla
bond plus the (positive) value of the step–up provision. If such an equivalent vanilla bond were traded on the
market, such presumption could be tested by comparing the market price of the step-up bond to the market
price of the equivalent vanilla bond, in expectation that the former is not less than the latter.

Unfortunately, in general, equivalent vanilla bonds are not traded on the market. However, their price can
be synthesized by applying a standard bootstrapping-interpolation procedure to the market prices of traded
vanilla bonds. The value of the step–up provision, given by the difference between the market price of the
step–up bond and the synthetic price of the corresponding equivalent bond is, surprisingly, negative. Such
behavior was already noted by some recent empirical literature (cf. eg. [12]), which provides strong evidence
that the market typically "underprices" step-up bonds, and often the (implied) market value of the step-up
provision is negligible and even negative. Consequently, it appears that the presumption that the price of
a step–up bond is equal to the price of the equivalent vanilla bond plus the (positive) value of the step–up
provision is incorrect. Such findings suggest that step–up bond investors are, actually, more risk averse than
vanilla bond investors. In particular, on the theoretical level, this means that the implied pricing kernel used
to price step–up bonds should be different from the pricing kernel used when pricing vanilla bonds. For our
purposes, the above implies that the model parameters, or at least those relative to credit migrations, should
not be calibrated to vanilla bond data. Nevertheless, these data provide useful information and should not be
ignored. In particular, under the assumptions given below, vanilla bond prices can be used to compute a term
structure of firm-specific, liquidity adjusted, discount factors (risk–free rate + liquidity spread).

Our first assumption is that the vanilla bond market assesses likelihood of the default event in the same
way as the CDS (Credit Default Swap) market17. Our second assumption is that liquidity risk is priced
identically by the step–up and vanilla bond markets.

Given the above, we can apply a standard bootstrapping-interpolation procedure to a pool of reference
bonds18 to obtain a term-structure of firm specific, liquidity adjusted, zero-coupons. The straightforward
procedure is briefly described below. We are given a set ofJ reference bonds with associated cash-flows
CF j

tj
i

, j = 1, . . . , J , and coupon datestj0 = 0, . . . , tjN = T j such thatT 1 < T 2 < · · · < T J . The

cash-flows are then adjusted by the default probability implied by the CDS spreads. Letτ denote the default

time of the relevant obligor, the default adjusted cash-flows areC̃F
j

tj
i

= CF j

tj
i

Q(τ > tji ). The interpolation-

bootstrapping procedure is now applied to the reference bonds with default-risk adjusted cash flows, so that
the resulting discount factors account only for the firm specific liquidity spread19. At this point, the price of
an arbitrary step–up bond can be computed by simulating the evolution of the joint rating process and the
relative discounted cash-flows20. The simulation and calibration procedures are analogous to those described
in section4.

In view of the observation that step–up bond investors do not use the pricing rule prevailing in the vanilla
bond market, the model parameters,α, α1, α2 are calibrated to step-up bond data only.

17This is not necessary since default risk can be inferred from yield spreads in the bond market, but the high liquidity of the CDS
market makes it a preferable choice.

18We adopt here terminology from [12] to denote vanilla bonds of several maturities which have comparable liquidity and are issued
by the same company as the relevant step-up bond.

19Plus market risk spreads other than credit spread.
20Simulation seems to be the only feasible computation technique, because of certain path dependencies in the payoff structure,

induced by the step–down provision present in most step–up issues. Such path dependency is well explained in [12].
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7.3.1 Calibration Results

In this section we present calibration results. The bond data, obtained from Bloomberg’s Corporate Bonds
section, is relative to mid market quotes on April 5, 2006.

We calibrated the model parameters to a DT (Deutsche Telecom) step-up issue described in the table
below:

ISIN XS0132407957

Maturity 07/11/11

Coupon 6
5
8 Annual

Step provision

�
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+.

Table 8:DT step-up issue on April 5, 2006.

Given the default probability implied by the 5-y CDS spread of DT (46 bps), the liquidity adjusted dis-
count rates are obtained using the above mentioned bootstrapping-interpolation procedure from the following
pool of reference bonds:

ISIN Maturity Coupon Mid-Price

XS0141544691 01/22/07 5
1
4 1.015698

DE0002317807 05/20/08 5
1
4 1.031821

XS0242840345 02/02/09 3 0.979798
XS0217817112 04/22/09 3 0.978352

XS0210319090 01/19/10 3
1
4 0.976716

XS0210318795 01/19/15 4 0.960349

Table 9:Reference bonds pool on April 5, 2006.

The calibration results are given in the following table:

Model Price Market Price
Bond Price 1.11705 1.11705

Step-up provision .00574 -

Table 10:Calibration results

We remark that, since our calibration problem is overdetermined (three parameters are calibrated to one
piece of data), the value of the step-up provision is not uniquely defined. This problem can be easily overcome
by calibrating the model to more step-up issues of different maturities and/or provisions.

7.4 Valuation of Step-up Bonds

Using the calibrated model, we price selected issues of DT step-up bonds; we refer to Tables11 and12 for
the description of the bonds.

Table13 presents the pricing results as well as the corresponding market quotes. The results are satis-
factory, indicating that the model is robust and prices consistently across maturities and step–up provisions.
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ISIN XS0113709264

Maturity 07/06/10

Coupon 6
5
8 Annual

Step provision

�
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+.

Table 11:DT step-up issueXS0113709264 on April 5, 2006.

ISIN XS0155788150

Maturity 10/07/09

Coupon 6
1
2 Annual

Step provision

�
+50 bps, if both downgraded below Baa1/BBB+;
−50 bps, if both subsequently upgraded above Baa2/BBB.

Table 12:DT step-up issueXS0155788150 on April 5, 2006.

ISIN XS0113709264 XS0155788150
Mkt Price/Model Price Mkt Price/Model Price

Bond Price 1.10105/1.103546 1.08435/1.08685
Step-up provision - /.003752 - /.00215

Table 13:Pricing results using calibrated model
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