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Abstract

For a finite state Markov process and a finite collection {Γk, k ∈ K}
of subsets of its state space, let τk be the first time the process visits
the set Γk. We derive explicit/recursive formulas for the joint den-
sity and tail probabilities of the family of stopping times {τk, k ∈ K}.
In particular, we provide a general solution to the problem that was
studied (Assaf et. al., Multivariate phase-type distributions, Opera-
tions Research 32 (1984), no. 3, 688-702) in the context of multivariate
phase-type distributions. We give a numerical example and indicate
the relevance of our results to credit risk modeling.
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1 Introduction

One of the basic random variables associated with a Markov process X is its
first hitting time to a given subset of its state space. In the present work we
will confine ourselves to finite state Markov processes. If X has an absorbing
state and all of the states can communicate with it, the distribution of the
first hitting time to the absorbing state is said to be a phase-type distribution.
Phase-type distributions, that go back to Erlang [9], are used in modeling of
a wide range of phenomena in reliability theory, communications systems,
in insurance and finance, to name just a few areas of applications. The
literature on these distributions is immense, see, e.g., [2, 3, 1, 12, 15, 17].

To the best of our knowledge, Assaf et al. [4] were the first ones to study
multivariate (multidimensional) phase-type distributions. Their setup, for
the two dimensional case is as follows: take two proper subsets Γ1 and Γ2

of the state space, and assume that with probability 1 the process enters
their intersection; let τk be the first time the process enters Γk. The joint
distribution of (τ1, τ2) is a two dimensional phase-type distribution. Higher
dimensional versions are defined similarly for a finite collection of subsets
{Γk, k ∈ K} of the state space. Denote the number of elements in K by
|K|. Multidimensional phase-type distributions can put nonzero mass on

lower dimensional subsets of R|K|+ , and the density of the distribution when
restricted to these subsets is called the “singular part of the distribution.”
As far as we know, the only result available in the current literature giving
a complete characterization of any multidimensional phase-type density is
the case of two dimensions treated in [4]. The same work presents, without
proof, a density formula for the nonsingular part of a phase-type distribution
of arbitrary finite dimension. The proof of the formula was later given in
[10].

The main contribution of the present paper is Theorem 3.2, which gives

an explicit formula for the joint density (over appropriate subsets of R|K|+ )
of the random vector τ := (τk, k ∈ K), covering all possible singular and
nonsingular parts. We make no assumptions on whether {Γk, k ∈ K} are
absorbing or not and Theorem 3.2 gives a general formula for the joint den-
sity of a collection of first hitting times for any finite state Markov process
X. The formula for phase-type densities follows as a special case (see Propo-
sition 4.1 for the one dimensional case and Proposition 4.2 for the general
case).

One common method of computing a density is to compute the corre-
sponding tail probability and then to differentiate it to get the density. This
is the main method used in the prior literature on our problem (see, for ex-
ample, [4, 10]). As will be seen in Subsection 3.4, “singular” tail probabilities
of τ (i.e., tail probabilities where some components of τ are equal) turn out
to be much more complicated objects than the corresponding densities and
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if one tries to compute these singular tail probabilities with standard meth-
ods (for example, using the methodology of taboo probabilities as presented
in Syski [17]) one quickly runs into seemingly insurmountable calculations
even when |K| is low. Thus, in this paper, we decided to follow the opposite
route and compute the density directly using the following idea: for each

t ∈ R|K|+ , the event {τ = t} corresponds to the limit of a specific and sim-
ple set of trajectories of the Markov process whose (vanishing) probability
can be written in terms of the exponentials of submatrices of the intensity
matrix.

Subsection 3.1 explains the idea in its simplest form in the derivation
of the density of a single τk, given as Theorem 3.1 (see also Remark 3.3).
The same idea extends to multiple hitting times in Subsection 3.2 and the
multidimensional density is given as Theorem 3.2. Subsection 3.4 derives the
tail probabilities of τ using a variant of the density formula; the result is
given as Theorem 3.3. The formulas for tail probabilities are more complex
compared to densities and are best expressed recursively. We provide a
second formula (36) which explicitly states some of the integration that is
hidden in the completely recursive (30).

In Section 4, we derive alternative expressions for the density and the
tail probability formulas for absorbing {Γk} and indicate the connections
between our results and the prior literature. Section 5 gives a numerical
example.

From an applied perspective, our primary motivation in deriving the
results in the present paper has been to be able to model default times of
companies/obligors with first hitting times of a finite state Markov process
where multiple defaults are allowed to happen at the same time; with the
results our of our paper this is now possible in great generality (for the case
of two obligors one could use the results in [4]). The conclusion explains
this application starting from the credit risk model of [10] and the numerical
example of Section 5. In addition to credit risk, we expect our results to be
useful in reliability theory (see, e.g., [4]), counterparty risk (see, e.g., [7]), and
insurance (see, e.g., [5]). From a theoretical perspective, the first motivation
of the paper has been the solution of a problem whose two dimensional
version was solved in [4], i.e., find simple expressions for the density of τ ;
surprisingly, prior to the results of the present paper, such expressions were
not available in the literature. A second theoretical contribution of the
present work is to the line of research originated in [8] and continued in [13]
and [11]; the next paragraph explains this side of our contribution.

In [8] the following problem was studied: given a filtration G = {Gu, u ∈
R+} and a multivariate random time τ = (τ1, . . . , τm) study the conditional
law, say µGu , of τ given Gu, in the case that where P (τi = τj) = 0 for
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i 6= j, i, j = 1, 2, . . . ,m. Thus, a (random) measure was sought so that

P (τ ∈ B|Gu) =

∫
B
µGu (dt), (1)

for any measurable subset B of Rm+ . If the measure µGu is represented as

µGu (dt) = ϕG
u (t)ν(dt), (2)

where ν is a (possibly random) measure on Rm+ , then ϕG
u is called the density

of P (·|Gu) with respect to ν, and the process ϕG
· is called the conditional

density process. This study, was extended in [11], for n = 2, to the case
where joint default were allowed, that is P (τ1 = τ2) > 0.

Now, let F = {Fu, u ∈ R+} be the filtration generated by X. The
Markov property of X implies that the conditional density of τ given Fu

directly follows from the density formula (17), as we show in Proposition
3.2. Thus, our results generalize (1) and (2) to the case of arbitrary m ≥ 1
where the restriction P (τi = τj) = 0 for i 6= j, i, j = 1, 2, . . . ,m is no longer
required. It needs to be stressed though that this generalization is only
done here in the Markovian case, i.e., when G = F and when τ is defined as
first hitting times of the process X. Still, it is an important generalization
allowing for studying and modeling probabilities related to simultaneous
multivariate trigger events, such as simultaneous defaults in a large pool of
obligors.

2 Definitions

Let E be a finite set and X an E-valued continuous time process defined over
a measurable space (Ω,F ) equipped with a family of probability measures
Pi, i ∈ E, such that Pi(X0 = i) = 1. Under each Pi, X is assumed Markov
with intensity matrix λ. We denote by P the column vector {Pi, i ∈ E}.
If α is a probability measure on E (written as a row), we will denote by
Pα the probability measure Pα = αP =

∑
i∈E α(i)Pi on (Ω,F ). It follows

from these definitions that under Pα the initial distribution of X is α, i.e.,
Pα(X0 = i) = α(i). The total jump rate of the process when in state i is
−λ(i, i) =

∑
j 6=i λ(i, j).

For a finite collection {Γk ⊂ E, k ∈ K} of subsets of E, define τk :=
inf{u ∈ (0,∞) : Xu ∈ Γk}. The index set K can be any finite set, but we
will always take it to be a finite subset of the integers. In the next section we
derive formulas for the (conditional) joint density and tail probabilities of
the stopping times {τk, k ∈ K}. To ease notation, unless otherwise noted, we
will assume throughout that E −

⋃
k∈K Γk is not empty and that the initial

distribution α puts its full mass on this set, see Remark 3.2 and Subsection
3.3 for comments on how one removes this assumption.
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For a set a ⊂ E, ac will mean its complement with respect to E and
|a| will mean the number of elements in it. For two subsets a, b ⊂ E define
λ(a, b) as the matrix with elements{

λ(i, j) if i ∈ a, j ∈ b,
0, otherwise.

(3)

For a ⊂ E, we will write λ(a) for λ(a, a), so that in particular λ = λ(E).
Throughout we will need to refer to zero matrices and vectors of various

dimensions, we will write all as 0; the dimension will always be clear from
the context.

2.1 Restriction and extension of vectors and τ as a random
function

For any nonempty finite set a, let Ra be the set of functions from a to R.
Ra is the same as R|a|, except for the way we index the components of their
elements. For two sets a ⊂ b and y ∈ Rb denote y’s restriction to a by
y|a ∈ Ra:

y|a(i) := y(i) for i ∈ a. (4)

The same notation continues to make sense for a of the form b × c, and
therefore can be used to write submatrices of a matrix. Thus, for M ∈ RE×E
and nonempty b, c ⊂ E

M|b×c (5)

will mean the submatrix of M consisting of its components M(i, j) with
(i, j) ∈ b× c. For b = c we will write M|b.

For x ∈ Ra, and a ⊂ b, denote by x|b ∈ Rb the following extension of x
to b:

x|b(i) =

{
x(i) for i ∈ a,
0, otherwise.

(6)

The random vector τ = (τk, k ∈ K) can also be thought of as a random
function on K, and we will often do so. Thus for A ⊂ K, we may write τ |A
to denote (τk, k ∈ A). The advantage of the notation τ |A is that we are able
to index its components with elements of A rather than with the integers
{1, 2, 3, ..., |A|}; this proves useful when stating the recursive formulas and
proofs below.

2.2 Subpartitions of K

The key aspect of the distribution of τ , already referred to in the in-
troduction, is that it may put nonzero mass on lower dimensional sub-

sets of R|K|+ . This happens, for example, when X can hit
⋂
k∈A Γk before⋃

k∈A Γk −
⋂
k∈A Γk with positive probability for some A ⊂ K with |A| > 1.
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As this example suggests, one can divide R|K|+ into a number of regions and
associate with each an intersection of events of the form “X hits a before b”
for appropriate subsets of a, b ⊂ E. To write down the various regions and
the corresponding events we will use subpartitions of K, which we introduce
now.

Recall that K is the set of indices of the stopping times {τk} or equiva-
lently the sets {Γk}. We call an ordered sequence of disjoint nonempty sub-
sets of K a subpartition of K. If the union of all elements of a subpartition is
K then we call it a partition. For example, ({1, 2}, {3}, {4}) [({1, 2}, {4})] is
a [sub]partition of {1, 2, 3, 4}. Denote by |s| the number of components in the
subpartition and by s(n) its nth component, n ∈ {1, 2, 3, ..., |s|}. In which or-
der the sets appear in the partition matters. For example, ({3}, {4}, {1, 2})
is different from the previous partition. In the combinatorics literature this
is often called an “ordered partition,” see, e.g., [16]. Only ordered partitions
appear in the present work and therefore to be brief we always assume every
subpartition to have a definite order and drop the adjective “ordered.” With
a slight abuse of notation we will write s(n1, n2) to denote the n2

nd element
of the n1

st set in the partition.
Two subpartitions s1 and s2 are said to be disjoint if ∪ns1(n) and ∪ns2(n)

are disjoint subsets of K. For a given disjoint pair of subpartitions s1, s2

let s1 ∪ s2 be their concatenation, for example ({1, 2}, {3}) ∪ ({4, 6}) =
({1, 2}, {3}, {4, 6}).

For a subpartition s, let Ls be its left shift, i.e., L(s(1), s(2), ..., s(|s|))
= (s(2), s(3), ..., s(|s|)). Let Lm denote left shift m times. Similarly for
t ∈ Rn, n > 1 let Lt ∈ Rn−1 be its left shift. For t ∈ Rn and r ∈ R let t− r
denote (t1 − r, t2 − r, ..., tn − r).

Given a subpartition s and an index 0 < n ≤ |s|, let s − s(n) be the
subpartition which is the same as s but without s(n), e.g., ({1, 2}, {3}, {4, 7})
−{3} = ({1, 2}, {4, 7}). Given a nonempty A ⊂ K −

⋃|s|
n=1 s(n) let s + A

denote the subpartition that has all the sets in s and A, e.g., ({1, 2}, {3}) +
{4, 7} = ({1, 2}, {3}, {4, 7}).

Define

S(s) :=

|s|⋃
n=1

⋃
k∈s(n)

Γk,

S(s) is the set of all states of X contained in the partition s. For a partition
s, define Rs ⊂ RK+ as

Rs :=

{
t ∈ RK+ :

|s|⋂
n=1

⋂
k1,k2∈s(n)

{tk1 = tk2}

∩
{
ts(1,1) < ts(2,1) < · · · < ts(|s|,1)

}}
.
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Example 2.1. For |K| = 6, and s = ({1, 4}, {2}, {3, 5, 6}), we have |s| = 3,
s(1) = {1, 4}, s(2) = {2}, s(3) = {3, 5, 6}, s(1, 1) = 1, s(2, 1) = 2, s(3, 1) = 3
and

Rs = {t : t1 = t4 < t2 < t3 = t5 = t6}.

Let S be the set of all partitions of K. The sets Rs, s ∈ S, are disjoint
and their union is RK+ . Our main result, Theorem 3.2 below, shows that for
each s ∈ S, the distribution of τ restricted to Rs is absolutely continuous
with respect to the |s|-dimensional Lebesgue measure on Rs and gives a
formula for the corresponding density.

2.3 Restriction of matrices

Let I be the identity matrix I ∈ R|E|×|E|. For a ⊂ E, we replace its rows
whose indices appear in ac with the 0 vector and call the resulting matrix Ia,
e.g., IE is I itself and I∅ is the zero matrix. The matrix Ia has the following
action on matrices and vectors:

Lemma 2.1. Let n be a positive integer. For any M ∈ R|E|×n, IaM is the
same as M except that its rows whose indices are in ac are replaced by 0 (a
zero row vector of dimension n), i.e., if ri is the ith row of M then the ith

row of IaM is ri if i ∈ a and 0 otherwise.

The proof follows from the definitions and is omitted.

Right multiplication by Ia acts on the columns, i.e., MIa is the same as
M except now that the columns with indices in ac are set to zero. As an
operator on |E| dimensional vectors, Ia replaces with 0 the coordinates of
the vector whose indices are in ac.

It follows from the definition (3) and Lemma 2.1 that

λ(a, b) = IaλIb (7)

The operation of setting some of the columns of the identity matrix to zero
commutes with set operations, i.e., one has

Ia∩b = IaIb, Ia∪b = Ia + Ib − IaIb, Iac = I− Ia. (8)

Using this and Lemma 2.1 one can write any formula involving λ in a number
of ways. For example, λ(ac, a) can be written as IacλIa = (I − Ia)λIa =
λIa − IaλIa or λ(a, b ∩ c) as IaλIb∩c = IaλIbIc = IaλIcIb.

3 The density of first hitting times

We start by deriving the density of a single hitting time over sets of sample
paths that avoid a given subset of the state space until the hitting occurs.
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3.1 Density of one hitting time

For any set d ⊂ E and u ∈ R+ define

puα,d(j) := Pα(Xu = j,Xv /∈ d,∀v ≤ u)

and pud(i, j) := Pi(Xu = j,Xv /∈ d,∀v ≤ u). In addition, let pu(i, j) :=
pu∅(i, j) = Pi(Xu = j). The quantity puα,d is a row vector and pud and pu are
|E| × |E| matrices. Conditioning on the initial state implies puα,d = αpud . It

follows from the definition of ph that

lim
h→0

ph(i, j)/h = λ(i, j). (9)

Lemma 3.1. Let α be an initial distribution on E with α|d = 0. Then

puα,d = αeuλ(dc). (10)

Proof. We only need to modify slightly the proof of [2, Theorem 3.4, page
48]. The steps are: 1) write down a linear ordinary differential equation
(ODE) that the matrix valued function u→ pud |dc , u ∈ R+, satisfies, 2) the
basic theory of ODEs will tell us that the unique solution is u→ euλ(dc)|dc .

Let ν1 be the first jump time of X; for X0 = i ∈ dc, ν1 is exponentially
distributed with rate −λ(i, i) > 0. Conditioning on ν1 gives

pud(i, j) = Pi(ν1 > u)δi(j) +

∫ u

0

λ(i, i)eλ(i,i)v

 ∑
l∈d−{i}

λ(i, l)

λ(i, i)
pu−vd (l, j)

 dv (11)

for (i, j) ∈ dc × dc. In comparison with the aforementioned proof we have
only changed the index set of the last sum to ensure that only paths that
keep away from d are included. The unique solution of (11) equals pud |dc =
euλ|dc = euλ(dc)|dc . The equality (10) follows from this and α|d = 0.

Remark 3.1. Probabilities that concern sample paths that stay away from
a given set are called “taboo probabilities” in [17, Section 1.2]; [17, Equation
(F), page 28] is equivalent to (11).

The next result (written in a slightly different form) is well known, see,
e.g., [14, 4]. We record it as a corollary here and will use it in subsection
4.3 where we indicate the connections of our results to prior literature. Let
1 be the |E| dimensional column vector with all components equal to 1.

Corollary 3.1. For τd := inf{u : Xu ∈ d}, and an initial distribution with
α|d = 0

Pα(τd > u) = αeuλ(dc)1. (12)
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Proof.

Pα(τd > u) =
∑
j∈dc

Pα(Xu = j,Xv /∈ d,∀v ≤ u) = αeuλ(dc)1,

where the last equality is implied by (10).

Remark 3.2. One must modify (12) to

Pα(τd > u) = αIdce
uλ(dc)1, Pα(τd = 0) = αId1

if one does not assume α|d = 0.

Once Pα(τd > u) is known, one can differentiate it to compute the density
of τd. This, in essence, has been the strategy employed in previous works.
It clearly works well for a single hitting time or for nonsingular parts of the
distribution of τ (see [4, 10]). However, as explained in the introduction,
the same idea runs into difficulties if one tries to use it to compute the
nonsingular parts of the distribution of τ . The next theorem computes the
density directly for the case of a single stopping time τd. The theorem allows
also to specify a subset b ⊂ E that the process is required to stay away
before the hitting time; this generalization turns out to be useful to extend
the theorem to multiple hitting times (see the next subsection), setting b = ∅
gives the actual density of τd.

Theorem 3.1. Let a, b ⊂ E, a∩b = ∅ be given. Define τa := inf{u : Xu ∈ a}
and set d = a ∪ b. Then

d

du
[Pα(τa ∈ (0, u], Xv /∈ b,∀v < τa)] = αeuλ(dc)λ(dc, a)1, (13)

where α is the initial distribution of X with α|d = 0.

add comments: a is the target, dc the waiting set
In other words, the density of τa on the set {Xv /∈ b,∀v < τa} ( by this

we mean that Pα(τa ∈ C,Xv /∈ b,∀v < τa) =
∫
C αeuλ(dc)λ(dc, a)1du) is

given by the right side of (13).
The idea behind (13) and its proof is this: for τa = u with X staying out

of b until time u, X has to stay in the set dc until time u and jump exactly
at that time into a.

Proof of Theorem 3.1. The definition of the exponential distribution implies
that X jumps more than once during the time interval [u, u+ h] has prob-
ability O(h2). This, (9) and the Markov property of X (invoked at time u)
give

Pi(Xτa = j, τa ∈ (u, u+ h), Xv /∈ b,∀v ≤ u)

=

(∑
l∈dc

pud(i, l) λ(l, j)

)
h+ o(h). (14)
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Pi(τa ∈ (u, u+ h), Xv /∈ d,∀v ≤ u) =

∑
j∈a

∑
l∈dc

pud(i, l) λ(l, j)

h+ o(h).

(15)
By the previous lemma pud(i, j) equals exactly the (i, j)th component of
euλ(dc). These imply (13).

Remark 3.3. Setting b = ∅ in Theorem 3.1 we get the density of τa. The
formula (13) generalizes the exponential density: if τ ′ is exponentially dis-
tributed with rate λ′ ∈ (0,∞) it has density eλ

′tλ′.

The following result will be needed in the proof of Theorem 3.2. We
state it here, as it is derived using the same reasoning as the one used for
Theorem 3.1.

Proposition 3.1. Let a, b ⊂ E, a ∩ b = ∅ where the set a is nonempty,
be given. Define τa := inf{u : Xu ∈ a} and d = a ∪ b. Let α is an initial
distribution on E with α|d = 0. Set α1 := αeτaλ(dc)λ(dc, a) and V := {Xv /∈
b,∀v ≤ τa}. Then

Pα(Xτa = j|(τa, 1V)) = α1(j)/α11 on V,

where 1V is the indicator function of the event V.

Note that V is the event that X does not visit the set b before time τa.

Proof. The proof follows from (14) and the definition of the conditional
expectation.

3.2 The multidimensional density

One can extend (13) to a representation of the distribution of τ using
the subpartition notation of subsection 2.2. For a partition s of K, n ∈
{1, 2, ..., |s|} and t ∈ Rs ⊂ RK+ , define

t̄n := ts(n,1), t̄0 := 0, Wn := [S(Ln−1s)]c, Tn :=

 ⋂
k∈s(n)

Γk

∩Wn+1, (16)

where W stands for “waiting” and T for “target.” In particular, W1 =
[S(L0s)]c = [S(s)]c = [

⋃
k∈K Γk]

c = E −
⋃
k∈K Γk.

the previous example was completely wrong and had no sense! The key
idea of the density formula and its proof is the |s| step version of the one in
Theorem 3.1: in order for τ = t ∈ RK+ , X has to stay in the set W1 until
time t̄1 and jump exactly at that time into T1 ⊂ W2; then stay in the set
W2 until time t̄2 and jump exactly then into T2 and so on until all of the
pairs (Wn, Tn), n ≤ |s|, are exhausted.
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Although not explicitly stated, all of the definitions so far depend on the
collection {Γk, k ∈ K}. We will express this dependence explicitly in the
following theorem by including the index set K as a variable of the density
function f . This will be useful in its recursive proof, in the next subsection
where we comment on the case when α is an arbitrary initial distribution
and in Proposition 3.2 where we give the conditional density of τ given Fu,
u > 0. For a sequence M1,M2, ...,Mn of square matrices of the same size∏n
m=1 Mm will mean M1M2 · · ·Mn.

Theorem 3.2. For any partition s ∈ S, the distribution of τ on the set Rs
has density

fs(α, t,K) = α

 |s|∏
n=1

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)

1, t ∈ Rs (17)

with respect to the |s|-dimensional Lebesgue measure on Rs.

Proof. The proof will use induction on |K|. For |K| = 1, (17) is the same
as (13) with b = ∅. Let κ > 1 and suppose that (17) holds for all K
with |K| ≤ κ − 1; we will now argue that (17) also holds for all K with
|K| = κ. Fix a K with |K| = κ and a partition s of K; we will show that
the distribution of τ restricted to Rs has the density (17). Specifically, we
will show that for any bounded and measurable function g : RK → R the
following equality holds

E[1Rs(τ )g(τ )] =

∫
Rs

g(t)fs(α, t,K)dst, (18)

where dst denotes the |s|-dimensional Lebesgue measure on Rs.
Define ϑ = min τ := min{τk, k ∈ K} = τs(1,j) for any j ∈ s(1), that

is, ϑ is the first time X enters the set
⋃
k∈K Γk. In the rest of the proof

we will proceed as if Pα(ϑ < ∞) = 1; the treatment of the possibility
Pα(ϑ = ∞) > 0 needs no new ideas and the following argument can be
extended to handle it by adding several case by case comments.

For a sample path of X that satisfies τ ∈ Rs the following must hold: 1)
Xϑ ∈ T1 and 2) Xt ∈ W1 for t ≤ ϑ; 1) and 2) also imply ϑ = τs(1,1) for the
same sample path. Therefore,

{τ ∈ Rs} ⊂ W1 := {Xu ∈W1, u < ϑ} ∩ {Xϑ ∈ T1}. (19)

Theorem 3.1 implies that if λ(W1, T1) is zero, thenW1 has probability zero.
Thus, (19) implies that if λ(W1, T1) is zero then Pα(τ ∈ Rs) = 0 and,
indeed, fs(α, t,K) = 0 is the density of τ on Rs. From here on, we will treat
the case when λ(W1, T1) is nonzero.

Next, define the process X̂ by X̂u := Xu+ϑ, u ≥ 0, and τ̂ = (τ̂k, k ∈
S(Ls)) where

τ̂k := inf{u : X̂u ∈ Γk};

11



X̂ is the trajectory of X after time ϑ. The strong Markov property of X
implies that X̂ is a Markov process with intensity matrix λ and starting
from X̂0 = Xϑ. This and (19) imply

τ̂ = τ |Ls − ϑ, (20)

where τ |Ls is defined in accordance with (4). Finally, the definition of τ̂
and that of W1 imply

{τ ∈ Rs} =W1 ∩ {τ̂ ∈ RLs}. (21)

In words, this display says: for τ to be partitioned according to s, among all
{Γk}, X must visit

⋂
k∈s(1) Γk first and after this visit the rest of the hitting

times must be arranged according to the partition Ls.
Denote by 1′ the function that maps all elements of K to 1. Define

ĝ : R+ × RS(Ls)
+ → R as

ĝ(u, t̂) := g
(
u1′ + t̂|S(s)

)
,

where we used the function extension notation of (6). Equalities (20) and
(21) imply

E[1Rs(τ )g(τ )] = E[1W11RLs(τ̂ )ĝ(ϑ, τ̂ )]

= E[E[1W11RLs(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]] (22)

= E[1W1E[1RLs(τ̂ )g(ϑ, τ̂ )|Fϑ]],

where for the last equality we used the fact that W1 is Fϑ measurable.
The property 5A in [6, page 98] implies

E[1RLs(τ̂ )ĝ(ϑ, τ̂ )|Fϑ] = h(ϑ) (23)

where
h(u) := E[1RLs(τ̂ )ĝ(u, τ̂ )|Fϑ]. (24)

The strong Markov property of X and the definition of X̂ imply

h(u) = E[1RLs(τ̂ )ĝ(u, τ̂ )|Xϑ] = E[1RLs(τ̂ )ĝ(u, τ̂ )|X̂0].

The random variable X̂0 takes values in a finite set and therefore one can
compute the conditional expectation E[1RLs(τ̂ )ĝ(u, τ̂ )|X̂0] by conditioning

on each of these values separately. Since X̂ is a Markov process with ini-
tial distribution X̂0 with intensity matrix λ, one can invoke the induction
hypothesis for the set K − s(1) to conclude that, on the set {X̂0 = j},

h(u) = E[1RLs(τ̂ )ĝ(u, τ̂ )|X̂0 = j] =

∫
RLs

fLs(δj , t,K − s(1))g(u, t)dLst (25)

12



where fLs is given as in (17) with s changed to Ls and K changed to K−s(1),
i.e., for t ∈ RLs

fLs(δj , t,K − s(1)) = δj

 |s|∏
n=2

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)

1.

This and (25) now give

E[1RLs(τ̂ )ĝ(ϑ, τ̂ )|Fϑ] =
∑
j∈s(1)

1{X̂0=j}

∫
RLs

fLs(δj , t,K − s(1))g(ϑ, t)dLst

=

∫
RLs

fLs(α̂, t,K − s(1))g(ϑ, t)dLst.

with α̂ = δXϑ .
Therefore, the last expectation in (22) involves only three random vari-

ables: ϑ, 1A and X̂0 = Xϑ, where A = {Xu ∈ W1, u < ϑ}. Theorem
3.1 implies that the density of ϑ on the set A is αeλ(W1)t̄1λ(W1, T1)1, and
Proposition 3.1 implies that the distribution of X̂0 conditioned on ϑ and
1W1 is

αeλ(W1)ϑλ(W1, T1)

αeλ(W1)ϑλ(W1, T1)1
.

These, the induction hypothesis, (24) and (25) imply that the outer expecta-
tion (22) equals (18). This last assertion finishes the proof of the induction
step and hence the theorem.

In what follows, to ease exposition, we will sometimes refer to f as
the “density” of τ without explicitly mentioning the reference measures ds,
s ∈ S.

Remark 3.4. If any of the matrices in the product (17) equals the zero
matrix, then f will be 0. Therefore, if λ(Wn, Tn) = 0 for some n = 1, 2, ..., |s|
then Pα(τ ∈ Rs) = 0. By definition λ(W,T ) = 0 if T = ∅. Thus, as a special
case, we have Pα(τ ∈ Rs) = 0 if Tn = ∅ for some n = 1, 2, 3, ..., |s|.

Remark 3.5. The first κ > 0 jump times of a standard Poisson process
with rate λ′ ∈ (0,∞) have the joint density

κ∏
n=1

eλ
′(tn−tn−1)λ′,

0 = t0 < t1 < t2 < · · · < tκ. The density (17) is a generalization of this
simple formula.

13



3.3 When α puts positive mass on ∪kΓk
If α puts positive mass on γ :=

⋃
k∈K Γk, one best describes the distribution

of τ proceeding as follows. Define ᾱ′ := 1 −
∑

i∈γ α(i) and α′ := (α −∑
i∈γ α(i)δi)/ᾱ

′ if ᾱ′ > 0; ᾱ′ is a real number and α′, when defined, is a
distribution.

First consider the case when ᾱ′ > 0. The foregoing definitions imply

Pα(τ ∈ U) = ᾱ′Pα′(τ ∈ U) +
∑
i∈γ

α(i)Pi(τ ∈ U) (26)

for any measurable U ⊂ RK+ . By its definition α′ puts no mass on γ =
∪k∈KΓk and therefore Theorem 3.2 is applicable and f(α′, ·,K) is the density
of the distribution Pα′(τ ∈ ·). For the second summand of (26), it is enough
to compute each Pi(τ ∈ U) separately. Define Ki := {k : i ∈ Γk}, Ui :=
{t : t ∈ U, tk = 0, k ∈ Ki}, Ūi := {t|Kc

i
, t ∈ Ui}. Now remember that i ∈ γ;

thus if i ∈ Γk then τk = 0 under Pi, and therefore Pi(τ ∈ U) = Pi(τ ∈ Ui).
For τ ∈ Ui, the stopping times τ |Ki are all deterministically 0. Thus to
compute Pi(τ ∈ Ui) it suffices to compute Pi(τ |Kc

i
∈ Ūi). But by definition

i /∈ ∪k∈Kc
i
Γk and once again Theorem 3.2 is applicable and gives the density

of τ |Kc
i

under Pi as f(δi, ·,Kc
i ).

If ᾱ′ = 0 then
Pα(τ ∈ U) =

∑
i∈γ

α(i)Pi(τ ∈ U)

and the computation of Pi(τ ∈ U) goes as above.

3.4 Tail probabilities of τ

Probabilities of tail events have representations as integrals of densities given

in Theorem 3.2 over appropriate subsets of R|K|+ . But to evaluate such in-
tegrals directly is nontrivial and inefficient. In the present subsection, we
derive a recursive and compact representation of these probabilities that use
a version of the density formula and the ideas used in its derivation.

By tail probabilities we will mean probabilities of sets of the form

|s|⋂
n=1

⋂
k1,k2∈s(n)

{τk1 = τk2} ∩
{
τs(n,1) > tn

} ⋂
n1 6=n2,n1,n2≤|s|

{τs(n1,1) 6= τs(n2,1)}, (27)

where s is a partition of K, and t ∈ R|s|+ is such that tn < tn+1. In (27)
all equality and inequality condition are explicitly specified. One can write
standard tail events in terms of these e.g., {τ1 > t1} ∩ {τ2 > t2} is the same
as the disjoint union

({τ1 > t1, τ2 > t2} ∩ {τ1 6= τ2}) ∪ {τ1 = τ2 > max(t1, t2)}.

Both of these sets are of the form (27). Thus, it is enough to be able to
compute probabilities of the events of the form (27).

14



Remark 3.6. From here on, to keep the notation short, we will assume
that, over tail events, unless explicitly stated with an equality condition, all
stopping times appearing in them are different from each other (therefore,
when writing formulas, we will omit the last intersection in (27)).

A tail event of the form (27) consists of a sequence of constraints of the
form

{τs(n,1) = τs(n,2) = · · · = τs(n,|s(n)|) > tn}.

There are two types of sub-constraints involved here: that entrance to all
Γk, k ∈ s(n), happen at the same time and that this event occurs after time
tn. Keeping track of all of these constraints as they evolve in time requires
that we introduce yet another class of events that generalize (27) (see also
Remark 4.1). For two disjoint subpartitions s1 and s2 of K and an element

t ∈ R|s1|+ such that t|s1| > t|s1|−1 > · · · > t2 > t1 (if |s1| = 0 by convention
set t = 0) define

T (s1, s2, t) :=

 |s1|⋂
n=1

⋂
k1,k2∈s1(n)

{τk1 = τk2} ∩
{
τs1(n,1) > tn

}∩
|s2|⋂
n=1

⋂
k1,k2∈s2(n)

{τk1 = τk2}. (28)

In view of our convention (cf. Remark 3.6), setting s1 = s and s2 = ∅
reduces (28) to (27). The indices in s1 appear both in equality constraints
and time constraints while indices in s2 appear only in equality constraints.

Remark 3.7. The definition (28) implies that if a component of s2 has
only a single element, that component has no influence on T (s1, s2, t). For
example, T (s1, ({1}, {2, 3}), t) is the same as T (s1, ({2, 3}), t).

To express Pα(T (s1, s2, t)) we will define a collection of functions pi,
i ∈ Ω0, of s1, s2 and t. We will denote by p the column matrix {pi, i ∈ Ω0}.
For s1 = ∅, and i ∈ Ω0 define pi as

pi(∅, s2, 0) := Pi(T (∅, s2, 0)).

The definitions of p and T and Remark 3.7 imply

p(∅, s2, 0) = 1 (29)

if s2 is empty or it consists of components with single elements. For a given
disjoint pair of subpartitions s1, s2 define

Tn(s1, s2) :=
⋂

k∈s2(n)

Γk − S(s1 ∪ s2 − s2(n)), T (s1, s2) :=

|s2|⋃
n=1

Tn(s1, s2).
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If s1 6= ∅, define p recursively as

p(s1, s2, t) := (30)∫ t1

0
euλ(W )λ(W,T (s1, s2))

 |s2|∑
n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)

 du

+ et1λ(W )p (Ls1, s2 + s1(1), Lt− t1) ,

where W = [S(s1 ∪ s2)]c.

Theorem 3.3. Suppose Ω0−S(s1∪s2) is not empty and that α is an initial
distribution on Ω0 that puts all of its mass on this set. Then

Pα(T (s1, s2, t)) = αp(s1, s2, t).

Proof. The proof is parallel to that of Theorem 3.2 and proceeds by induc-
tion; we will only provide the argument that justifies the recursion (30). We
shall consider two cases: either X has visited W c = S(s1 ∪ s2) before t1 or
not. That is, we split T (s1, s2, t) into disjoint sets

T (s1, s2, t) = {ϑ > t1, T (s1, s2, t)} ∪ {ϑ ≤ t1, T (s1, s2, t)}}

where ϑ is the first time when X enters in W c. Since t satisfies t|s1| >
t|s1|−1 > · · · > t2 > t1, X must enter at time ϑ into the set s2 on the set
ϑ < t1, i.e, ϑ = minj,k(τs2(j,k)).

In a first step, we consider the case where X has not visited W c =
S(s1 ∪ s2) before t1, that is, we are on the set ∆1 := {ϑ > t1} = {Xu /∈
W c, ∀u < t1}, so that, in particular τs1(1,1) > t1. Therefore, on ∆1

T (s1, s2, t) =

 |s1|⋂
n=2

⋂
k1,k2∈s1(n)

{τk1 = τk2} ∩
{
τs1(n,1) > tn

}
⋂

k1,k2∈s1(1)

{τk1 = τk2 > t1}
|s2|⋂
n=1

⋂
k1,k2∈s2(n)

{τk1 = τk2 > t1}

=: T t1(s1, s2, t).

where the set⋂
k1,k2∈s1(1)

{τk1 = τk2 > t1}
|s2|⋂
n=1

⋂
k1,k2∈s2(n)

{τk1 = τk2 > t1}

will be, after a shift operation with t1 acting on the times τk, a set with
equalities constraints only, of the form

|s|⋂
n=1

⋂
k1,k2∈s(n)

{τk1 = τk2}
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with s = s2 + s1(1).
This, that T t1(s1, s2, t) is measurable with respect to σ(Xu, u > t1) and the
Markov property of X imply

Pα(Xu /∈W c,∀u ≤ t1, Xt1 = j, T (s1, s2, t))

= Eα
[
1∆11Xt1=jEα(1T t1 (s1,s2,t)|Ft1)

]
= Eα

[
1∆11Xt1=jEα(1T t1 (s1,s2,t)|Xt1)

]
= Eα

[
1∆11Xt1=jPj(T (Ls1, s2 + s1(1), Lt− t1))

]
.

It follows that

Pα(∆1) =
∑
j∈W

Pα(Xu /∈W c, ∀u ≤ t1, Xt1 = j, T (s1, s2, t))

=
∑
j∈W

Pα(Xu /∈W c, ∀u ≤ t1, Xt1 = j)Pj(T (Ls1, s2 + s1(1), Lt− t1)

=
∑
j∈E

(
αet1λ(W )

)
j
pj(Ls1, s2 + s1(1), Lt− t1)

= αet1λ(W )p(Ls1, s2 + s1(1), Lt− t1),

where we have used the induction hypothesis in the second equality and (10)
in the third equality.

In a second step, we work on the set ϑ ≤ t1. Since the sets Tn(s1, s2), n =
1, . . . , |s2| are disjoint, we have

Pα(ϑ ≤ t1, T (s1, s2, t)) =

|s2|∑
n=1

Pα(ϑ ≤ t1, Xϑ ∈ Tn(s1, s2), T (s1, s2, t)).

Now, we note

Pα(ϑ ∈ du,Xϑ ∈ Tn(s1, s2), T (s1, s2, t))

= Eα

1ϑ∈du
∑

j∈Tn(s1,s2)

1Xu=j Eα(1T (s1,s2,t)|Fu)


= Eα

1ϑ∈du
∑

j∈Tn(s1,s2)

1Xu=j Pj(T (s1, s2 − s2(n), t− u))


= Eα

1ϑ∈du
∑

j∈Tn(s1,s2)

1Xu=j Pj(T (s1, s2 − s2(n), t− u))


=

∑
j∈Tn(s1,s2)

(αeuλ(W )λ(W,T (s1, s2)))j pj(s1, s2 − s2(n), t− u)) du

= αeuλ(W )λ(W,T (s1, s2)) ITn(s1,s2)p(s1, s2 − s2(n), t− u)) du,
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where the equality Eα [1ϑ∈du1Xu=j ] = (αeuλ(W )λ(W,T (s1, s2)))j follows from
the proof of Theorem 3.1 and the fourth equality follows from the induction
hypothesis. It remains to integrate with respect to du.

Theorem 3.3 holds for all finite state Markov processes and does not
require that any of the {Γk} be absorbing. The evaluations of p on the right
side of the recursion (30) will have smaller subpartitions in its arguments;
then in a finite number of steps these recursions will lead to an evaluation
of p with s1 = ∅.

Note that (30) reduces to

p(s1, ∅, t) = eλ(S(s1)c)t1p(Ls1, s1(1), Lt− t1). (31)

if s2 = ∅.

Example 3.1. In case where |s2| = |s1| = 1 we have

p(s1, s2, t) =

∫ t1

0
euλ(W )λ(W,T (s1, s2))IT (s1,s2) p(s1, ∅, t− u)du

+ et1λ(W )p (∅, s2 + s1(1), Lt− t1) . (32)

The quantities p(s1, ∅, t) and p (∅, s2 + s1(1), Lt− t1) are known from (31)
and (29) for the first and (30) and (29) for the second.

Example 3.2. Let K = {1, · · · , 8}, s1 = ({1, 4}, {2}) and s2 = ({3, 6}, {7})
so that s2(1) = {3, 6}. Then, S(s1 ∪ s2) = {Γ1 ∪Γ2 ∪Γ3 ∪Γ4 ∪Γ6 ∪Γ7} and
W = Γ5 ∪ Γ8. For t = (t1, t2) with t2 > t1, one defines

T (s1, s2, t) = {τ1 = τ4 > t1, τ2 > t2, τ3 = τ6}

By definition, T1 = Γ3 ∩ Γ6. Then,

P ({τ1 = τ4 > t1, τ2 > t2, τ3 = τ6}) =

∫ t1

0
euλ(W )λ(W,T1)IT1 p(s1, {7}, t− u)du

+ et1λ(W )p ({2}, s2 + s1(1), Lt− t1) ,

and p(s1, {7}, t − u) = p(s1, ∅, t − u). The computation of the quantity
p ({2}, s2 + s1(1), Lt− t1) require again recursion, until to obtain an empty
set for one of the arguments.

When s1 has no equality constraints and s2 = ∅, one can invoke (31) |s1|
times along with Remark 3.7 and (29) and get

Corollary 3.2. Let α be as in Theorem 3.3. If |s1| > 0 equals the dimension
of t, then

Pα(T (s1, ∅, t)) = αp(s1, ∅, t) = α

 |s|∏
n=1

eλ(Wn)(tn−tn−1)

1 (33)

where Wn = [S(Ln−1(s1))]c.
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The formula (33) is a generalization of [4, equation (7)] to general finite
state Markov processes.

If s1 = ∅, we have no time constraints and Pα(T (∅, s2, 0)) reduces to the
probability that certain equality and inequality constraints hold among the
stopping times. This can be written as the solution of a sequence of linear
equations whose defining matrices are submatrices of the intensity matrix.
The details require further notation and are left to future work (or to the
reader) except for the special case of Pα(τ1 = τ2) which we would like to use
in what follows in order to relate our results to earlier works in the literature.

Define ν0 := 0, and for n > 0 νn := inf{u > νn−1, Xu 6= Xu−}. The
sequence {νn} is the jump times of the process X. Define a discrete time
Markov chain X̄ with state space E as X̄n := Xνn ; it is called the embed-
ded Markov chain of the process X. It follows from (9) that the one step
transition matrix of X̄ is

λ̄ :=

{
−λ(i, j)/λ(i, i), for i 6= j,

0, otherwise.

Define D ∈ RE×E as the diagonal matrix

D(i, j) =

{
−1/λ(i, i), if i = j,

0, otherwise.

Left multiplying a matrix by D divides its ith row by −λ(i, i). Therefore,
λ̄ = I + Dλ.

Define τ̄k := inf{n : X̄n ∈ Γk}. The event {τ1 = τ2} means that X hits
the set Γ1 and Γ2 at the same time; because this event makes no reference to
how time is measured, it can also be expressed in terms of X̄ as {τ̄1 = τ̄2}.

Define the column vector q ∈ RE , q(i) := Pi(τ̄1 = τ̄2). Conditioning on
the initial position of X implies Pα(τ̄1 = τ̄2) = αq. From here on we derive
a formula for q. Parallel to the arguments so far, we know that this event
happens if and only if X̄ hits Γ1 ∩Γ2 before B := (Γ1−Γ2)∪ (Γ2−Γ1). Set
w := (Γ1 ∪ Γ2)c. The vector q satisfies the boundary conditions

q|Γ1∩Γ2 = 1 and q|B = 0 (34)

and is to be determined only for the states in w. If a state i ∈ w cannot
communicate with Γ1 ∩ Γ2, q(i) is trivially 0; let w′ denote the set of states
in w that can communicate with Γ1∩Γ2. The Markov property of X̄ implies
that for i ∈ w′

q(i) =
∑
j∈w′

λ̄(i, j)q(j) +
∑

j∈(Γ1∩Γ2)

λ̄(i, j);
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or in matrix notation (see (5)):

q|w′ =
(
λ̄|w′

)
q|w′ +

(
λ̄|w′×(Γ1∩Γ2)

)
1|Γ1∩Γ2

(I − λ̄)|w′ q|w′ =
(
λ̄|w′×(Γ1∩Γ2)

)
1|Γ1∩Γ2

(−Dλ)|w′ q|w′ =
(
λ̄|w′×(Γ1∩Γ2)

)
1|Γ1∩Γ2 .

For i 6= j, λ̄(i, j) = −λ(i, j)/λ(i, i) = (Dλ)(i, j) and in particular the same
holds for (i, j) ∈ w′ × (Γ1 ∩ Γ2) and therefore

(−Dλ)|w′ q|w′ =
(
−Dλ|w′×(Γ1∩Γ2)

)
1|Γ1∩Γ2 .

There is no harm in taking the diagonal D out of the projection operation
on both sides of the last display:

λ|w′ q|w′ = λ|w′×(Γ1∩Γ2)1|Γ1∩Γ2 .

That all states in w′ can communicate with Γ1 ∩Γ2 implies that the matrix
on the left is invertible and therefore

q|w′ = (λ|w′)−1λ|w′×(Γ1∩Γ2)1|Γ1∩Γ2 . (35)

3.5 A second representation of tail probabilities

For a nonnegative integer n, denote by P(n) the set of all subpermutations
of {1, 2, 3 , ..., n}, e.g., P(2) = {∅, (1), (2), (1, 2), (2, 1)}. The tail probability
formula (30) conditions on the first time τ ′ that one of the equality con-
straints is attained in the time interval [0, t1] and writes what happens after
that as a recursion. What can happen between τ ′ and t1? A number of other
equalities can be attained and rather than pushing these into the recursion,
one can treat them inside the integral using a density similar to (17):

p(s1, s2, t) =
∑

π∈P(|s2|)

∫
Aπ

 |π|∏
n=1

e(vn−vn−1)λ(Wn)Jn

 e(t1−v|π|)λ(W )dv


· p(Ls1, s2 − s2(π) + s1(1), Lt− t1), (36)

where v0 = 0 and

Wn := [S(s1 ∪ s2 − ∪nn1=1s2(π(n1)))]c, Tn :=

 ⋂
k∈s2(π(n))

Γk

 ∩Wn+1,

s2(π) := ∪|π|m=1s2(π(m)), W := [S(s1 ∪ s2 − s2(π))]c,

Aπ :=
{
v ∈ R|π| : 0 < v1 < v2 < · · · < v|π| ≤ t1

}
,

Jn := λ(Wn, Tn),

dv is the |π| dimensional Lebesgue measure on R|π| for |π| > 0; Aπ := {0}
and dv is the trivial measure on {0} for |π| = 0. The proof involves no
additional ideas and is omitted.
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3.6 Conditional formulas

The proof of Theorem 3.2 shows how one can use the density formula (17)
to write down the regular conditional distribution of τ given Fτ ′ . One can
do the same for Fu0 , where u0 ∈ R+ is a given deterministic time. To that
end, introduce the set valued process

Vu := {k ∈ K, τk < u}.

K is finite, then so is its power set 2K , thus Vu takes values in a finite set.
The set Vu is the collection of Γk that X has visited up to time u. For ease
of notation we will denote the complement of Vu by V̄u. The times τ |Vu0 are
known by time u0 and hence they are constant given Fu0 . Thus, we only
need to write down the regular conditional density of τ |V̄u0 , i.e., the hitting
times to the Γk that have not been visited by time u0. From here on the
idea is the same as in the proof of Theorem 3.2. Define X̂u := Xu+u0 and
for k ∈ V̄u0

τ̂k := inf{u : X̂u ∈ Γk}.

The definitions of X̂ and τ̂ imply

τ̂ = τ |V̄u0 − u0. (37)

X̂0 = Xu0 is a constant given Fu0 . Thus the process X̂ has exactly the
same distribution as X with initial point Xu0 and Theorem 3.2 applies and
gives the density of τ̂ , which is, by (37), the regular conditional distribution
of τ |V̄u0 − u0. Therefore, for any bounded measurable g : RV̄u0 → R and a

partition s′ of V̄u0

E
[
g
(
τ |V̄u0

)
1Rs′

(
τ |V̄u0

)
|Fu0

]
=

∫
Rs′

g(u0 + u)f(δXu0 , u, V̄u0)ds′u.

We record this as

Proposition 3.2. The regular conditional density of τ |V̄u0 − t0 given Fu0

is f(δXu0 , t, V̄u0).

4 Absorbing {Γk} and connections to earlier re-
sults

In this section, we show how our formula can be simplified in the case where
the Γk are absorbing. Then, we prove that the results obtained in the
literature in [4, 10] are a particular case of our results. Let us emphasize
that in the literature, only a formula for the non singular part of the density
is obtained in a multidimensional setting, under the assumption that all the
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Γk are absorbing, and that the density of singular parts is derived for the
two dimensional case only. As we shall see, one of the difficulty to compare
the two results is that we are working with |E| × |E| matrices while the
authors of the quoted papers, using the absorbing property have chosen to
reduce the dimension. They also introduce some notation to simplify the
matrices they are working with to take into account this absorbing property,
and we have to recall these notation.

4.1 Density formula for absorbing {Γk}

We recall that a nonempty subset a ⊂ E is said to be absorbing if λ(i, j) = 0
for all i ∈ a and j ∈ ac, i.e., if λ(a, ac) = 0.

In a first step, we derive an alternative expression for the density formula
(17) under the assumption that all {Γk, k ∈ K} are absorbing.

Proposition 4.1. If a is absorbing and α|a = 0,, denoting

puα,a(j) := Pα(Xu = j,Xv /∈ a,∀v ≤ u)

we have
puα,a = αeλ(ac)u = αeλuIac (38)

Proof. We already know from Lemma 3.1 that the first equality holds.
Therefore, it only remains to show puα,a = αeλuIac . It is well known (see

e.g.,[2, Theorem 3.4, page 48]) that the distribution of X at time u is αeλu,
i.e., Pα(Xu = j) = αeλu(j) for all j ∈ E. The fact that a is absorbing
implies that if Xu0 ∈ a then Xu ∈ a for all u ≥ u0, Therefore for j ∈ ac

Pα(Xu = j) = Pα(Xu = j,Xv /∈ a, v ≤ u),

i.e.,
(αpuα,a)|ac = (αeλuIac)|ac . (39)

The definition of puα,a and α|a = 0 imply (αpuα,a)|a = 0; The definition of Iac

implies (αeλuIac)|a = 0. This and (39) imply (38).

Proposition 4.1 says the following: if a is absorbing then αeλ(ac)u is the
same as αeλuIac and both describe the probability of each state in ac at time
t over all paths that avoid a in the time interval [0, t]. The first expression
ensures that all paths under consideration avoid the set a by setting the
jump rates into a to 0. The second expression does this by striking out
those paths that end up in one of the states in a (the Iac term does this);
this is enough because a is absorbing: once a path gets into a it will stay
there and one can look at the path’s position at time t to figure out whether
its weight should contribute to puα,a. In the general case this is not possible,
hence the λ(ac) in the exponent.

The previous proposition implies that one can replace the λ(Wn) that
appears in the density formula (17) with λ:
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Proposition 4.2. Assume that all Γk are absorbing, and let α be such that
α|W c

1
= 0. Then, for any s ∈ S and t ∈ Rs we have

fs(α, t,K) = α

 |s|∏
n=1

eλ(t̄n−t̄n−1)λ(Wn, Tn)

1 , (40)

where fs is the density given in Theorem 3.2.

Proof. First, assume that |s| = 1. Then we have

fs(α, t,K) = αeλ(W1)(t̄1−t̄0)λ(W1, T1)1

= αeλ(t̄1−t̄0)IW1λ(W1, T1)1 = αeλ(t̄1−t̄0)IW1IW1λIT11(41)

= αeλ(t̄1−t̄0)IW1λIT11 = αeλ(t̄1−t̄0)λ(W1, T1)1,

where the second equality follows from (38) since α|W c
1

= 0, and the third
and the last equalities come from (7). So, the result is true for s such that
|s| = 1.

We now give a proof in the case |s| = 2. In this case, we have

fs(α, t,K) = αeλ(W1)(t̄1−t̄0)λ(W1, T1)eλ(W2)(t̄2−t̄1)λ(W2, T2)1

= α1e
λ(W2)(t̄2−t̄1)λ(W2, T2)1,

where α1 := αeλ(W1)(t̄1−t̄0)λ(W1, T1). Now, in view of the definition of T1,
and using (7), we see that α1 satisfies α1|W c

2
= 0. Consequently, invoking

(38), we conclude that

α1e
λ(W2)(t̄2−t̄1)λ(W2, T2) = α1e

λ(t̄2−t̄1)λ(W2, T2),

which, together with (41), demonstrates the result in case |s| = 2. The
general result follows by induction on the value of |s|.

Let us briefly point out another possible modification of the density
formula for absorbing {Γk}. Define

T̂0 = E − S(s), T̂ ′n :=
⋂

∪m≤ns(m)

Γk, T̂n = T̂ ′n − S(Ln(s)), Ŵn = T̂n−1,

where s ∈ S and n ∈ {1, 2, 3, ..., |s|}. If {Γk} are absorbing one can replace

the target and waiting sets Tn and Wn of (16) with T̂n and Ŵn defined
above. One can prove that the density formula continues to hold after this
modification with an argument parallel to the proof of Proposition 4.2 using
in addition that the intersection of absorbing sets is again absorbing.
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4.2 Tail probabilities for absorbing {Γk}

When {Γk, k ∈ K} are absorbing, then, in view of (38), one can write the
tail probability that appears in Theorem 3.3, as

Pα(T (s1, s2, t)) =

α

∫ t1

0
eλuλ(W,T (s1, s2))

 |s2|∑
n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)

 du

+ αeλt1IWp (Ls1, s2 + s1(1), Lt− t1)

and, in particular,

Pα(T (s1, ∅, t)) = αeλt1IS(s1)cp(s1 − s1(1), s1(1), Lt− t1). (42)

4.3 Connections with earlier results

This subsection gives several examples of how to express density/distribution
formulas from the prior phase-type distributions literature as special cases
of the ones derived in the present work.

4.3.1 Examples related to [4]

We begin with relating to our results three formulas given in [4]. The first
two concern a single hitting time and the last one a pair of hitting times. In
[4], the authors assume that E has an absorbing element called ∆, they define
T := inf{u : Xu = ∆} and they denote by A what in our paper is given as
λ|{∆}c . Moreover, [4] also uses the letter α to denote the initial distribution

of X, but on the set Ê := E − {∆}, rather then on the set E as it is done
here; in particular, in [4] it is implicitly assumed that P (X0 = ∆) = 0. We
will use the symbol α̂ to denote the ‘α of [4].’ The relation between α and
α̂ is α|{∆}c = α̂.

The first line of [4, display (2), page 690] says Pα(T > u) = α̂eAue
where e is the |E| − 1 dimensional vector with all components equal to
1. The corresponding formula in the present work is (12) where one takes
d = {∆}. From

λ(dc)|dc = A (43)

and from the fact that

the row of λ(dc) corresponding to ∆ is 0 (44)

we obtain the equality of these formulas.
The second line of the same display gives −α̂euAAe as the density of T .

The corresponding formula here is (13) with b = ∅, and a = {∆} for which it
reduces to euλ(ac)λ(ac, a)1. This time, (43), (44) and the fact that the row
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sums of λ are zero (so that, λ(ac,∆)|ac = λ|ace = Ae), imply the equality
of the formulas.

The matrix λ(ac, a) is the column of λ corresponding to ∆; one way to
write it is as the negative of the sums of the rest of the columns, this is what
the last equality says.

The case of a pair of hitting times appears in [4]: using the notation of
that paper, we are given two sets Γ1,Γ2 ⊂ E with Γ1 ∩ Γ2 = {∆}, Tk is the
first hitting time to Γk. The formula [4, Equation (5), page 692] says

Pα(T1 = T2 > u) = α̂eAuA−1(Ag1g2 − [A, g1]− [A, g2])e, (45)

where gk = IΓk |{∆}c and for two matrices B and C, [B,C] := BC − CB.
The absorbing property of Γ1 and Γ2 implies that the matrix inside the
parenthesis in (45) equals g′A, where g′ = I(Γ1∪Γ2)c |Ê i.e., the same matrix
as A except that the rows whose indices appear in Γ1∪Γ2 are replaced with
0. Thus (Ag1g2− [A, g1]− [A, g2])e is another way to take the ∆ column of λ
and replace its components whose indices appear in Γ1 ∪ Γ2 with 0. Denote
this vector by C∆. Then the right side of (45) is

α|
Ê

(
eλu|

Ê

)
A−1C∆. (46)

The same probability is expressed by a special case of (42); for the present
case one sets K = {1, 2}, s1 = ({1, 2}); for these values, (31) and condition-
ing on the initial state gives

Pα(τ1 = τ2 > u) = αeλuIwp(∅, ({1, 2}), 0), (47)

where w = (Γ1 ∪ Γ2)c.

Remark 4.1. Note that the event {τ1 = τ2 > u} is of the form (27), but
the event T (∅, ({1, 2}), 0) is of the form (28).

Recall that we have denoted the last probability as q and derived for
it the formulas (34) and (35). The article [4] assumes that all states can
communicate with ∆, which implies that w′ of (35) equals w. This and
Γ1 ∩ Γ2 = {∆} imply λ|w′×Γ1∩Γ21 in (35) equals λ|(Γ1∪Γ2)c×∆ i.e., the ∆
column of λ projected to its indices in (Γ1 ∪ Γ2)c, i.e., C∆|w. The only
difference between C∆ and C∆|w is that the former has zeros in its extra
dimensions. This and the absorbing property of Γk imply

(λ|w)−1C∆|w = (A−1C∆)|w.

Note that we are commuting the projection operation and the inverse oper-
ation; this is where the absorbing property is needed. The last display, (34)
and (35) give Iwp(∅, ({1, 2}), 0)|

Ê
= q|

Ê
= A−1C∆. This and α({∆}) = 0

imply that one can rewrite the right side of (47) as

αeλu(A−1C∆)|E .

Once again α(∆) = 0 implies that the last expression equals (46).
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4.3.2 Example related to [10]

The density formula [10, (3.1.11)] will provide our last example. The process
X of [10] is a Markov jump process (with absorbing boundary) taking values
in Zm2 := {0, 1}m (the m-fold Cartesian product), with jumps valued in
{−ek, k = 1, 2, 3, ...,m}, where ek is the unit vector with kth coordinate equal
to 1 ([10] uses different but equivalent notation, in particular the name of the
process is Y and its state space is represented by subsets of {1, 2, 3, ...,m};
the notation of this paragraph is chosen to ease the presentation). In [10]
the absorbing sets are denoted as ∆i, see the display after [10, (2.3)], and
they correspond to Γk = {z ∈ Zm2 : zk = 0} in our present set-up. The jump
rate for the increment −ek is assumed to be 〈X, bk〉+ ak for fixed bk ∈ Rm
and ak ∈ R (given in [10, (2.1)]). A key property of this setup is this: take
any collection {Γk1 ,Γk2 , ...,Γkn} with n > 1; because the only increments
of X are the {−ek}, the process cannot enter the sets in the collection at
the same time. Thus, in this formulation, X must hit the {Γk} at separate
times and the distribution of τ has no singular part, i.e., P (τ ∈ Rs) = 0
for |s| < m, and one needs only the density of τ with respect to the full
Lebesgue measure in Rm (the “absolutely continuous part”). As noted in
[10], this is already available in [4] (see the display following (7) on page
694) and is given in [10, display (3.1.1)] as follows:

f(t) = (−1)mα

(
m−1∏
n=1

eλ(t̄n−t̄n−1)(λGkn −Gknλ)

)
eλ(t̄m−t̄m−1)λGkm1, (48)

for t ∈ Rs with |s| = m; here Gk = IΓck
and kn is the index for which tkn = t̄n

([10] uses the letter Q for the rate matrix λ). We briefly indicate why (40) is
equivalent to the last formula with the assumptions of this paragraph, i.e.,
when the dynamics of X precludes it to enter more than one of the {Γk} at
the same time and in particular when |s| equals the dimension of τ (denoted
by m in the current paragraph). Lemma 2.1 and the absorbing property of
Γk imply

λGk −Gkλ = λ(Γk,Γ
c
k)− λ(Γck,Γk)

= −λ(Γck,Γk).

On the other hand again Lemma 2.1 and the absorbing property of Γk imply
λGk = −λ(Γck,Γ

c
k). The row sums of λ equal 0. The last two facts imply

λGk1 = −λ(Γck,Γk)1. These imply that one can write (48) as

f(t) = α

(
m∏
n=1

eλ(t̄n−t̄n−1)λ(Γckn ,Γkn)

)
1.

As we noted above, for k 6= k′ the dynamics of X imply that it cannot
enter Γk and Γk′ at the same time. Furthermore, by definition tn 6= tn′ for
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Figure 1: The level curves of the density f for τ2 = τ3 < τ1. On the right:
the values of f over the line segment connecting (0, 0) to (0.5, 1)

n 6= n′. Finally, the initial distribution α is assumed to be such that it puts
zero mass on ∪mk∈KΓk. These imply that one can replace λ(Wn, Tn) of (40)
with λ(Γckn ,Γkn) (a full argument requires an induction similar to the proof
of Proposition 4.2), and therefore under the current assumptions the last
display and (40) are equal.

5 Numerical Example

The state space of our numerical example is E = Z3
3. For z ∈ Z3

3 and
k ∈ K = {1, 2, 3} let zk denote the kth component of z. For the collection
{Γk} take

Γk = {z : zk = 0}.

τk, as before, is the first time the process X hits the set Γk. The initial
distribution α will be the uniform distribution over the set

E −
⋃
k∈K

Γk =

{
z : min

k∈K
zk > 0

}
.

We will compute the density of τ = (τ1, τ2, τ3) over the sets Rs1 , Rs2 ⊂ R3
+

defined by the partitions s1 = ({2, 3}, {1}) and s2 = ({1, 2, 3}); the first
corresponds to the event {τ ∈ Rs1} = {τ2 < τ1 = τ3} and the second to
{τ ∈ Rs2} = {τ1 = τ2 = τ3}.

The dynamics of X on Z3
3 for our numerical example will be that of a

constrained random walk with the following increments:

± ek,±(e1 + e2),±(e1 + e2 + e3), k ∈ K, (49)

where e1 := (1, 0, 0), e2 := (0, 1, 0) and e3 := (0, 0, 1); the {Γk} are assumed
to be absorbing, i.e., if Xu0 ∈ Γk any increment involving ±ek can no longer
be an increment of X for u > u0. The sets Bk := {z : zk = 2} are “reflecting”
in the sense that if Xt ∈ Bk for some t, increments involving +ek cannot be
the first increment of X in the time interval [t,∞). We assume the following
jump rates for the increments listed in (49):

2 , 1 , 2 , 1 , 3 , 1 , 0.5 , 0.5 , 0.2 , 0.2.

These rates and the aforementioned dynamics give a 27 × 27 λ matrix.
The level sets f(α, ·,K)|Rs1 are depicted in Figure 1 and the graph of
f(α, ·,K)|Rs2 is depicted in Figure 2.

For the parameter values of this numerical example, Pα(∩k 6=k′τk 6= τk′) =
0.899 and thus the singular parts account for around 10% of the distribution
of τ .
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Figure 2: The density f for τ1 = τ2 = τ3

6 Conclusion

Our primary motivation in deriving the formulas in the present paper has
been their potential applications to credit risk modeling. Let us comment
on this potentiality starting from the credit risk model of [10]. With the
results in the present work one can extend the modeling approach of [10]
in two directions. Remember that the underlying process in [10] can only
move by increments of {−ek} i.e., the model assumes that the obligors can
default only one at a time. However, for highly correlated obligors it may
make sense to allow simultaneous defaults, i.e., allow increments of the form
−
∑

n ekn . Once multiple defaults are allowed the default times will have
nonzero singular parts and the formulas in the present work can be used to
compute them, as is done in the numerical example of Section 5. Secondly,
the default sets {Γk} no longer have to be assumed to be absorbing. Thus,
with our formulas, one can treat models that allow recovery from default.

As |E| increases (17) and other formulas derived in the present paper
can take too long a time to compute (the same holds for earlier density
formulas in the prior literature). Thus it is of interest to derive asymptotic
approximations for these densities.
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