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1. Introduction

The goal of this work is to analyze valuation and hedging of defaultable contracts with game
option features within a hazard process model of credit risk. Our motivation for considering
American or game clauses together with defaultable features of an option is not that much
a quest for generality, but rather the fact that the combination of early exercise features and
defaultability is an intrinsic feature of some actively traded assets. It suffices to mention here
the important class of convertible bonds, which were studied by, among others, Andersen
and Buffum [1], Ayache et al. [2], Bielecki et al. [3, 4], Davis and Lischka [5], Kallsen and
Kühn [6], and Kwok and Lau [7].

In Bielecki et al. [3], we formally defined a defaultable game option, that is, a financial
contract that can be seen as an intermediate case between a general mathematical concept
of a game option and much more specific convertible bond with credit risk. We concentrated



2 Journal of Applied Mathematics and Stochastic Analysis

there on developing a fairly general framework for valuing such contracts. In particular,
building on results of Kifer [8] and Kallsen and Kühn [6], we showed that the study of an
arbitrage price of a defaultable game option can be reduced to the study of the value process
of the related Dynkin game under some risk-neutral measure Q for the primary market
model. In this stochastic game, the issuer of a game option plays the role of the minimizer
and the holder of the maximizer. In [3], we dealt with a general market model, which was
assumed to be arbitrage-free, but not necessarily complete, so that the uniqueness of a risk-
neutral (or martingale) measurewas not postulated. In addition, although the default time was
introduced, it was left largely unspecified. An explicit specification of the default time will be
an important component of the model considered in this work.

As is well known, there are two main approaches to modeling of default risk: the
structural approach and the reduced-form approach. In the latter approach, also known as
the hazard process approach, the default time is modeled as an exogenous random variable
with no reference to any particular economic background. One may object to reduced-form
models for their lack of clear reference to economic fundamentals, such as the firm’s asset-to-
debt ratio. However, the possibility of choosing various parameterizations for the coefficients
and calibrating these parameters to any set of CDS spreads and/or implied volatilities makes
them very versatile modeling tools, well suited to price and hedge derivatives consistently
with plain-vanilla instruments. It should be acknowledged that structural models, with their
sound economic background, are better suited for inference of reliable debt information, such
as: risk-neutral default probabilities or the present value of the firm’s debt, from the equities,
which are the most liquid among all financial instruments. The structure of these models, as
rich as it may be (and which can include a list of factors such as stock, spreads, default status,
and credit events) never rich enough to yield consistent prices for a full set of CDS spreads
and/or implied volatilities of related options. As we ultimately aim to specify models for
pricing and hedging contracts with optional features (such as convertible bonds), we favor
the reduced-form approach in the sequel.

1.1. Outline of the Paper

From the mathematical perspective, the goal of the present paper is twofold. First, we wish
to specialize our previous valuation results to the hazard process setup, that is, to a version
of the reduced-form approach, which is slightly more general than the intensity-based setup.
Hence we postulate that filtration G modeling the information flow for the primary market
admits the representation G = H∨F, where the filtration H is generated by the default indicator
process Ht = 1{t≥τd} and F is some reference filtration. The main tool employed in this section
is the effective reduction of the information flow from the full filtration G to the reference
filtration F. The main results in this part are Theorems 3.7 and 3.8, which give convenient
pricing formulae with respect to the reference filtration F.

The second goal is to study the issue of hedging of a defaultable game option in the
hazard process setup. Some previous attempts to analyze hedging strategies for defaultable
convertible bonds were done by Andersen and Buffum [1] and Ayache et al. [2], who worked
directly with suitable variational inequalities within the Markovian intensity-based setup.

Our preliminary results for hedging strategies in a hazard process setup, Propositions
4.1 and 4.3, can be informally stated as follows: under the assumption that a related doubly
reflected BSDE admits a solution (Θ,M,K) under some risk-neutral measure Q, for which
various sets of sufficient conditions are given in literature, the state-process Θ of the solution
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is the minimal (pre-default) super-hedging price up to a (G,Q)-sigma (or local) martingale
cost process. More specific properties of hedging strategies are subsequently analyzed in
Propositions 4.13 and 4.15, in which we resort to suitable Galtchouk-Kunita-Watanabe
decompositions of a solution to the related doubly reflected BSDE and discounted prices of
primary assets with respect to various risk factors corresponding to systematic, idiosyncratic
and event risks. It is noteworthy that these decompositions, though seemingly rather abstract
in a general setup considered here, are by no means artificial. On the contrary, they arise
naturally in the context of particular Markovian models that are studied in the followup
paper by Bielecki et al. [4, 9]. We conclude the paper by briefly commenting on some
alternative approaches to hedging of defaultable game options.

1.2. Conventions and Standing Notation

Throughout this paper, we use the concept of the vector stochastic integral, denoted as
∫
H dX,

as opposed to a more restricted notion of the component-wise stochastic integral, which is
defined as the sum

∑d
i=1

∫
HidXi of integrals with respect to one-dimensional integrators Xi.

For a detailed exposition of the vector stochastic integration, we refer to Shiryaev and Cherny
[10] (see also Chatelain and Stricker [11] and Jacod [12]). Given a stochastic basis satisfying
the usual conditions, an Rd-valued semimartingale integrator X and an R1⊗d-valued (row
vector) predictable integrand H, the notion of the vector stochastic integral

∫
H dX allows

one to take into account possible “interferences” of local martingale and finite variation
components of a (scalar) integrator process, or of different components of a multidimensional
integrator process. Well-defined vector stochastic integrals include, in particular, all integrals
with a predictable and locally bounded integrand (e.g., any integrand of the form H = Y−
where Y is an adapted càdlàg process, see He et al. [13, Theorem 7.7]). The usual properties
of stochastic integral, such as: linearity, associativity, invariance with respect to equivalent
changes of measures and with respect to inclusive changes of filtrations, are known to hold
for the vector stochastic integral. Moreover, unlike other kinds of stochastic integrals, vector
stochastic integrals form a closed space in a suitable topology. This feature makes them
well adapted to many problems arising in the mathematical finance, such as Fundamental
Theorems of Asset Pricing (see, e.g., Delbaen and Schachermayer [14] or Shiryaev and
Cherny [10]).

By default, we denote by
∫ t
0 the integrals over (0, t]. Otherwise, we explicitly specify

the domain of integration as a subscript of
∫
. Note also that, depending on the context, τ will

stand either for a generic stopping time or it will be given as τ = τp ∧ τc for some specific
stopping times τc and τp. Finally, we consider the right-continuous and completed versions
of all filtrations, so that they satisfy the so-called “usual conditions.”

2. Semimartingale Setup

After recalling some fundamental valuation results from [3], we will examine basic features
of hedging strategies for defaultable game options that are valid in a general semimartingale
setup. The important special case of a hazard process framework is studied in the next section.

We assume throughout that the evolution of the underlying primary market is
modeled in terms of stochastic processes defined on a filtered probability space (Ω,G,P),
where P denotes the statistical probability measure.
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Specifically, we consider a primary market composed of the savings account and of d
risky assets, such that, given a finite horizon date T > 0:

(i) the discount factor process β, that is, the inverse of the savings account, is a G-
adapted, finite variation, positive, continuous and bounded process,

(ii) the risky assets are G-semimartingales with càdlàg sample paths.

The primary risky assets, with Rd-valued price process X, pay dividends, whose
cumulative value process, denoted byD, is assumed to be a G-adapted, càdlàg and Rd-valued
process of finite variation. Given the price process X, we define the cumulative price X̂ of
primary risky assets as

X̂t = Xt + β−1t

∫

[0,t]
βudDu. (2.1)

In the financial interpretation, the last term in (2.1) represents the current value at time t of
all dividend payments from the assets over the period [0, t], under the assumption that all
dividends are immediately reinvested in the savings account. We assume that the primary
market model is free of arbitrage opportunities, though presumably incomplete. In view of
the First Fundamental Theorem of Asset Pricing (cf. [10, 14]), and accounting in particular for
the dividends, this means that there exists a risk-neutral measure Q ∈ M, whereM denotes the
set of probability measures Q ∼ P for which βX̂ is a sigma martingale with respect to G under
Q (for the definition of a sigma martingale, see [10, Definition 1.9]). The following well-known
properties of sigma martingales will be used in the sequel.

Proposition 2.1 (see [10, 15, 16]). (i) The class of sigma martingales is a vector space containing
all local martingales. It is stable with respect to (vector) stochastic integration, that is, if Y is a sigma
martingale and H is a (predictable) Y -integrable process then the (vector) stochastic integral

∫
H dY

is a sigma martingale.
(ii) Any locally bounded sigma martingale is a local martingale, and any bounded from below

sigma martingale is a supermartingale.

Remark 2.2. In the same vein, we recall that stochastic integration of predictable, locally
bounded integrands preserves local martingales (see, e.g., Protter [16]).

We now introduce the concept of a dividend paying game option (see also Kifer [8]).
In broad terms, a dividend paying game option, with the inception date 0 and the maturity date T ,
is a contract with the following cash flows that are paid by the issuer of the contract and
received by its holder:

(i) a dividend stream with the cumulative dividend at time t denoted by Dt,

(ii) a terminal put payment Lt made at time t = τp if τp ≤ τc and τp < T ; time τp is called
the put time and is chosen by the holder,

(iii) a terminal call payment Ut made at time t = τc provided that τc < τp ∧ T ; time τc,
known as the call time, is chosen by the issuer and may be subject to the constraint
that τc ≥ τ , where τ is the lifting time of the call protection,

(iv) a terminal payment at maturity ξ made at maturity date T provided that T ≤ τp ∧ τc.
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The (possibly random) time τ in (iii) is used to model the restriction that the issuer of
a game option may be prevented from making a call on some random time interval [0, τ).

Of course, there is also the initial cash flow, namely, the purchasing price of the
contract, which is paid at the initiation time by the holder and received by the issuer.

Let us now be given an [0,+∞]-valued G-stopping time τd representing the default time
of a reference entity, with default indicator process Ht = 1{τd≤t}. A defaultable dividend paying
game option is a dividend paying game option such that the contract is terminated at τd, if it
has not been put or called and has not matured before. In particular, there are no more cash
flows related to this contract after the default time. In this setting, the dividend stream D is
assumed to include a possible recovery payment made at the default time.

We are interested in the problem of the time evolution of an arbitrage price of the game
option. Therefore, we formulate the problem in a dynamic way by pricing the game option
at any time t ∈ [0, T]. We write Gt

T to denote the set of all G-stopping times with values in

[t, T] and we let Gt

T stand for the set {τ ∈ Gt
T ; τ ∧ τd ≥ τ ∧ τd}, where the lifting time of a call

protection τ belongs to G0
T .

We are now in the position to state the formal definition of a defaultable game option.

Definition 2.3. A defaultable game option with lifting time of the call protection τ ∈ G0
T is a game

option with the ex-dividend cumulative discounted cash flows βtπ(t; τp, τc) given by the formula,

for any t ∈ [0, T] and (τp, τc) ∈ Gt
T × Gt

T ,

βtπ
(
t; τp, τc

)
=
∫ τ

t

βudDu + 1{τ<τd}βτ
(
1{τ=τp<T}Lτp + 1{τ<τp}Uτc + 1{τ=T}ξ

)
, (2.2)

where τ = τp ∧ τc and

(i) the dividend process D = (Dt)t∈[0,T] equals

Dt =
∫

[0,t]
(1 −Hu)dCu +

∫

[0,t]
RudHu = Cτ−1{t≥τ} + Ct1{t<τ} + Rτ1{t≥τ}, (2.3)

for some coupon process C = (Ct)t∈[0,T], which is a G-predictable, real-valued, càdlàg
process with bounded variation, and some real-valued, G-predictable recovery
process R = (Rt)t∈[0,T],

(ii) the put payment L = (Lt)t∈[0,T] and the call payment U = (Ut)t∈[0,T] are G-adapted,
real-valued, càdlàg processes,

(iii) the inequality Lt ≤ Ut holds for every t ∈ [τd ∧ τ, τd ∧ T),

(iv) the payment at maturity ξ is a GT -measurable, real-valued random variable.

The following result easily follows from Definition 2.3.

Lemma 2.4. (i) For any t and (τp, τc) ∈ Gt
T × Gt

T , the random variable π(t; τp, τc) is Gτ∧τd -
measurable.

(ii) For any (τp, τc) ∈ G0
T × G0

T , the processes π(0; ·, τc) and π(0; τp, ·) are G-adapted.
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We further assume that R, L, and ξ are bounded from below, so that there exists a
constant c such that, for every t ∈ [0, T],

βtL̂t :=
∫

[0,t]
βudDu + 1{t<τd}βt

(
1{t<T}Lt + 1{t=T}ξ

) ≥ −c. (2.4)

Symmetrically, we should sometimes additionally assume that R, U, and ξ are
bounded (from below and from above), or that (2.4) is supplemented by the inequality, for
every t ∈ [0, T],

βtÛt :=
∫

[0,t]
βudDu + 1{t<τd}βt

(
1{t<T}Ut + 1{t=T}ξ

) ≤ c. (2.5)

2.1. Valuation of a Defaultable Game Option

We will state the following fundamental pricing result without proof, referring the interested
reader to [3, Proposition 3.1 and Theorem 4.1] for more details. The goal is to characterize
the set of arbitrage ex-dividend prices of a game option in terms of values of related Dynkin
games (for the general theory of Dynkin games, see, e.g., Dynkin [17], Kifer [18], and
Lepeltier and Maingueneau [19]). The notion of an arbitrage price of a game option referred
to in Theorem 2.5 is the dynamic notion of arbitrage price for game options, as defined in
Kallsen and Kühn [6], and extended in [3] to the case of dividend-paying primary assets and
dividend-paying game options by resorting to the transformation of prices into cumulative
prices. Note that in the sequel, the statement “(Πt)t∈[0,T] is an arbitrage price for the game option”
is in fact to be understood as “(Xt,Πt)t∈[0,T] is an arbitrage price for the extended market consisting
of the primary market and the game option.”

Theorem 2.5 (Arbitrage price of a defaultable game option). Assume that a process Π is a G-
semimartingale and there exists Q ∈ M such thatΠ is the value of the Dynkin game related to a game
option, meaning that

ess sup
τp∈Gt

T

ess inf
τc∈G

t

T

EQ

(
π
(
t; τp, τc

) | Gt

)

= Πt = ess inf
τc∈G

t

T

ess sup
τp∈Gt

T

EQ

(
π
(
t; τp, τc

) | Gt

)
, t ∈ [0, T].

(2.6)

Then Π is an arbitrage ex-dividend price of the game option, called the Q-price of the game option.
The converse holds true (thus any arbitrage price is a Q-price for some Q ∈ M) under the following
integrability assumption

ess sup
Q∈M

EQ

[

sup
t∈[0,T]

(∫

[0,t]
βudDu + 1{t<τd}βt

(
1{t<T}Lt + 1{t=T}ξ

)
)

| G0

]

< ∞, a.s. (2.7)

Note that defaultable American (or European) options can be seen as special cases of
defaultable game options.
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Definition 2.6. A defaultable American option is a defaultable game option with τ = T . A
defaultable European option is a defaultable American option such that the process βL̂ (cf. (2.4))
attains its maximum at T , that is, βtL̂t ≤ βT L̂T for every t ∈ [0, T].

In view of Theorem 2.5, the cash flows φ(t) of a defaultable European option can be
redefined by

βtφ(t) =
∫T

t

βudDu + 1{τd>T}βTξ, t ∈ [0, T]. (2.8)

2.2. Hedging of a Defaultable Game Option

We adopt the definition of hedging game options stemming from successive developments,
starting from the hedging of American options examined by Karatzas [20], and subsequently
followed by El Karoui and Quenez [21], Kifer [8], Ma and Cvitanić [22], and Hamadène [23].
One of our goals is to show that this definition is consistent with the concept of arbitrage
valuation of a defaultable game option in the sense of Kallsen and Kühn [6].

Recall thatX (resp., X̂) is the price process (resp., cumulative price process) of primary
traded assets, as given by (2.1). The following definitions are standard, accounting for the
dividends on the primary market.

Definition 2.7. By a (self-financing) primary trading strategywemean any pair (V0, ζ) such that

(i) V0 is a G0-measurable real-valued random variable representing the initial wealth,

(ii) ζ is an R1⊗d-valued, βX̂-integrable process representing holdings in primary risky
assets.

Remark 2.8. The reason why we do not assume that G0 is trivial (which would, of course,
simplify several statements) is that we apply our results in the subsequent work [4] to
situations, where this assumption fails to hold (e.g., when studying convertible bonds with a
positive call notice period).

Definition 2.9. The wealth process V of a primary trading strategy (V0, ζ) is given by the
formula, for t ∈ [0, T],

βtVt = β0V0 +
∫ t

0
ζud
(
βuX̂u

)
. (2.9)

Given the wealth process V of a primary strategy (V0, ζ), we uniquely specify a G-
optional process ζ0 by setting

Vt = ζ0t β
−1
t + ζtXt, t ∈ [0, T]. (2.10)

The process ζ0 represents the number of units held in the savings account at time t, when we
start from the initial wealth V0 and we use the strategy ζ in the primary risky assets. Recall
that we denote τ = τp ∧ τc.
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Definition 2.10. Consider the game option with the ex-dividend cumulative discounted cash
flows βπ given by (2.2).

(i) An issuer hedge with cost process ρ is represented by a quadruplet (V0, ζ, ρ, τc) such
that

(a) (V0, ζ) is a primary strategy with the wealth process V given by (2.9),
(b) a cost process ρ is a real-valued, càdlàg G-semimartingale with ρ0 = 0,

(c) a (fixed) call time τc belongs to G0
T ,

(d) the following inequality is valid, for every put time τp ∈ G0
T ,

βτVτ +
∫ τ

0
βudρu ≥ β0π

(
0; τp, τc

)
, a.s. (2.11)

(ii) A holder hedge with cost process ρ is a quadruplet (V0, ζ, ρ, τp) such that

(a) (V0, ζ) is a primary strategy with the wealth process V given by (2.9),
(b) a cost process ρ is a real-valued, càdlàg G-semimartingale with ρ0 = 0,
(c) a (fixed) put time τp belongs to G0

T ,

(d) the following inequality is valid, for every call time τc ∈ G0
T ,

βτVτ +
∫ τ

0
βudρu ≥ −β0π

(
0; τp, τc

)
, a.s. (2.12)

Issuer or holder hedges at no cost (i.e., with ρ = 0) are thus in effect issuer or holder
superhedges. A more explicit form of condition (2.11) reads (for (2.12), we need to insert the
minus sign in the right-hand side of (2.13))

Vτ + β−1τ

∫ τ

0
βudρu

≥ β−1τ

∫ τ

0
βudDu + 1{τ<τd}

(
1{τ=τp<T}Lτp + 1{τ<τp}Uτc + 1{τp=τc=T}ξ

)
, a.s.

(2.13)

The left-hand side in (2.13) is the value at time τ of a strategy with a cost process ρ, when
the players adopt their respective exercise policies τp and τc, whereas the right-hand side
represents the payoff to be done by the issuer, including past dividends and the recovery at
default.

Remark 2.11. (i) The process ρ is to be interpreted as the (running) financing cost, that is, the
amount of cash added to (if dρt ≥ 0) or withdrawn from (if dρt ≤ 0) the hedging portfolio
in order to get a perfect, but no longer self-financing, hedge. In the special case where ρ is a
G-martingale under Q we thus recover the notion of mean self-financing hedge, in the sense of
Schweizer [24].

(ii) Regarding the admissibility of hedging strategies (see, e.g., Delbaen and Schacher-
mayer [14]), note that the left-hand side in formula (2.11) (discounted wealth process
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inclusive of financing costs) is bounded from below for any issuer hedge with a cost
(V0, ζ, ρ, τc). Likewise, in the case of a bounded payoff π (i.e., assuming (2.5)), the left-hand
side in formula (2.12) is bounded from below for any holder hedge with a cost (V0, ζ, ρ, τp).

Obviously, the class of all hedges with semimartingale cost processes is too large for
any practical purposes. Therefore, we will restrict our attention to hedges with a G-sigma
martingale cost ρ under a particular risk-neutral measure Q.

Assumption 2.12. In the sequel, we work under a fixed, but arbitrary, risk-neutral measure
Q ∈ M.

All the measure-dependent notions like (local) martingale and compensator, implicitly
refer to the probability measure Q. In particular, we define Vc

0 (resp., V
p

0) as the set of initial
values V0 for which there exists an issuer (resp., holder) hedge of the game option with the
initial value V0 (resp., −V0) and with a G-sigma martingale cost under Q.

The following result gives some preliminary conclusions regarding the initial cost of
a hedging strategy for the game option under the present, rather weak, assumptions. In
Proposition 4.3, we will see that, under stronger assumptions, the infima are attained and
thus we obtain equalities, rather than merely inequalities, in (2.14) and (2.15).

Lemma 2.13. (i) One has (by convention, ess inf ∅ = ∞)

ess inf
τc∈G

0
T

ess sup
τp∈G0

T

EQ

(
π
(
0; τp, τc

) | G0
) ≤ ess inf

V0∈Vc
0

V0, a.s. (2.14)

(ii) If inequality (2.5) is valid then

ess sup
τp∈G0

T

ess inf
τc∈G

0
T

EQ

(
π
(
0; τp, τc

) | G0
) ≥ −ess inf

V0∈Vp

0

V0, a.s. (2.15)

Proof. (i)Assume that for some stopping time τc ∈ G0
T the quadruplet (V0, ζ, ρ, τc) is an issuer

hedge with a G-sigma martingale cost ρ for the game option. It is easily seen from (2.9) and
(2.11) that, for any stopping time τp ∈ G0

T ,

β0V0 = βτp∧τcVτp∧τc −
∫ τp∧τc

0
ζud
(
βuX̂u

)

≥ β0π
(
0; τp, τc

) −
∫ τp∧τc

0

(
ζud
(
βuX̂u

)
+ βudρu

)
.

(2.16)

In particular, by taking τp = t, we obtain that, for any t ∈ [0, T],

β0V0 = βt∧τcVt∧τc −
∫ t∧τc

0
ζud
(
βuX̂u

)

≥ β0π(0; t, τc) −
∫ t∧τc

0

(
ζud
(
βuX̂u

)
+ βudρu

)
.

(2.17)
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The stochastic integral
∫ t
0ζud(βuX̂u) with respect to a G-sigma martingale βX̂ is a G-sigma

martingale. Hence the stopped process
∫ t∧τc
0 ζud(βuX̂u), as well as the process

∫ t∧τc

0

(
ζud
(
βuX̂u

)
+ βudρu

)
(2.18)

are G-sigma martingales. The latter process is bounded from below (this follows from (2.2)–
(2.4) and (2.17)), so that it is a bounded from below local martingale [15, page 216] and thus
also a supermartingale. By taking conditional expectations in (2.16), we thus obtain for any
stopping time τp ∈ G0

T (recall that τc is fixed)

β0V0 ≥ EQ

(
β0π
(
0; τp, τc

) | G0
)
, ∀τp ∈ G0

T , (2.19)

and thus, by the assumed positivity of the process β,

V0 ≥ ess inf
τc∈G

0
T

ess sup
τp∈G0

T

EQ

(
π
(
0; τp, τc

) | G0
)
, a.s. (2.20)

The required inequality (2.14) is an immediate consequence of the last formula.
(ii) Let (V0, ζ, ρ, τp) be a holder hedge with a G-sigma martingale cost ρ for the game

option for some stopping time τp ∈ G0
T . Then (2.9) and (2.12) imply that, for any t ∈ [τ, T],

β0V0 = βt∧τpVt∧τp −
∫ t∧τp

0
ζud
(
βuX̂u

)

≥ −β0π
(
0; τp, t

) −
∫ t∧τp

0

(
ζud
(
βuX̂u

)
+ βudρu

)
.

(2.21)

Under condition (2.5), the stochastic integral in the last formula is bounded from below
and thus we conclude, by the same arguments as in part (i) that it is a supermartingale.
Consequently, for a fixed stopping time τp ∈ G0

T , we obtain

β0V0 ≥ EQ

(−β0π
(
0; τp, τc

) | G0
)
, a.s., ∀τc ∈ G0

T , (2.22)

so that

V0 ≥ −ess sup
τp∈G0

T

ess inf
τc∈G

0
T

EQ

(
π
(
0; τp, τc

) | G0
)
, a.s., (2.23)

and this in turn implies (2.15).

3. Valuation in a Hazard Process Setup

In order to get more explicit pricing and hedging results for defaultable game options, we
will now study the so-called hazard process setup.
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3.1. Standing Assumptions

Given an [0,+∞]-valued G-stopping time τd, we assume that G = H ∨ F, where the filtration
H is generated by the process Ht = 1{τd≤t} and F is some reference filtration. As expected, our
approach will consist in effectively reducing the information flow from the full filtration G to
the reference filtration F.

Let G stand for the process Gt = Q(τd > t | Ft) for t ∈ R+. The process G is a (bounded)
F-supermartingale, as the optional projection on the filtration F of the nonincreasing process
1 −H (see Jeulin [25]).

In the sequel, we will work under the following standing assumption.

Assumption 3.1. We assume that the process G is (strictly) positive and continuous with finite
variation, so that the F-hazard process Γt = − ln(Gt), t ∈ R+, is well defined and continuous
with finite variation.

Remark 3.2. (i) The assumption that G is continuous implies that τd is a totally inaccessible G-
stopping time (see, e.g., [26]). Moreover, τd avoids F-stopping times, in the sense that Q(τd =
τ) = 0 for any F-stopping time τ (see Coculescu and Nikeghbali [27]).

(ii) If G is continuous, the additional assumption that G has a finite variation implies
in fact that G is nonincreasing (see Lemma A.1(i)). This lies somewhere between assuming
further the (stronger) (H) Hypothesis and assuming further that τd is an F-pseudo-stopping
time (see Nikeghbali and Yor [28]). Recall that the (H) Hypothesis means that all local F-
martingales are local G-martingales (see, e.g., [29]), whereas τd is an F-pseudo-stopping time
whenever all F-local martingales stopped at τd are G-local martingales (see Nikeghbali and
Yor [28] and the appendix).

Some consequences of Assumption 3.1 useful for this work are summarized in
Lemma A.1. The next definition refers to some auxiliary results, which are relegated to the
appendix.

Definition 3.3. The F-stopping time τ̃ , the Ft-measurable random variable χ̃ and the F-
adapted or F-predictable process Ỹ introduced in Lemmas A.2 and A.4 are called the F-
representatives of τ, χ and Y , respectively. In the context of credit risk, where τd represents
the default time of a reference entity, they are also known as the pre-default values of τ, χ and
Y .

To simplify the presentation, we find it convenient to make additional assumptions.
Strictly speaking, these assumptions are superfluous, in the sense that all the results below
are true without Assumption 3.4. Indeed, by making use of Lemmas A.2 and A.4 and
Definition 3.3, it is always possible to reduce the original problem to the case described in
Assumption 3.4. Since this would make the notation heavier, without adding much value,
we prefer to work under this standing assumption.

Assumption 3.4. (i) The discount factor process β is F-adapted.
(ii) The coupon process C is F-predictable.
(iii) The recovery process R is F-predictable.
(iv) The payoff processes L, U are F-adapted and the random variable ξ is FT -

measurable.
(v) The call protection τ is an F-stopping time.
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3.2. Reduction of a Filtration

The next lemma shows that the computation of the lower and upper value of the Dynkin
games (2.6)with respect to G-stopping times can be reduced to the computation of the lower
and upper value with respect to F-stopping times.

Lemma 3.5. One has that

ess sup
τp∈Gt

T

ess inf
τc∈G

t

T

EQ

(
π
(
t; τp, τc

) | Gt

)
= ess sup

τp∈Ft
T

ess inf
τc∈F

t

T

EQ

(
π
(
t; τp, τc

) | Gt

)
,

ess inf
τc∈G

t

T

ess sup
τp∈Gt

T

EQ

(
π
(
t; τp, τc

) | Gt

)
= ess inf

τc∈F
t

T

ess sup
τp∈Ft

T

EQ

(
π
(
t; τp, τc

) | Gt

)
.

(3.1)

Proof. For (τp, τc) ∈ Gt
T × Gt

T , one has that

π
(
t; τp, τc

)
= π
(
t; τp ∧ τd, τc ∧ τd

)
= π
(
t; τ̃p ∧ τd, τ̃c ∧ τd

)
= π
(
t; τ̃p, τ̃c

)
(3.2)

for some stopping times (τ̃p, τ̃c) ∈ Ft
T × Ft

T , where the middle equality follows from

Lemma A.4, and the other two from the definition of π . Since, clearly, Ft
T ⊆ Gt

T and Ft

T ⊆ Gt

T ,
we conclude that the lemma is valid.

Under our assumptions, the computation of conditional expectations of cash flows
π(t; τp, τc) with respect to Gt can be reduced to the computation of conditional expectations
of F-equivalent cash flows π̃(t; τp, τc) with respect to Ft. Let αt := βt exp(−Γt) stand for the
credit-risk adjusted discount factor. Note that, similarly to β, the process α is bounded.

Lemma 3.6. For any stopping times τp ∈ Ft
T and τc ∈ Ft

T one has that

EQ

(
π
(
t; τp, τc

) | Gt

)
= 1{t<τd}EQ

(
π̃
(
t; τp, τc

) | Ft

)
, (3.3)

where π̃(t; τp, τc) is given by, with τ = τp ∧ τc,

αtπ̃
(
t; τp, τc

)
=
∫ τ

t

αu(dCu + RudΓu) + ατ

(
1{τ=τp<T}Lτp + 1{τ<τp}Uτc + 1{τ=T}ξ

)
. (3.4)

Proof. Formula (3.3) is an immediate consequence of formula (2.2) and Lemma A.5.

Note that π̃(t; τp, τc) is an Fτ -measurable random variable. A comparison of formulae
(2.2) and (3.4) shows that we have effectively moved our considerations from the original
market subject to the default risk, in which cash flows are discounted according to the
discount factor β, to the fictitious default-free market, in which cash flows are discounted
according to the credit risk adjusted discount factor α. Recall that the original cash flows
π(t; τp, τc) are given as Gτ∧τd -measurable random variables, whereas the F-equivalent cash
flows π̃(t; τp, τc) are manifestly Fτ -measurable and they depend on the default time τd
only via the hazard process Γ. For the purpose of computation of the ex-dividend price of
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a defaultable game option these two market models are in fact equivalent. This follows from
the next result, which is obtained by combining Theorem 2.5 with Lemmas 3.5 and 3.6.

Theorem 3.7 (Pre-default price of a defaultable game option). Assuming condition (2.7), let Π
be the arbitrage ex-dividend Q-price for a game option. Then one has, for any t ∈ [0, T],

Πt = 1{t<τd}Π̃t, (3.5)

where Π̃t satisfies

ess sup
τp∈Ft

T

ess inf
τc∈F

t

T

EQ

(
π̃
(
t; τp, τc

) | Ft

)
= Π̃t = ess inf

τc∈F
t

T

ess sup
τp∈Ft

T

EQ

(
π̃
(
t; τp, τc

) | Ft

)
. (3.6)

Hence the Dynkin game with cost criterion EQ(π̃(t; τp, τc) | Ft) on Ft
T × Ft

T admits the value Π̃t,
which coincides with the pre-default ex-dividend price at time t of the game option under the risk-
neutral measure Q.

The following result is the converse of Theorem 3.7. It is an immediate consequence of
Lemmas 3.5 and 3.6 and the “if” part of Theorem 2.5 (noting also that Π defined by (3.5) is
obviously a G-semimartingale if Π̃ is a G-semimartingale).

Theorem 3.8. Let Π̃t be the value of the Dynkin game with the cost criterion EQ(π̃(t; τp, τc) | Ft) on

Ft
T × Ft

T , for any t ∈ [0, T]. Then Πt defined by (3.5) is the value of the Dynkin game with the cost

criterion EQ(π(t; τp, τc) | Gt) on Gt
T ×Gt

T , for any t ∈ [0, T]. If, in addition, Π̃ is a G-semimartingale
thenΠ is the arbitrage ex-dividend Q-price for the game option.

Theorems 3.7 and 3.8 thus allow us to reduce the study of a game option to the study
of Dynkin games (3.6)with respect to the reference filtration F.

3.3. Valuation via Doubly Reflected BSDEs

In this section, we will characterize the arbitrage ex-dividend Q-price of a game option as a
solution to an associated doubly reflected BSDE. To this end, we first recall some auxiliary
results concerning the relationship between Dynkin games and doubly reflected BSDEs.

Given an additional F-adapted process F of finite variation, we consider the following
doubly reflected BSDE with the data α, F, ξ, L,U, τ (see Cvitanić and Karatzas [30], Hamadène
and Hassani [31], Crépey [32], Crépey and Matoussi [33], Bielecki et al. [4, 9]):

αtΘt = αTξ + αTFT − αtFt +
∫T

t

αudKu −
∫T

t

αudMu, t ∈ [0, T],

Lt ≤ Θt ≤ Ut, t ∈ [0, T],
∫T

0
(Θu − Lu)dK+

u =
∫T

0

(
Uu −Θu

)
dK−

u = 0,

(3.7)
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where the process U = (Ut)t∈[0,T] equals, for t ∈ [0, T],

Ut = 1{t<τ}∞ + 1{t≥τ}Ut. (3.8)

Definition 3.9. By a (Q-)solution to the doubly reflected BSDE (3.7), we mean a triplet
(Θ,M,K) such that

(i) the state process Θ is a real-valued, F-adapted, càdlàg process,

(ii)
∫ ·
0αdM is a real-valued F-martingale vanishing at time 0,

(iii) K is an F-adapted, continuous, finite variation process vanishing at time 0,

(iv) all conditions in (3.7) are satisfied, where in the third line K+ and K− denote the
Jordan components of K, and where the convention that 0 × ±∞ = 0 is made in the
third line.

By the Jordan decomposition, we mean the decomposition K = K+ − K−, where the
nondecreasing continuous processes K+ and K− vanish at time 0 and define mutually
singular measures.

The state process Θ in a solution to (3.7) is clearly an F-semimartingale. So there are
obvious (though rather artificial) cases in which (3.7) does not admit a solution: it suffices to
take τ = 0 and L = U, assumed not to be an F-semimartingale. It is also clear that a solution
would not necessarily be unique if we did not impose the condition of a mutual singularity
of the nonnegative measures defined by K+ and K− (see, e.g., [31, Remark 4.1]).

Remark 3.10. In applications (see [4, 9, 32, 33]), the input process F is typically given in the
form of the Lebesgue integral αF =

∫
αf du and the component M of a solution to (3.7) is

usually searched for in the formM =
∫
ZdN +n for some Rq-valued and real-valued square-

integrable F-martingales N and n (see also Assumption 4.7 in Section 4.3). For more explicit
(in particular, Markovian) specifications of the present setup and sufficient conditions for
the existence and uniqueness of a solution to (3.7), the interested reader is referred to, for
example, [4, 30–33].

Basically, in any model endowed with the martingale representation property, the
existence (and uniqueness) of a solution to (3.7) (supplemented by suitable integrability
conditions on the data and the solution) is equivalent to the so-called Mokobodski condition,
namely, the existence of a quasimartingale Z such that L ≤ Z ≤ U on [0, T] (see, in particular,
Crépey and Matoussi [33], Hamadène and Hassani [31, Theorem 4.1], and previous works
in this direction, starting with Cvitanić and Karatzas [30]). It is thus satisfied when one
of the barriers is a quasimartingale and, in particular, when one of the barriers is given
as S ∨ �, where S is an Itô-Lévy process S with square-integrable special semimartingale
decomposition components (see [33]) and � is a constant in R∪{−∞}. This framework covers,
for instance, the payoff at call of a convertible bond examined in [3, 4].

Remark 3.11. (i) Since K, and thus K+ and K−, are continuous, the minimality conditions
(third line) in (3.7) are equivalent to

∫T

0
(Θu− − Lu−)dK+

u =
∫T

0

(
Uu− −Θu−

)
dK−

u = 0. (3.9)
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Indeed the related integrands here and in the third line of (3.7) differ on an at most
countable set whereas the integrators define atomless measures on [0, T]; see, for example,
[33]. In the preprint version [34] of this work, we defined more general notions of ε-hedges
that were pertaining in the case where there may be jumps in the process K. Since in all
existing works on doubly reflected BSDEs the process K is actually found to be a continuous
process (see [4, 30, 31, 33]), we decided to impose here the continuity of K in Definition 3.9
and we only consider hedges, as opposed to ε-hedges. Note, however, that essentially all the
results of this paper can be extended to possible jumps in K, using the generalized notion
of ε-hedge defined in [34], and with the minimality conditions stated as (3.9) instead of the
third line in condition (3.7) of Definition 3.9.

(ii) Since F is a given process, the BSDE (3.7) can be rewritten as

αtΘ̂t = αT ξ̂ +
∫T

t

αudKu −
∫T

t

αudMu, t ∈ [0, T],

L̂t ≤ Θ̂t ≤ Ût, t ∈ [0, T],
∫T

0

(
Θ̂u − L̂u

)
dK+

u =
∫T

0

(
Ûu − Θ̂u

)
dK−

u = 0,

(3.10)

where Θ̂t = Θt + Ft, ξ̂ = ξ + FT , L̂t = Lt + Ft, and Ût = Ut + Ft. This shows that the problem
of solving (3.7) can be formally reduced to the case of F = 0 with suitably modified reflecting
barriers L̂, Û and terminal condition ξ̂. However, the freedom to choose the driver of a related
BSDE associated with a game option is important from the point of view of applications (this
is apparent in the followup papers [4, 9]; see also [34]).

(iii) In the special case where all F-martingales are continuous and where the F-
semimartingale F and the barriers L andU are continuous (see [4, 30, 35]), it is natural to look
for a continuous solution of (3.7), that is, a solution of (3.7) given by a triplet of continuous
processes (Θ,M,K).

(iv) In the context of a Markovian setup, the probabilistic BSDE approach may be
complemented by a related analytic variational inequality approach; this issue is dealt with
in the followup papers [4, 9]. Note, however, that the variational inequality approach
strongly relies on the BSDE approach. Moreover, a simulation method based on the BSDE
is the only efficient way of numerically solving the pricing problem whenever the problem
dimension (number of model factors) is greater than three or four. Indeed, in that case the
computational cost of deterministic numerical schemes based on the variational inequality
approach becomes prohibitive.

In order to establish a relationship between a solution to the related doubly reflected
BSDE and the arbitrage ex-dividend Q-price of the defaultable game option, we first recall
the general relationship between doubly reflected BSDEs and Dynkin games with purely
terminal cost, before applying this result to dividend-paying game options in the fictitious
default-free market in Proposition 3.12.

Observe that if (Θ,M,K) solves (3.7) then one has, for any stopping time τ ∈ Ft
T ,

αtΘt = ατΘτ + ατFτ − αtFt +
∫ τ

t

αudKu −
∫ τ

t

αudMu. (3.11)
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Proposition 3.12 (Verification principle for a Dynkin game). Let (Θ,M,K) be a solution to
(3.7) with F = 0. Then Θt is the value of the Dynkin game with cost criterion EQ(θ(t; τp, τc) | Ft) on

Ft
T × Ft

T , where θ(t; τp, τc) is the Fτ -measurable random variable defined by

αtθ
(
t; τp, τc

)
= ατ

(
1{τ=τp<T}Lτp + 1{τ=τc<τp}Uτc + 1{τ=T}ξ

)
, (3.12)

where τ = τp ∧ τc. Moreover, for any t ∈ [0, T], the pair of stopping times (τ∗p , τ
∗
c ) ∈ Ft

T ×Ft

T given by

τ∗p = inf{u ∈ [t, T]; Θu ≤ Lu} ∧ T, τ∗c = inf{u ∈ [τ ∨ t, T]; Θu ≥ Uu} ∧ T, (3.13)

is a saddle-point of this Dynkin game, in the sense that one has, for any (τp, τc) ∈ Ft
T × Ft

T ,

EQ

(
θ
(
t; τp, τ∗c

) | Ft

) ≤ Θt ≤ EQ

(
θ
(
t; τ∗p , τc

)
| Ft

)
. (3.14)

Proof. Except for the presence of τ , the result is standard (see, e.g., Lepeltier andMaingueneau

[19]). Let us first check that the right-hand side inequality in (3.14) is valid for any τc ∈ Ft

T .
Let τ∗ denote τ∗p ∧ τc. By the definition of τ∗p and continuity ofK+, we see thatK+ equals 0 on
[t, τ∗]. Since K− is nondecreasing, (3.11) is applied to yield

αtΘt ≤ ατ∗Θτ∗ −
∫ τ∗

t

αudMu. (3.15)

Taking conditional expectations (recall that
∫ ·
tαudMu is an F-martingale), and using also the

facts thatΘτ∗p ≤ Lτ∗p if τ
∗
p < T, Θτ∗p = ξ if τ∗p = T andΘτ c ≤ Uτc (recall that τc ∈ Ft

T , so that τc ≥ τ

and Uτc = Uτc), we obtain

αtΘt ≤ EQ(ατ∗Θτ∗ | Ft)

≤ EQ

(
ατ∗
(
1{τ∗=τ∗p<T}Lτ∗p + 1{τ∗=τc<τ∗p}Uτc + 1{τ∗=T}ξ

)
| Ft

)
.

(3.16)

We conclude that Θt ≤ EQ(θ(t; τ∗p , τc) | Ft) for any τc ∈ Ft

T . This completes the proof of the
right-hand side inequality in (3.14). The left-hand side inequality can be shown similarly. It
is in fact standard, since it does not involve τ , and thus the details are left to the reader.

Let us now apply Proposition 3.12 to a defaultable game option. To this end, we first
rewrite (3.4) as follows

αtπ̃
(
t; τp, τc

)
= ατFτ − αtFt + ατ

(
1{τ=τp<T}Lτp + 1{τ<τp}Uτc + 1{τ=T}ξ

)
, (3.17)
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where

Ft := α−1
t

∫

[0,t]
αudDu with Dt :=

∫

[0,t]
dCu + RudΓu. (3.18)

Let us denote by (E) equation (3.10) with Ft = Ft, that is,

αtΘt = αT ξ̂ +
∫T

t

αudKu −
∫T

t

αudMu, t ∈ [0, T],

L̂t ≤ Θt ≤ Ût, t ∈ [0, T],
∫T

0

(
Θu − L̂u

)
dK+

u =
∫T

0

(
Ûu −Θu

)
dK−

u = 0,

(E)

with ξ̂ = ξ + FT , L̂t = Lt + Ft, and Ût = Ut + Ft.

Assumption 3.13. The doubly reflected BSDE (E) admits a solution (Θ,M,K).

Let us stress that Assumption 3.13, heroic as it may seem in the general hazard process
setup, is in fact a plausible assumption in any reasonable application one may think of (cf.
the comments following Definition 3.9).

We denote, for t ∈ [0, T],

Π̃t = Θt − Ft, Πt = 1{t<τd}Π̃t, Π̂t = Πt + β−1t

∫

[0,t]
βudDu, (3.19)

mt = βtΠ̂t +
∫ t∧τd

0
βudKu. (3.20)

The following lemma is crucial in what follows (Lemma 3.14(i) is actually the key of the proof
of Proposition 4.1 below).

Lemma 3.14. (i) The processm given by (3.20) is G-martingale stopped at τd.
(ii) The processΠ is a G-semimartingale.
(iii) The process βΠ̂ is a special G-semimartingale.

Proof. (i) The triplet (Π̃,M,K) satisfies (3.7)with F given by F in (3.18). Therefore, for every
t ∈ [0, T],

αtΠ̃t = αTξ +
∫T

t

αudDu +
∫T

t

αudKu −
∫T

t

αudMu (3.21)

and thus

∫ t

0
αudMu = αtΠ̃t − α0Π̃0 +

∫ t

0
αudKu +

∫ t

0
αudDu. (3.22)
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Using Lemma A.5, it is easy to check that one has, for any 0 ≤ t ≤ u ≤ T ,

1{t<τd}e
ΓtEQ

(∫u

t

αvdMv | Ft

)
= EQ(mu −mt | Gt). (3.23)

Since the integral
∫ ·
tαv dMv is an F-martingale, the processm is a G-martingale. It is also clear

that it is stopped at τd.
(ii) In view of (3.19), (3.20) and part (i), the process Π is clearly a G-semimartingale.
(iii) By (3.20), one has that

βtΠ̂t = mt −
∫ t∧τd

0
βudKu, (3.24)

where m is a G-martingale, by (i), and where the second term in the right-hand side is a
G-adapted and continuous (hence G-predictable) processes of finite variation.

Remark 3.15. In view of (3.24) and since K is continuous, the process m given by (3.20)
can equivalently be redefined as the canonical G-local martingale component of the discounted
cumulative Q-value process βΠ̂. The processes m and βΠ̂ are easily seen to coincide on the
random interval [0, τ∗c ∧ τ∗p ∧ τd ∧ T]. Therefore, both m and βΠ̂ can be interpreted on this
interval as the discounted cumulative Q-value of a defaultable game option.

The following result establishes a useful connection between (Θ,M,K) and the
arbitrage ex-dividend Q-price of the defaultable game option.

Proposition 3.16 (Verification principle for a defaultable game option). The process Π is the
arbitrage ex-dividend Q-price for the game option. Moreover, for any t ∈ [0, T], the saddle-point

(τ∗p , τ
∗
c ) ∈ Ft

T × Ft

T for the related Dynkin game (2.6) on Gt
T × Gt

T is given by

τ∗p = inf
{
u ∈ [t, T]; Π̃u ≤ Lu

}
∧ T, τ∗c = inf

{
u ∈ [τ ∨ t, T]; Π̃u ≥ Uu

}
∧ T. (3.25)

Proof. In view of (3.4), the present assumptions imply that Π̃t is the value of the Dynkin game
(3.6), by Proposition 3.12, with saddle-point (τ∗p , τ

∗
c ). Therefore, by Lemmas 3.5 and 3.6, Πt is

the value of the Dynkin game associated with the game option on Gt
T × Gt

T , with saddle-
point (τ∗p , τ

∗
c ). Moreover, Π is a G-semimartingale, by Lemma 3.14(ii). To conclude the proof,

it suffices to make use of the last statement in Theorem 3.8.

4. Hedging in a Hazard Process Setup

In the remaining part of this work, we examine in some detail the existence and basic
properties of hedging strategies for defaultable game options in a hazard process setup.
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4.1. Cost Process of a Hedging Strategy

From now on, we will work under Assumption 3.13. Let thus (Θ,M,K) denote a solution
to (E) and let Π̃ and Π be defined by (3.19). In particular, Π is the arbitrage Q-price for the
game option (by Proposition 3.16) and the left-hand sides in (2.14) and (2.15) are equal toΠ0.
Finally, recall that the G-martingale m is defined by (3.20).

Let us stress that some of the key arguments underlying the following result are
classical, and they are already contained in Lepeltier and Maingueneau [19] (see, in
particular, Theorem 11 therein). Proposition 4.1 can thus be seen as a natural extension of
their results to the defaultable case, in which two filtrations are involved. It is notable that
our assumptions are made relative to the filtration F, whereas conclusions are drawn relative
to the filtration G.

Proposition 4.1 (Hedging with a local martingale cost). Let ζ be an arbitrary R1⊗d- valued and
βX̂-integrable process. Then the following statements are valid.

(i) Let the process ρ(ζ) be given by ρ0(ζ) = 0 and

βtdρt(ζ) = dmt − ζtd
(
βtX̂t

)
. (4.1)

Then (Π0, ζ, ρ(ζ), τ∗c ) is an issuer hedge with G-sigma (local, in case βX̂ and ζ are locally bounded)
martingale cost.

(ii) Let the process ρ(ζ) be given by ρ0(ζ) = 0 and

βtdρt(ζ) = −dmt − ζtd
(
βtX̂t

)
. (4.2)

Then (−Π0, ζ, ρ(ζ), τ∗p) is a holder hedge with a G-sigma martingale (local martingale, when βX̂ and
ζ are locally bounded) cost process.

Recall that, according to our convention (see Section 1.2), the βX̂-integrability of an
R1⊗d-valued stochastic process ζ implies its G-predictability. Note also that the equality
ρ(−ζ) = −ρ(ζ) is valid for any process ζ, since

−βtdρt(ζ) = −dmt + ζtd
(
βtX̂t

)
= −dmt − (−ζt)d

(
βtX̂t

)
. (4.3)

Proof of Proposition 4.1. The arguments for a holder are essentially symmetrical to those for
an issuer; we thus only prove part (i). By Lemma 3.14(i), the process ρ(ζ) is a G-sigma
martingale, and a G-local martingale if βX̂ and ζ are locally bounded processes. For the ease
of notation, wewrite ρ = ρ(ζ). Let V denote the wealth process of the primary strategy (Π0, ζ).
By combining (2.9) with (4.1), we obtain V0 = Π0 and, for every t ∈ [0, T],

d
(
βtVt

)
= ζtd

(
βtX̂t

)
= dmt − βtdρt (4.4)
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and thus

βtVt +
∫ t

0
βudρu = mt + β0

(
Π0 − Π̂0

)
= βtΠ̂t +

∫ t∧τd

0
βudKu + β0

(
Π0 − Π̂0

)
, (4.5)

where the second equality follows from (3.20). Recall that the stopping time τ∗c ∈ F0
T is given

by (see Proposition 3.16)

τ∗c = inf
{
t ∈ [τ, T]; Π̃t ≥ Ut

}
∧ T. (4.6)

In order to prove that the quadruplet (Π0, ζ, ρ, τ
∗
c ) is an issuer hedge for the game option, it is

enough to show that one has for any τp ∈ F0
T , with τ = τp ∧ τ∗c (cf. (2.13)),

βτVτ +
∫ τ

0
βu
(
dρu − dDu

) ≥ 1{τ<τd}βτ
(
1{τ=τp<T}Lτp + 1{τ<τp}Uτ∗c + 1{τp=τ∗c=T}ξ

)
. (4.7)

From the definition of τ∗c , the minimality conditions in (E) and the continuity ofK− it follows
that K− = 0 and thus K ≥ 0 on [0, τ∗c ]. Since τ ≤ τ∗c , (4.5) thus yields

βτVτ +
∫ τ

0
βu
(
dρu − dDu

)
= βτΠτ +

∫

[0,τ∧τd]
βudKu ≥ βτΠτ = 1{τ<τd}βτΠ̃τ , (4.8)

where, by (E), one has that

Π̃τ ≥ 1{τ<T}Lτ + 1{τ=T}ξ. (4.9)

In addition, by the definition of τ∗c , one has that Π̃τ∗c ≥ Uτ∗c on the event {τ∗c < T}. It is now
easy to see that (4.7) is satisfied and thus (V0, ζ, ρ, τ

∗
c ) is indeed an issuer hedge.

Remark 4.2. (i) The situation where ρ can be made equal to zero by the choice of a suitable
strategy ζ in Proposition 4.1 corresponds to a particular form of hedgeability of a game option
in which an issuer and a holder are able to hedge all risks embedded in a defaultable game
option. The case where ρ /= 0 corresponds either to nonhedgeability of a game option or to the
situation in which an issuer (or a holder) is able to hedge, but she prefers not to hedge all risks
associated with a game option, for instance, she may be willing to take some directional bets
regarding specific risks. For this reason, we decided not to postulate a priori that ρ should be
minimized in some sense as, for instance, in Schweizer [24].

(ii) It is possible to introduce the issuer trivial hedge (Π0, 0, ρ0, τ∗c ) (resp., the holder
trivial hedge (−Π0, 0,−ρ0, τ∗p)) with the G-local martingale cost

ρ0t =
∫ t

0
β−1u dmu, t ∈ [0, T]. (4.10)
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Obviously, this hedge is of no practical interest, since it implicitly assumes that one is not
interested in hedging any risks. The trivial hedge or, more precisely, the existence of any
hedge is used in the proof of Proposition 4.3, however.

Let us now draw some conclusions from Lemma 2.13 and Proposition 4.1. In the
context of specific (Cox-Ross-Rubinstein or Black-Scholes, say)models, analogous results can
be found in Kifer [8]. Ourmain contribution here is an extension of these results to the present
setup involving a reduction of filtration, as well as to a fairly general class of semimartingale
models. We use here the notation essmin (instead of a more common symbol essinf) in order
to emphasize that the respective bounds are in fact attained.

Proposition 4.3. Under the assumptions of Proposition 4.1, the following statements are valid.

(i) The equality Π0 = ess min Vc
0 holds, so that Π0 is the minimum of initial wealths of an

issuer hedge with a G-sigma martingale cost.

(ii) One has that −Π0 ∈ Vp

0 . If, in addition, (2.5) holds thenΠ0 = −ess min Vp

0 and −Π0 is the
minimum of initial wealths of a holder hedge with a G-sigma martingale cost.

(iii) The above statements are also valid with local martingale instead of sigma martingale
therein.

Proof. (i) By applying Proposition 4.1 to the trivial hedge of Remark 4.2(ii), we get, in
particular, that Π0 ∈ Vc

0, where Π0 is also equal to the Q-value of the related Dynkin game,
by Proposition 3.16. Therefore, the infimum is attained and one has equality, rather than
inequality, in Lemma 2.13(i).

(ii) In view of (2.5) and Lemma 2.13(ii), the second claim can be proven in the same
way as part (i).

(iii) This follows immediately from parts (i) and (ii), since the cost ρ0 of the trivial
hedge is a G-local martingale.

Given our definition of hedging with a cost and the definition ofΠ0, the fact that there
exists a hedge with an initial wealth Π0 and a G-sigma martingale cost (or a local martingale
cost, in suitable cases) is by no means surprising. The minimality statement establishes a
connection between arbitrage prices and hedging in a general incomplete market. Let us
conclude this section by mentioning that one could state analogous definitions and results
regarding hedging strategies for a defaultable game option starting at any date t ∈ [0, T].

4.2. Risk Factors of a Defaultable Game Option

Let Nd = H − Γ·∧τd stand for the compensated default process. Under our standing
assumption that the F-hazard process Γ of τd is a continuous and nondecreasing process (cf.
Remark 3.2(ii)), the process Nd is known to be a G-martingale. Recall also that the avoidance
property holds, in the sense that Q(τd = τ) = 0 for any F-stopping time τ (cf. Remark 3.2(i)).

An analysis of hedging strategies in the next section hinges on the following lemma,
which yields the risk decomposition of the discounted cumulative value process of a
defaultable game option. More formally, the martingale component m (cf. Remark 3.15) is
represented in terms of the pure jump martingale Nd and a real-valued F-martingale M,
which arise as the second component of a solution to the doubly reflected BSDE (3.7).
Intuitively, the process M models the pre-default risk associated with a defaultable game
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option, as opposed to the event risk, which is due to an unexpected occurrence of the default
event, and which is modeled through the jump martingale Nd.

Lemma 4.4. The G-martingalem defined by (3.20) satisfies

dmt = 1{t≤τd}βt
(
dMt + YtdN

d
t

)
, (4.11)

where the F-predictable process Y equals Yt = Rt − Π̃t−.

Proof. Let us introduce the Doléans-Dade martingale (see, e.g., [29])

Et = 1{t<τd}e
Γt = 1 −

∫ t

0
Eu−dNd

u , (4.12)

so that αtEt = βt1{t<τd} and αtEt− = βt1{t≤τd}. Then (cf. (3.19) and (3.20))

dmt = d
(
βtΠ̂t

)
+ 1{t≤τd}βtdKt = d

(
EtαtΠ̃t

)
+ 1{t≤τd}βtdKt + βtdDt. (4.13)

It may happen that the F-semimartingale αΠ̃ fails to be also a G-semimartingale, so a
direct application of the (G-)integration by parts formula to EαΠ̃ is not possible. However,
by Lemma A.1(iv), the process αΠ̃ stopped at τd is a G-semimartingale. It is also clear that
EαΠ̃ = Eα·∧τdΠ̃·∧τd . Hence by applying the integration by parts formula to Eα·∧τdΠ̃·∧τd , we
obtain

d
(
Etαt∧τdΠ̃t∧τd

)
= Et−

(
d
(
αt∧τdΠ̃t∧τd

)
− αtΠ̃t− dNd

t

)
+ d
[
E, α·∧τdΠ̃·∧τd

]

t
, (4.14)

where, in addition, one has that [E, α·∧τdΠ̃·∧τd]t = −eΓτ dατdΔΠ̃τdHt. Using the avoidance
property of Remark 3.2(i), formula (3.22), and the assumptions that the coupon process C
is F-predictable and the hazard process Γ is continuous (so that ΔCτd = ΔΓτd = 0), we obtain
the equality ΔΠ̃τd = 0. Using (3.22), we next deduce from (4.13) that

dmt = Et−
(
d
(
αt∧τdΠ̃t∧τd

)
− αtΠ̃t−dNd

t

)
+ 1{t≤τd}βtdKt + βtdDt

= 1{t≤τd}βt
(
−dKt − dCt − RtdΓt + dMt − Π̃t−dNd

t

)
+ 1{t≤τd}βtdKt + βtdDt

= 1{t≤τd}βt
(
−dCt − RtdΓt + dMt − Π̃t−dNd

t

)
+ βtdDt.

(4.15)

Using (2.3) and the equality ΔCτd = 0, we finally arrive at the formula

dmt = 1{t≤τd}βt
(
dMt +

(
Rt − Π̃t−

)
dNd

t

)
, (4.16)

which is the required result.
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4.3. Hedging of Risk Factors

In order to study nontrivial cases of hedging strategies for a defaultable game option in
the general setup of this paper, we need to impose more assumptions on prices of primary
traded assets. Since we are working in a fairly general framework, we will be able to provide
only general results concerning hedging strategies. The interested reader is referred to the
followup papers [4, 9] for a more detailed analysis of assumptions made in this section and
particular examples.

First, we recall that the ex-dividend price X of primary risky assets satisfies Xt = (1 −
Ht)X̃t, for every t ∈ [0, T], where the Rd-valued, F-adapted process X̃ formally represents the
pre-default value of X. We thus assume, by convention, that any residual value of the primary
asset at τd is embedded in the recovery part of the dividend process for X. We denote by R
an Rd-valued and F-predictable process, which is aimed to represent the recovery processes
of primary risky assets. Inspired by decomposition (4.11) of Lemma 4.4, we make also the
following natural postulate regarding the behavior of the cumulative price process X̂ stopped
at τd ∧ T .

Assumption 4.5. The dynamics under Q of the cumulative price process X̂ of primary risky
assets are, for every t ∈ [0, T ∧ τd],

d
(
βtX̂t

)
= βt
(
dM̂t + ŶtdN

d
t

)
(4.17)

for some Rd-valued F-martingale M̂, where the Rd-valued, F-predictable process Ŷ is given
by the equality Ŷt = Rt − X̃t− for every t ∈ [0, T].

By inserting (4.11) and (4.17) into (4.1), we obtain, for every t ∈ [0, T ∧ τd],

dρt(ζ) = dMt − ζtdM̂t +
(
Yt − ζtŶt

)
dNd

t . (4.18)

At this stage, we were only able to separate the two principal components of the cost process
that correspond to pre-default and default event risks, respectively, where the pre-default risk
is now modeled by the F-martingales M and M̂ associated with a game option and primary
traded assets, respectively.

Remark 4.6. In what follows, we will only be interested in hedging on the random interval
[0, τd∧T]. Therefore, without loss of generality, we may and do assume that ζ is F-predictable
(see Lemma A.2(ii)). This means that the reduction of filtration method can also be applied
to hedging of a defaultable game option, and not only to its valuation as was already shown
in Section 3.2.

Within the present framework, the event risk factor is common for all traded primary
and derivative assets. Therefore, in the next step, we are going to get a closer look on
pre-default risks of traded and derivative assets. To this end, we make a further standing
assumption, in which the concept of the systematic risk factor (also known as the market risk
factor) is introduced.
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Assumption 4.7. We are given an Rq-valued F-martingale, denoted by N, which is aimed to
represent the systematic risk factor for the underlying market model. We postulate that the F-
martingales M and M̂ of (4.11) and (4.17) satisfy the following decompositions, for every
t ∈ [0, T],

dMt = ZtdNt + dnt, dM̂t = ẐtdNt + dn̂t, (4.19)

where Z (resp., Ẑ) is some F-adapted, R1⊗q-valued (resp., Rd⊗q-valued), N-integrable
processes and n (resp., n̂) is a real-valued (resp., Rd-valued) F-martingale.

It is natural to refer to F-martingales n and n̂ appearing in Assumption 4.7 as
idiosyncratic risk factors associated with a defaultable game option and primary traded assets,
respectively. In this context, we find it convenient to refer to Nd as the event risk factor.

Remark 4.8. A specification of the systematic risk factor N depends on a particular market
model and on a problem at hand, so that it is not possible to make it more explicit in the
abstract setup considered here. As it will become apparent in the sequel, the idiosyncratic
risk factors are expected to be in some sense orthogonal to the systematic risk factor. For this
reason, one cannot simplymakeZ and Ẑ to vanish in (4.19). Once again, formore information
on particular models, we refer to [4, 9] (see also Remark 3.10).

Let us denoteN =
[

N

Nd

]
and let [Z, Y ] stand for the concatenation ofZ and Y . The next

lemma is an immediate consequence of (4.18) and (4.19). The idea behind formula (4.20) is
the separation of risk factorsN, Nd, n, and n̂ in the dynamics of the cost process of a trading
strategy.

Lemma 4.9. For any R1⊗d-valued, βX̂-integrable process ζ, the cost process satisfies, for every t ∈
[0, T ∧ τd],

dρt(ζ) =
(
[Zt, Yt] − ζt

[
Ẑt, Ŷt

])
dNt + dnt − ζtdn̂t. (4.20)

Example 4.10. To provide some intuition underpinning the present setup, let us first consider
a situation where the perfect hedgeability of risks can be achieved, at least in principle. Let us
set q = 1 and we take dMt = ZtdNt, so that n vanishes. For d = 2, we further postulate that
n̂ = 0 and

dM̂t = d

⎡

⎣
M̂1

t

M̂2
t

⎤

⎦ =

⎡

⎣
Ẑ1

t

Ẑ2
t

⎤

⎦dMt (4.21)

or, equivalently, that for i = 1, 2

d
(
βtX̂

i
t

)
= βt
(
Ẑi

tdMt + Ŷ i
t dN

d
t

)
. (4.22)
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Assume that there exists a βX̂-integrable process ζ solving the equation

ζt
[
Ẑt, Ŷt

]
=
[
ζ1t , ζ

2
t

]
⎡

⎣
Ẑ1

t Ŷ 1
t

Ẑ2
t Ŷ 2

t

⎤

⎦ = [Zt, Yt]. (4.23)

Then it follows from (4.20) (or (4.18)) that the cost process ρ(ζ) vanishes and thus the strategy
ζ (resp., −ζ) is an issuer’s (resp., holder’s) superhedge for a defaultable game option, in the
sense of Definition 2.10. Note that the first (resp., the second) equation in formula (4.23) is
used to eliminate the pre-default risk (resp., the event risk). As was expected, the strategy ζ
obtained by solving (4.23) is F-predictable (cf. Remark 4.6).

Remark 4.11. In [4], we further specify the setup of Example 4.10, by examining the exact
replication of a convertible bond with the equity and the credit default swap on the
underlying credit name in an equity-to-credit intensity-based model, in which the systematic
risk factor is modeled by the Brownian motion driving the equity value and all processes
appearing in (4.23) can be computed explicitly.

In the foregoing result, we examine two typical situations regarding the partial
hedgeability of risk factors when superhedging is either not possible or not desirable. The
case considered in part (i) refers to elimination of event and systematic risks. In contrast, part
(ii) deals with hedging of the systematic risk only. Of course, it is also possible to hedge the
event risk only, but we do not formulate here the corresponding result. Since the proof of the
lemma follows easily from (4.20), it is omitted.

Lemma 4.12 (Hedging of risk factors). (i) Assume that the equation [Z, Y ] = ζ[Ẑ, Ŷ ] admits a
βX̂-integrable solution ζ̂ on [0, T∧τd]. Then the cost process ρ̂ = ρ(ζ̂) satisfies, for every t ∈ [0, T∧τd],

dρ̂t = dnt − ζ̂tdn̂t. (4.24)

(ii) Assume that the equation Z = ζẐ admits a βX̂-integrable solution ζ̌ on [0, T ∧ τd]. Then
the dynamics of the cost process ρ̌ = ρ(ζ̌) are, for every t ∈ [0, T ∧ τd],

dρ̌t =
(
Yt − ζ̌tŶt

)
dNd

t + dnt − ζ̌tdn̂t. (4.25)

Part (i) in Lemma 4.12 corresponds to the case where the common risks (systematic
and event) can be completely eliminated. In contrast, part (ii) refers either to the case of
unhedgeable event risk (e.g., when Ŷ = 0 in dynamics (4.17)) or to the situation when the
issuer (or holder) is not willing to hedge that risk.

As was already mentioned, practically useful decompositions of M and M̂ will
depend on a particular model for the primary market, as well as on the game option under
study. In an abstract setup considered here, they may be formally deduced from martingale
representation theorems with orthogonal components.

Let thus H2 stand for the class of real-valued F-martingales with integrable quadratic
variation over [0, T] or, by a slight abuse of notation, the class of vector-valued processes
with mutually strongly orthogonal components in H2. It is worth recalling here that an F-
martingale stopped at τd is also a G-local martingale, by virtue of Lemma A.1(iii).
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The Galtchouk-Kunita-Watanabe (GKW) decomposition of M and M̂ with respect
to N and the filtration F (see, e.g., Protter [16, Section IV.3, Corollary 1]) thus yields the
decompositions (4.19) of M and M̂ with n and n̂ strongly orthogonal to N in H2. Since
N is meant to represent the systematic risk factor, we may and do assume, without loss of
generality, that the idiosyncratic risk factors n and n̂ are also mutually strongly orthogonal.

The following proposition justifies the informal statement that the strategy ζ̂ (resp., ζ̌)
hedges the risk factor N (resp., N). We use hereafter the standard symbol [·, ·] to denote the
square bracket between G-semimartingales.

Proposition 4.13 (Orthogonality of risk factors). Assume that the processes N, n, and n̂ in
decompositions (4.19) ofM and M̂ are mutually strongly orthogonal inH2.

(i)Under assumptions of Lemma 4.12(i), the processes ρ̂ andN·∧τd are orthogonal in G, in the
sense that [ρ̂,N·∧τd] is a G-sigma martingale (and a G-local martingale if ζ̂ is locally bounded).

(ii) Under assumptions of Lemma 4.12(ii), the processes ρ̌ and N·∧τd are orthogonal in G, in
the sense that [ρ̌,N·∧τd] is a G-sigma martingale (and a G-local martingale if ζ̌, R, and R are locally
bounded processes).

Proof. We first note that n·∧τd and N·∧τd are G-local martingales, by Lemma A.1(iii). Since n is
strongly orthogonal toN inH2, the process [n·∧τd ,N·∧τd] is a G-local martingale, as an F-local
martingale stopped at τd (cf. Lemma A.1(iii)). Furthermore, by Lemma A.6, [n·∧τd ,N

d] is a G-
local martingale. We conclude that [n·∧τd ,N·∧τd] is a G-local martingale. So are also [n̂,N·∧τd]
and [n̂,N·∧τd], since the integral

∫ ·
0βtdn̂t is strongly orthogonal to N·∧τd . Furthermore, by

Lemma A.6, [N·∧τd ,N
d] is a G-local martingale.

Using (4.24), we conclude for part (i) that [ρ̂,N·∧τd] is a G-sigma martingale and thus
it follows a G-local martingale if ζ̂ is a locally bounded process.

For part (ii), we conclude in view of (4.25) that [ρ̌,N·∧τd] is a G-sigma martingale and
thus a G-local martingale if ζ̌, R and R are locally bounded processes.

4.4. Hedging with Orthogonal Cost

Before concluding this work, let us examine briefly an alternative approach to hedging a
defaultable game option, which is formally defined as the problem of finding a strategy ζ that
makes the cost process G-orthogonal under a given risk-neutral probability measure Q to a
predetermined Rq-valued G-local martingaleN where, without loss of generality, the process
N is assumed to be stopped at τd. In reference to Proposition 4.13, by the G-orthogonality, we
mean here that [ρ,N] is a G-local martingale under Q.

Remark 4.14. In the financial interpretation, the processN may represent the wealth processes
of some preexisting portfolios, rather than risk factors as in Sections 4.2 and 4.3. Admittedly,
we consider here a reduced concept of hedging, at least from the theoretical perspective. It
is possible to argue, however, that this approach may be of practical relevance, since some
kind of a relative hedging (as opposed to replication or superhedging) is a common market
practice.

For the purpose of this section, the process m arising in (4.1) may be defined either
by (3.20), in reference to a solution of a related doubly reflected BSDE with respect to the
filtration F or, more generally (cf. Remark 3.15), as the G-local martingale component of the
discounted cumulative Q-value process βΠ̂ of a game option, provided that βΠ̂ is a G-special
semimartingale.
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In the following proposition we denote (whenever well-defined)

Covt(dXt, dYt) = lim
h→ 0

h−1 Cov(Xt+h −Xt, Yt+h − Yt | Gt) (4.26)

and Vart(dXt) = Covt(dXt, dXt).

Proposition 4.15 (Hedging with orthogonal cost). Assume that X̂ admits the decomposition, for
every t ∈ [0, T ∧ τd],

d
(
βtX̂t

)
= βtZtdNt + βtdnt (4.27)

with n and N orthogonal in G and an Rd⊗q-valued, N-integrable process Z, which is left-invertible
on [0, T ∧ τd]. Let us set, for every t ∈ [0, T ∧ τd],

ζt = Covt
(
dmt, βtdNt

)
Vart

(
βtdNt

)−1
Λt, (4.28)

where Λ is the left inverse of the transpose of Z on [0, T ∧ τd]. Then the cost process ρ(ζ) is orthogonal
toN in G.

Proof. By combining (4.1) with (4.27), we obtain

βtdρt(ζ) = dmt − ζtβtZtdNt − βtζtdnt. (4.29)

Therefore, in order to have the cost ρ orthogonal toN in G, it suffices to select a strategy ζ for
which m − ∫ ·0βtζtZtdNt is G-orthogonal to N. Relying on the multilinear regression formula,
this can be achieved by setting ζ as in (4.28).

The problem of hedging a defaultable game option with respect to N can thus be
solved, at least formally, provided that one can find a decomposition (4.27)with the required
properties. Such a decomposition can be obtained as the GKW decomposition of βX̂ in G

with respect toN, provided that the related matrix Z is left-invertible on [0, T ∧ τd]. It is then
natural to conjecture that the strategy given by (4.28) for N = N·∧τd (resp., N = N·∧τd) will
coincide with the strategy ζ̂ (resp., ζ̌) of Proposition 4.13.

The following result examines the special case when n = 0 in (4.27). As can be seen
from formula (4.31) below, this corresponds to the assumption that the process N represents
the wealth processes of some portfolios of primary traded assets.

Corollary 4.16 (Min-variance hedging). Assume that n = 0 in (4.27) and Z is left-invertible on
[0, T ∧ τd]. Then the strategy ζ of Proposition 4.15 becomes

ζt = Covt
(
dmt, d

(
βtX̂t

))
Vart

(
d
(
βtX̂t

))−1
. (4.30)
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Proof. Under the present assumptions, we obtain from (4.27)

βtdNt = Λtd
(
βtX̂t

)
, t ∈ [0, T ∧ τd]. (4.31)

Consequently, formula (4.28) reduces to

ζt = Covt

(
dmt,Λtd

(
βtX̂t

))
Vart

(
Λtd
(
βtX̂t

))−1
Λt, (4.32)

and this in turn yields (4.31).

We recognize here a strategy, which is known to arise in the context of the min-
variance hedging in incomplete markets. In the present setup, it was not derived by suitable
optimization arguments, however, but obtained by simply postulating that the cost process
should be orthogonal to prices of primary assets under the preselected risk-neutral probability
measure Q. It should be noted that in the context of a game (or even American) option, the
min-variance hedging approach should also incorporate optimization with respect to exercise
times. This would lead to the optimization problem of the form (from the issuer’s perspective,
cf. (2.11))

ess inf
τc∈G

0
T ,ζ

ess sup
τp∈G0

T

EP

((
βτVτ − β0π

(
0; τp, τc

))2 | G0

)
(4.33)

for a given level V0 of the initial wealth, where τ = τc ∧ τp ∧ τd and where the expectation
is taken under the statistical probability measure P. In a discrete-time setup, this problem
was recently proposed and solved by Dolinsky and Kifer [36], who have also observed that
the corresponding problem in a continuous-time framework is very difficult to deal with.
Whether such an approach in continuous time is amenable to mathematical and practical
solution is indeed far from trivial, so it is left as an open challenging problem.

Appendix

A. Auxiliary Lemmas

Recall that an F-pseudo-stopping time τ is a random time such that EQMτ = EQM0 for every
bounded F-martingale M (see Nikeghbali and Yor [28, Remark 1]).

We work throughout under the standing Assumption 3.1.

Lemma A.1. (i) G is a nonincreasing process.
(ii) The G-stopping time τd is an F-pseudo-stopping time.
(iii) Any F-local martingale stopped at τd is a G-local martingale.
(iv) Any F-semimartingale stopped at τd is a G-semimartingale.
(v) The integral process of a continuous integrand with respect to an F-martingale stopped at

τd is a G-local martingale.

Proof. Since G is a continuous supermartingale, it admits the Doob-Meyer decomposition
G = M − A with a continuous martingale component M [15, page 44, Lemma 4.24]. Hence
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M is in fact constant, as a continuous martingale with finite variation, and thus (i) holds.
By [28, Theorem 4.5], (i) implies (ii) (note that the continuity of the filtration F is only used
for the converse in [28, Theorem 4.5]). By [28, Theorem 4.4], (ii) implies (iii), which also
immediately yields (iv). For (v), we note that an F-martingale stopped at τd is a G-local
martingale, by virtue of (iii). The integral process of a continuous (hence predictable and
locally bounded) integrand, with respect to an F-martingale stopped at τd, is thus a G-local
martingale (cf. Remark 2.2).

We recall the following well-known results. We refer the interested reader to Bielecki
and Rutkowski [29, Lemma 5.1.2(ii) and Corollary 5.1.2] for (i) and Dellacherie et al. [37,
page 186, Section 75] for (ii) (see also Proposition 9.12 of Nikeghbali [38]).

Lemma A.2. (i) Let χ be a G∞-measurable random variable. For any t ∈ R+ such that one of the
members of the following equality is well defined in R (e.g., χ bounded from one side), the other one is
well defined as well and one has that

1{t<τd}EQ

(
χ | Gt

)
= 1{t<τd}e

ΓtEQ

(
1{t<τd}χ | Ft

)
. (A.1)

In particular, if χ is Gt-measurable then 1{t<τd}χ = 1{t<τd}χ̃ where χ̃ = eΓtEQ(1{t<τd}χ | Ft) is an
Ft-measurable random variable. So for any G-adapted process Y over [0, T], there exists an F-adapted
process Ỹ over [0, T] such that

1{t<τd}Yt = 1{t<τd}Ỹt, t ∈ [0, T]. (A.2)

(ii) For any G-predictable process Y over [0, T], there exists an F-predictable process Ỹ over
[0, T] such that

1{t≤τd}Yt = 1{t≤τd}Ỹt, t ∈ [0, T]. (A.3)

Remark A.3. In the G-predictable case, the process Ỹ satisfying (A.3) is uniquely defined under
Assumption 3.1, by [37, page 186].

For any t ∈ [0, T], we denote by Ft
T the set of all F-stopping times with values in [t, T].

Also, given a stopping time τ ∈ F0
T let Ft

T stand for the class {τ ∈ Ft
T ; τ ≥ τ}. The following

result examines the relevant properties of these classes of stopping times.

Lemma A.4. (i) If τ ∈ Gt
T for some t ∈ [0, T] then there exists τ̃ ∈ Ft

T such that τ ∧ τd = τ̃ ∧ τd.

Moreover, if τ ∈ G0
T and if τ ∈ Gt

T for some t ∈ [0, T] then one has τ̃ ∧ τd ≥ τ ∧ τd.

(ii) If τ ∈ F0
T and τ ∈ Gt

T for some t ∈ [0, T] then there exists τ̃ ∈ Ft

T such that τ ∧τd = τ̃ ∧τd.

Proof. Since τ is a G-stopping time, by [37, page 186, Section 75] there exists an F-stopping
time τ̂ such that τ ∧ τd = τ̂ ∧ τd. Moreover, since τ ∈ Gt

T , one has

τ ∧ τd = (τ ∨ t) ∧ τd = (τ ∧ τd) ∨ (t ∧ τd) = (τ̂ ∧ τd) ∨ (t ∧ τd) = (τ̂ ∨ t) ∧ τd, (A.4)
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so that we may take τ̃ = τ̂ ∨ t ∈ Ft
T . Moreover, if τ ∧ τd ≥ τ ∧ τd for some stopping time τ ∈ G0

T ,
then we also have that τ̃ ∧ τd = τ ∧ τd ≥ τ ∧ τd, which proves (i).

For (ii), let τ̆ ∈ Ft
T be such that τ ∧ τd = τ̆ ∧ τd, by (i). Assuming that τ ∈ F0

T , one has

that τ̃ = τ̆ ∨ τ ∈ Ft

T . So

τ̃ ∧ τd = (τ̆ ∨ τ) ∧ τd = (τ̆ ∧ τd) ∨ (τ ∧ τd) = τ̆ ∧ τd = τ ∧ τd, (A.5)

where the third equality holds, since τ ∈ Gt

T implies that τ̆ ∧ τd ≥ τ ∧ τd, by (i).

Let us recall that for any F-stopping time τ one has that (formula (A.6) can be found,
e.g., in Dellacherie [39, T47])

Q(τd > τ | Fτ) = e−Γτ . (A.6)

The following lemma is of independent interest.

Lemma A.5. Assume that τ ∈ Ft
T for some t ∈ [0, T]. Then one has the following.

(i) For any Fτ -measurable random variable χ such that at least one side of the following
equality is well defined in R (e.g., χ bounded from one side), the other one is also well defined and
one has

EQ

(
1{τ<τd}χ | Gt

)
= 1{t<τd}e

ΓtEQ

(
e−Γτ χ | Ft

)
. (A.7)

(ii) For any F-predictable process Z such that at least one side of the following equality is well
defined in R (e.g., Z is bounded from one side), the other one is also well defined and one has

EQ

(
1{t<τd≤τ}Zτd | Gt

)
= 1{t<τd}e

ΓtEQ

(∫ τ

t

Zue
−ΓudΓu | Ft

)
. (A.8)

(iii) For any finite variation F-predictable processA such that at least one side of the following
equality is well defined in R (e.g., the variation of A over [0, T] is bounded from one side), the other
one is also well defined and one has

EQ

(∫ τ∧τd

t∧τd
dAu | Gt

)

= 1{t<τd}e
ΓtEQ

(∫ τ

t

e−ΓudAu | Ft

)
. (A.9)

Proof. (i) Since τ ∈ FT
t , one has Ft ⊂ Fτ ⊂ FT , hence by Lemma A.2

EQ

(
1{τ<τd}χ | Gt

)
= 1{t<τd}e

ΓtEQ

(
1{τ<τd}χ | Ft

)

= 1{t<τd}e
ΓtEQ

(
χQ(τ < τd | Fτ) | Ft

)

= 1{t<τd}e
ΓtEQ

(
χe−Γτ | Ft

)
,

(A.10)

where in the last equality one has used (A.6).
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(ii) If suffices to prove the formula for an elementary predictable process of the form
Zt = 1]u,v](t)Bu for an arbitrary event Bu ∈ Fu. For such a process, the formula follows easily
from part (i).

(iii) One has that

∫ τ∧τd

t∧τd
dAu = 1{t<τd}

∫ τ∧τd

t∧τd
dAu = 1{τ<τd}

∫ τ

t

dAu + 1{t<τd≤τ}

∫ τd

t

dAu, (A.11)

where A is F-predictable. Using parts (i) and (ii), we obtain

EQ

(
1{τ<τd}

∫ τ

t

dAu | Gt

)
= 1{t<τd}EQ

(
eΓt−Γτ

∫ τ

t

dAu | Ft

)
,

EQ

(
1{t<τd≤τ}

∫ τd

t

dAu | Gt

)
= 1{t<τd}EQ

(∫ τ

t

(∫s

t

dAu

)
eΓt−ΓsdΓs | Ft

)
,

(A.12)

where, by Fubini’s theorem,

∫ τ

t

(∫s

t

dAu

)
Γt−ΓsdΓs =

∫ τ

t

∫s

t

dAue
Γt−ΓsdΓs =

∫ τ

t

eΓt−ΓudAu − eΓt−Γτ
∫ τ

t

dAu. (A.13)

Hence

EQ

(∫ τ∧τd

t∧τd
dAu | Gt

)

= 1{t<τd}EQ

(∫ τ

t

eΓt−ΓudAu | Ft

)
= 1{t<τd}e

ΓtEQ

(∫ τ

t

e−ΓudAu | Ft

)
,

(A.14)

as was expected.

In the next result, [M·∧τd ,N
d] refers to the square bracket ofM·∧τd andNd with respect

to the filtration G, where Nd denotes, as usual, the compensated jump-to-default process.
This bracket is well defined, sinceNd is a G-martingale andM·∧τd is a G-local martingale, by
Lemma A.1(iii).

Lemma A.6. For any F-martingale M, the process [M·∧τd ,N
d] is a G-local martingale.

Proof. Let us write Hd = (1 − H)eΓ. Since Γ is continuous and nondecreasing, one has that
dHd

t = −Hd
t−dN

d
t (see [29]). By an application of Lemma A.5(i) with τ = T and χ = eΓTMT ,

we obtain, for every t ∈ [0, T],

Hd
t Mt∧τd = 1{t<τd}e

ΓtMt = 1{t<τd}e
ΓtEQ(MT | Ft) = EQ

(
1{T<τd}e

ΓTMT | Gt

)
, (A.15)
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soMt·∧τdH
d
t , t ∈ [0, T], is a G-uniformly integrable martingale, hence [M·∧τd ,H

d] is a G-local
martingale (since M·∧τd andHd are G-local martingales). Now one has that

[
M·∧τd ,N

d
]

t
= ΔMτdHt = −e−Γt

[
Mt∧τd ,H

d
]

t
, (A.16)

and thus the conclusion follows.
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[33] S. Crépey and A. Matoussi, “Reflected and doubly reflected BSDEs with jumps: a priori estimates and

comparison,” The Annals of Applied Probability, vol. 18, no. 5, pp. 2041–2069, 2008.
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