
Chapter 2
Dynamic Modeling of Dependence in Finance
via Copulae Between Stochastic Processes

Tomasz R. Bielecki, Jacek Jakubowski and Mariusz Niewęgłowski

Abstract Modeling of stochastic dependence is crucial to pricing and hedging of
basket derivatives, as well as to pricing and hedging of some other financial prod-
ucts, such as rating-triggered corporate step-up bonds. The classical approach to
modeling of dependence in finance via static copulae (and Sklar’s theorem) is inad-
equate for consistent valuation and hedging in time. In this survey we present recent
developments in the area of modeling of dependence between stochastic processes
with given marginal laws. Some of these results have already been successfully ap-
plied in finance in connection with the portfolio credit risk.

2.1 Introduction

Dynamic modeling of dependence between financial risks is crucial to achieving
consistent calibration through time to market data, as well as to dynamic hedging of
these risks.

The classical approaches to modeling dependence in finance were typically
rooted in the static copula theory (see e.g. [7]). A standard example is the Gaussian
copula model introduced by David Li [25], which was widely used by practitioners.
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But the static copulae models were not capable of effectively dealing with the dy-
namic aspects of dependence between financial risks. Some people went to the ex-
treme of blaming the recent financial crisis on the use of static models (cf. e.g. [28]),
accusations that definitely went too far (for a critique of these accusations see e.g.
[14] or [33]).

Recently, an effort has been started to model dependence between financial risks
in a dynamic way. The so called Lévy copulae were studied in Kallsen and Tankov
[21]. Markov copulae were introduced in Bielecki, Jakubowski, Vidozzi and Vi-
dozzi [4], and subsequently studied in Bielecki, Vidozzi and Vidozzi [6] and Bi-
elecki, Jakubowski and Niewęgłowski [3]. Motivated by the results in [4] the so
called semimartingale copulae were formally defined and studied in L. Vidozzi [32].
Stochastic dependence between the components of a multivariate Markov process in
terms of its infinitesimal operator was investigated in A. Vidozzi [31]. A related, but
different line of research devoted to modeling dynamic dependence between stop-
ping times and applications to credit risk was originated in El Karoui, Jeanblanc and
Jiao [12], where the conditional density approach is used.

In this chapter we shall describe an approach to dynamic modeling of dependence
in finance, based on modeling of dependence between stochastic processes, and
using the results from Bielecki et al. [4, 6], Vidozzi [32] and Bielecki et al. [3],
Cont and Tankov [8] and Kallsen and Tankov [21]. In particular, we shall describe
various ways of modeling dependence between stochastic processes so that the laws
of individual components of a multivariate process agree with some prescribed laws.
Therefore, with an abuse of terminology, we shall refer to relevant constructions as
semimartingale copulae and Markov copulae. It needs to be stressed, though, that
the term "copula" is used here for convenience and for its historical connotation
only.

The objective of the methodology outlined in this article is different from that in
Lageras [22], in which results of Darsow et al. [11] are extended. Those two papers
aim at relating the classical concept of copula and the concept of Markov prop-
erty. In this context they investigate dependence along the time line in the case of
a one-dimensional Markov process, and characterize the Markov property in terms
of copulae. Next, Ibragimov [17] generalized results of Darsow et al. [11] to higher
order Markov processes. The problem that we present here is also different from
[12], since their interest is not in building models with prescribed marginal laws.

Sections 2.3 and 2.4.2 are, for the most part, taken from [31, 32], respectively.
The proofs are skipped though in this survey article. We refer the interested reader to
[4, 31, 32] for a comprehensive treatment of the relevant topics. Analogous remarks
apply to Sect. 2.4.3 based on [3], and Sect. 2.5 based on [5].

The paper is organized as follows. Section 2.2 describes Lévy copulae. Semi-
martingale copulae are defined and investigated in Sect. 2.3. We consider semi-
martingales that are uniquely characterized, in the sense of their probability laws,
by their characteristics. We construct a process X whose i-th univariate law, i.e.,
the law of the i-th component Xi, is the same as the law of a given process Y i,
i = 1, . . . ,n. Section 2.4 is devoted to Markov copulae. We present two different
approaches: generator based and symbolic. The first is based on infinitesimal gener-
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ators, the second applies pseudo-differential operators. The last section presents an
application to finance of copulae so defined.

2.2 Lévy Copulae

As is well known, the law of a multivariate Lévy process is entirely determined by
any of its one-dimensional distributions. Thus, creating dependence between uni-
variate components of a multivariate Lévy process essentially amounts to creating
dependence between finite dimensional random variables. The problem is that if
one wants to do this things in terms of the Lévy characteristics of the process, then
one needs, among other, to create dependence between the marginal Lévy measures,
which, in general, are not finite measures. This leads to certain technical difficulties
that however were successfully dealt with in the papers by Tankov [30] and Kallsen
and Tankov [21].

Tankov [30] introduced Lévy copulae to characterize dependence between com-
ponents of a multidimensional Lévy process. His construction is for Lévy processes
with positive jumps in every component. Later, Kallsen and Tankov [21] general-
ized this concept to arbitrary Lévy processes. A Lévy copula is a counterpart of the
notion of copula for multivariate distributions. Copulae give a characterization of
possible dependence structures of a random vector, given the margins, and allow
one to construct a multidimensional distribution with specified dependence from a
collection of one-dimensional distributions. Similarly, the aim of Lévy copulae is to
provide a way to construct multivariate Lévy processes with given marginals.

Since the dependence structure of the Brownian motion part of a Lévy process
X is characterized entirely by its covariance matrix, and since the Brownian motion
part of X is independent of the jump part, it remains to describe the dependence
structure of the purely discontinuous part of X , and this is done by means of Lévy
copulae.

Now, we present formal definitions.

Definition 2.2.1. Let R := (−∞,+∞]. A function F : R
d → R is d-increasing if

F(u1, . . . ,ud) �= ∞ for (u1, . . . ,ud) �= (∞, . . . ,∞) and

∑
c∈{a1,b1}×...×{ad ,bd}

(−1)N(c)F(c)≥ 0

for any −∞ < ai ≤ bi ≤ ∞ and N(c) := #{k : ck = ak}.

For a d-increasing function we can define margins in a similar way as for a proba-
bility distribution function. To do this, we set

sgnx =
{

1, x≥ 0,
−1, x < 0.
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Definition 2.2.2. Let F be a d-increasing function. For any nonempty index set I ⊂
{1, . . . ,d} the I-margin of F is the function FI : R

I → R defined by

FI((ui)i∈I) := lim
k→∞ ∑

(u j) j∈Ic∈{−k,∞}Ic
F(u1, . . . ,ud)∏

j∈Ic
sgnu j,

where Ic := {1, . . . ,d}\ I.

In particular, for I = {i}, F{i}, the i-th margin of F , is given by

F{i}(x) := lim
c→−∞

(F(+∞, . . . ,+∞,x,+∞, . . . ,+∞)−F(c, . . . ,c,x,c, . . . ,c)) .

Definition 2.2.3. A function F : R
d → R is called a Lévy copula if

1. F(u1, . . . ,ud) = 0 if ui = 0 for at least one i ∈ {1, . . . ,d},
2. F is d-increasing,
3. F{i}(u) = u for any i ∈ {1, . . . ,d}, u ∈ R.

It is worth noting that Lévy copulae have properties similar to ordinary copulae; in
particular, they are Lipschitz continuous. In order to use Lévy copulae to investigate
dependence between components of a general multivariate Lévy process we have to
define a tail integral.

Definition 2.2.4. Let X be an R
d-valued Lévy process with Lévy measure ν . The

tail integral of X is the function U : (R\{0})d → R defined by

U(x1, . . . ,xd) :=
d

∏
i=1

sgn(xi)ν

(
d

∏
j=1

I(x j)

)
,

where, for x ∈ R, we denote

I(x) :=
{

(x,∞), x≥ 0,
(−∞,x], x < 0.

The tail integral does not determine the Lévy measure uniquely, in general, since it
does not give any information about mass on coordinate axes.

This motivates introducing the I-marginal tail integral UI , for nonempty set
I ⊂ {1, . . . ,d}. It is the tail integral of the Lévy process (Xi)i∈I , or equivalently the
tail integral of the I-marginal of the Lévy measure ν , that is, the measure ν I defined
by

ν I(A) := ν(x ∈ R
d : (xi)i∈I ∈ A\{0}) for A ∈B(R|I|).

It turns out that to determine the Lévy measure uniquely we have to know all
marginal tail integrals, i.e., we have to know UI for all I ⊂ {1, . . . ,d} (see [21,
Lemma 3.5]). In fact, there is one-to-one correspondence between the Lévy mea-
sure and the set of all marginal tail integrals.
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The most important feature of Lévy copulae is that they allow separating the
margins and the dependence structure of Lévy measures. This is clear from the
following counterpart of Sklar’s theorem, proved by Kallsen and Tankov [21].

Theorem 2.2.1. 1) Let X = (X1, . . . ,Xd) be an R
d-valued Lévy process. Then there

exists a Lévy copula F such that the tail integrals of X satisfy

UI ((xi)i∈I) = FI ((Ui(xi))i∈I) (2.1)

for any nonempty I ⊂ {1, . . . ,d} and any (xi)i∈I ∈ (R\{0})I . The Lévy copula F is
unique on ∏d

i=1 RanUi.
2) Let F be a d-dimensional Lévy copula and Ui, i = 1, . . . ,d, be the tail integrals
of real valued Lévy processes. Then there exists an R

d-valued Lévy process whose
components have tail integrals U1, . . . ,Ud and whose marginal tail integral satisfies
condition (2.1) for any nonempty I ⊂ {1, . . . ,d} and any x ∈ (R \ {0})I . The Lévy
measure ν of X is uniquely determined by F and Ui, i = 1, . . . ,d.

We now proceed with a few examples of Lévy copulae.

Example 2.2.1. In Kallsen and Tankov [21] it is shown that a pure jump Lévy pro-
cess has independent coordinates if and only if its Lévy copula is given by the fol-
lowing formula:

F⊥(x1, . . . ,xd) :=
d

∑
i=1

xi∏
j �=i

1{∞}(x j).

Example 2.2.2. Kallsen and Tankov [21] introduce an Archimedean Lévy copula,
analogously to an ordinary Archimedean copula, by setting

F(x1, . . . ,xd) := ϕ

(
d

∏
i=1

ϕ̃(ui)

)
,

where ϕ : [−1,1]→ [−∞,∞] is a strictly increasing continuous function with ϕ(−1)
= −∞, ϕ(0) = 0, ϕ(1) = ∞, and having derivatives up to order d on the intervals
(−1,0) and (0,1), satisfying

∂ dϕ(ex)
∂xd ≥ 0,

∂ dϕ(−ex)
∂xd ≤ 0, x ∈ (−∞,0),

and where ϕ̃ is defined by

ϕ̃(u) := 2d−2(ϕ(u)−ϕ(−u)).

Example 2.2.3. Bauerle et al. [2] observed that in the case d > 2 the family of Archi-
medean Lévy copulae fails to generate positively dependent Lévy processes.1 In or-

1 Three concepts of dependence are introduced in [2]: (positive) association, positive orthant de-
pendence (POD), and positive supermodular dependence (PSMD). According to Corollary 3.10
in [2], all three concepts are equivalent in the case of multivariate Lévy processes. Thus, in the
context of Lévy processes we give the same name to all three concepts: positive dependence.
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der to overcome this problem they proposed to generalize this family. In the first step
they noted that for φ : (0,∞)→ (0,∞) a strictly decreasing function with alternating
signs of derivatives up to order d, and with limt↓0 φ(t) = ∞ and limt↓∞ φ(t) = 0 the
function defined by

Fφ (u1, . . . ,ud) := φ

(
d

∑
i=1

φ−1(ui)

)
, u1, . . . ,ud > 0, (2.2)

is a Lévy copula on (0,∞)d . Then, the main idea of [2] was to spread these positive
Lévy copulae on all orthants with additional weighting functions. This construc-
tion is a generalization of an ordinary Archimedean copula that uses the additive
generator rather than the multiplicative one. To make the above idea precise, given
functions Fφ i defined by (2.2) for i ∈ I := {−1,1}d , let

F(x1, . . . ,xd) :=

⎧⎨
⎩
∑i∈I

(
η(i)Fφ i(|u1| , . . . , |ud |)1{u∈Oi}∏

d
i=1 sgn(ui)

)
if

∣∣u j
∣∣ > 0,

j = 1, . . . ,d,
0 otherwise,

where Oi denotes the orthant with signs in i, i.e.,

Oi :=
{

x ∈ R
d : sgn(x j) = i j, j = 1, . . . ,d

}
,

and η : I→ [0,1] is a weight function having the property

∑
i:ik=−1

η(i) = ∑
i:ik=1

η(i) = 1.

The above function F defines a Lévy copula on R
d which generates positively de-

pendent Lévy processes if and only if η(1,1, ...,1) = η(−1,−1, ...,−1) = 1.

Example 2.2.4. One can obtain a Clayton type Lévy copula by choosing ϕ(u) =
u−1/θ and η(−1,−1) = η(1,1) = 1. Then

Fθ (u1,u2) =
(

u−θ1 +u−θ2

)−1/θ
1{u∈R

2
++}+

(
(−u1)−θ +(−u2)−θ

)−1/θ
1{u∈R

2
−−}

with R
2
++ := R+×R+ and R

2
−− := R− ×R−, is a Lévy copula for positively de-

pendent Lévy processes.

Remark 2.2.1. In various applications we often need an appropriate algorithm for
Monte Carlo simulation of dependent Lévy processes. Tankov [29] discusses the
issue of generation of sample paths of Lévy processes with given Lévy copulae by
using series representations of Lévy processes.
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2.3 Semimartingale Copulae

In this section, which is based on [4, 32], we study certain aspects of stochastic de-
pendence between some classes of finite dimensional semimartingale processes in
terms of their infinitesimal characteristics. We shall only consider the semimartin-
gales that are uniquely characterized, in the sense of their probability laws, by their
characteristics.

Let (Ω ,F ,P) be some underlying probability space with Ω = Ω1×Ω2×·· ·×
Ωn, and let X = (X1,X2, . . . ,Xn) be an R

n-valued semimartingale with respect to
some filtration, defined on this probability space. Let also Y 1,Y 2, . . . ,Y n be a collec-
tion of semimartingales on (Ωi,Fi,Pi), with respect to some filtrations. All filtra-
tions in what follows are assumed to satisfy the usual conditions.

For the most part of this section, for simplicity of presentation, we shall only
consider the bivariate case, that is, n = 2, although the results presented can be
generalized to higher dimensions in a straightforward manner.

Our study is motivated by the question which arises naturally in various appli-
cations, such as valuation and hedging of financial derivatives written on baskets of
underlying securities: What conditions on the local characteristics of a process X
are sufficient for the law of Xi to be the same as the law of Y i, i = 1,2, . . . ,n, where
the Y i are given processes. So our aim is to construct a process X so that its i-th
univariate law, i.e., the law of the i-th component Xi, is the same as the law of a
given process Y i, i = 1,2, . . . ,n.

In this context, the question is reminiscent of the concept of copula functions,
and the celebrated Sklar theorem (see [26]). Unfortunately, the complex structure of
the cylindrical sigma algebras on canonical spaces does not allow a direct extension
of Sklar’s results to random variables on function spaces. However, infinitesimal
characteristics of a stochastic process are often available, so we study dependence
between processes in terms of those infinitesimal characteristics. Consequently, for
historical reasons, we somewhat abuse terminology when using the term “copula”:
various “copulae” that we define below are not really copula functions. Neverthe-
less, we find this terminology useful and convenient.

Our approach was in part inspired by Tankov [30] and Kallsen and Tankov [21]
(cf. Sect. 2.2). Although very appealing, their approach cannot be extended to con-
struct more general processes, as its validity relies on the fact that the jump charac-
teristic of a Lévy process is a measure on a finite dimensional space.

The key role in this section will be played by the canonical characteristics of a
semimartingale, that is, the characteristics expressed as functions of the trajectory
of the process.

2.3.1 Copulae for Special Semimartingales

Assume that we are given two real valued semimartingales Y 1,Y 2, whose finite di-
mensional distributions are uniquely determined by the corresponding infinitesimal
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characteristics. The processes are possibly defined on different (canonical) proba-
bility spaces, say (Ωi,FY i

,Pi), i = 1,2, endowed with the canonical filtrations F
Y i

.
We would like to construct a probability space (Ω ,F X ,P), with Ω =Ω1×Ω2, such
that the finite dimensional distributions of the components of the canonical process
X = (X1,X2) on that space are identical to those of Y 1,Y 2. In what follows we use
the notation:

F X
t =

⋂
s>t

σ(Xr, r ≤ s), F X := F X
∞ :=

∨
t>0

F X
t , F

X := {F X
t }t≥0,

for a semimartingale X .
Consider a bivariate semimartingale, X = (X1,X2), defined on a stochastic basis

(Ω ,F ,F,P), where the components X1,X2 are real valued semimartingales. We
assume that the finite dimensional distributions of the vector process X are uniquely
determined by its F

X characteristic triple.2

We first examine the problem of finding the F
Xi

characteristic triple of Xi, i = 1,2
(i.e., the canonical characteristic triple of the coordinate processes) knowing the F

X

characteristic triple of the components Xi, i = 1,2. We provide a characterization of
the canonical characteristics of Xi in terms of projections of their F

X characteris-
tic triple. Next we illustrate the theory on some examples, for which we compute
explicitly the F

Xi
characteristics of the coordinate processes. Finally, we explore

how to extend these to determine the distribution of X = (X1,X2) in some cases of
interest.

Characteristics of the coordinate processes. Assume that X is a semimartingale
X = (X1,X2) taking values in R

2 and defined on the stochastic basis (Ω ,F ,F,P).
Moreover we are given the F

X -characteristics of X , say, (B,C,ν), where B = (Bi)
and C = [Ci j] with i, j = 1,2 are predictable processes taking values in R

2 and R
2×2

respectively, and ν is a predictable random measure on B(R2)⊗B(R+) (the dual
predictable projection of the integer valued, optional random measure μ counting
the jumps of X).

We introduce the following notation:

- μ i is the integer valued, optional random measure on B(R)⊗B(R+) counting
the jumps of the process Xi;
- ν i is the compensator of μ i in the filtration F

X ;
- ν̃ i is the compensator of μ i with respect to F

Xi
;

- oi(Z) (or pi(Z)) is the optional (resp. predictable) projection of the process Z on
F

Xi
;

- (Z)pi (or (μ)pi) is the dual predictable projection of the process Z (resp. of the
random measure μ) on F

Xi
.

2 The precise meaning of this statement is the following: If (Ω ,F ,F,P) and (Ω ,F ,F,Q) are
two probability spaces, where (Ω ,F ,F) is a canonical space endowed with canonical filtration
such that the canonical process X is a semimartingale on both stochastic bases with the same
characteristics, then P = Q. This implies that two semimartingales, defined on (Ω ,F ,F), that
have the same characteristics, also have the same law. This uniqueness property can be verified in
terms of uniqueness of the so called martingale problem (cf. [32] for details).
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Clearly μ2(dx,dt) = μ(R,dx,dt), μ1(dx,dt) = μ(dx,R,dt) and likewise for ν1,ν2.
We make the following standing assumptions:
A1. For i = 1,2 and for all F

X local martingales under consideration, there exists a
fundamental sequence of F

Xi
stopping times.

A2. The process X is a special semimartingale.

Assumption A1 ensures that we do not destroy the local martingale property by
taking projections (if a local martingale is a genuine martingale this assumption is
trivially satisfied: consider the sequence Tn = n). Assumption A2 ensures that X has
a unique canonical semimartingale decomposition. The following results yield the
F

Xi
characteristics of the processes Xi.

Proposition 2.3.1 (see [32]). Let Xi = Xi
0 +Mi +Bi denote the canonical decompo-

sition of the semimartingale Xi in the filtration F
X and let Bi+ and Bi− denote the

processes in the Jordan decomposition of Bi. Then Xi admits the following canonical
decomposition in the filtration F

Xi
:

Xi = Xi
0 + M̃i + B̃i,

where
M̃i = oi(Mi)+Li+−Li−,

with Li+ and Li− the local martingale parts of the Doob Meyer decomposition of
oi(Bi+) and oi(Bi−) respectively, and

B̃i = (oi(Bi+))pi − (oi(Bi−))pi . (2.3)

The above proposition yields the first two F
Xi

characteristics of the process Xi, i.e.,
B̃i is given by (2.3), and C̃ii = 〈(M̃i)c,(M̃i)c〉. Using similar arguments, we compute
the jump characteristic of Xi in the filtration F

Xi
. To this end, we shall need the

following results:

Proposition 2.3.2 (see [32]). Fix i = 1,2, s≥ 0, A ∈B(R) and B ∈F Xi

s . Then the
process

Li
t = 1B

(
μ i((s, t],A)− (oi(ν i((s, t],A)))pi

)
, t ≥ s,

is an F
Xi

local martingale.

From now on we assume that the jumps of the processes X1 and X2 take values
in a finite set,3 say E = {x1, . . . ,xM} ⊂ R. For every x ∈ E and every interval (s, t]
we put

ν̃ i((s, t],x) := (oi(ν i((s, t],x)))pi .

3 The set E can be interpreted as the mark space.
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One can uniquely extend ν̃ i to a measure on B(R+)⊗ 2E . The next proposition
shows that this unique extension, denoted by ν̃ i(dt,dx), is indeed the F

Xi
compen-

sator of μi(dt,dx).

Proposition 2.3.3. The measure ν̃ i(dt,dx) is the F
Xi

dual predictable projection of
the counting measure μ i(dt,dx).

If the compensator is absolutely continuous, then we can compute the projections
(oi(ν i([s, t],An)))pi in a simple way:

Lemma 2.3.1 (see [32]). Assume that ν i((s, t],A) is (locally) integrable for every
set A in B(R). In addition, assume that ν i((s, t],A) is absolutely continuous, i.e.,

ν i((s, t],A)(ω) =
∫ t

s

∫
A

Ki(u,ω,dx)du

for some F X ⊗B(R) measurable kernel Ki. Then, for any s < t < ∞,

(oi(ν i((s, t],A)))pi =
∫ t

s

oi(Ki(u,A))du.

We can obtain a similar result for the process B̃i, that is, for the finite variation
part of the F

Xi
semimartingale decomposition of Xi.

Lemma 2.3.2 (see [32]). Assume that, for i = 1,2, Bi is (locally) integrable and
absolutely continuous, i.e.,

Bi
t =

∫ t

0
bi

s ds

for some progressively measurable process bi. Then, for any t < ∞,

B̃i
t = (oi(Bi+))pi

t − (oi(Bi−))pi
t =

∫ t

0

oi(bi
s)ds.

Now, we compute explicitly the F
Xi

characteristics of the vector semimartingale
X = (X1,X2) in some special cases.

Example 2.3.1. Consider the stochastic basis (Ω ,F ,F,P), where F := F
W ∨F

X2
, W

is an SBM and X2 is a Markov chain that takes values in {e1, . . . ,eN}, where (ei)N
i=1

is the standard basis in R
N . We assume that X2 admits a constant generator matrix

A. Consider the vector process X = (X1,X2), where

dX1
t = 〈b,X2

t 〉dt +σdWt , X1
0 = x1 ∈ R,

with σ ∈ R
+ and b ∈ R

N . Note that F
X = F and the first F

X characteristic of X1

is given by the process B1
t =

∫ t
0〈b,X2

s 〉ds. In view of Lemma 2.3.2, the first F
X1

characteristic of X1 is given by the process B̃i
t =

∫ t
0〈b, ps〉ds, where ps := o1(X2

s ).
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It is a well known result in filtering theory (the so called Wonham filter, see Elliot
[13]) that the process p satisfies the following vector SDE:

pt = p0 +
∫ t

0
AT ps ds+

1
σ2

∫ t

0
diag(ps)(b−〈b, ps〉1)(dX1

s −〈b, ps〉ds),

where p0 is the initial distribution of the chain X2, and 1 := (1, . . . ,1)�.

Example 2.3.2. Consider a stochastic basis (Ω ,F N ,FN ,P), where Ω = Ω1 ×Ω2

is the canonical space of a bivariate one-point process, and a canonical process,
say N = (N1,N2), on this space. Observe that N can be identified with a pair of
positive random variables T1 : Ω1→ R+ and T2 : Ω2→ R+ given by T1 := inf{t >
0 : ΔN1

t �= 0} and T2 := inf{t > 0 : ΔN2
t �= 0}. We assume that, under P, the joint

probability of (T1,T2) admits a density function f (u,v). We first compute the F
N

compensator of Ni. By a straightforward application of the Fubini theorem, the F
N

jump characteristic of N1 is

ν1(ds,dx) = δ1(dx)
( ∫ ∞

s f (s,v)dv∫ ∞
s

∫ ∞
s f (u,v)dudv

1{s≤T1∧T2}+
f (s,T2)∫ ∞

s f (u,T2)du
1{T2<s≤T1}

)
ds.

To compute the canonical jump characteristic of the coordinate processes N1, say
ν̃1([0, t),{1}), we use Propositions 2.3.2 and Lemma 2.3.1:

ν̃1(ds,{1}) = E

( ∫ ∞
s f (s,v)dv∫ ∞

s

∫ ∞
s f (u,v)dudv

1{s≤T1∧T2}
∣∣F N1

s

)
ds

+ E

(
f (s,T2)∫ ∞

s f (u,T2)du
1{T2<s≤T1}

∣∣F N1

s

)
ds.

Since the process 1{T1≥t} is predictable, it is adapted to (F N1

t− , t ≥ 0). Therefore, for
any s < ∞, we have

ν̃1(ds,{1}) =
∫ ∞

s f (s,v)dv∫ ∞
s

∫ ∞
s f (u,v)dudv

P({T2 ≥ s}
∣∣{T1 ≥ s})1{T1≥s} ds

+E

(
f (s,T2)∫ ∞

s f (u,T2)du
1{T2<s≤T1}

∣∣{T1 ≥ s}
)
1{T1≥s} ds

=
∫ ∞

s f (s,v)dv∫ ∞
s

∫ ∞
s f (u,v)dudv

∫ ∞
s

∫ ∞
s f (u,v)dudv∫ ∞

s

∫ ∞
0 f (u,v)dudv

1{T1≥s} ds

+
∫ s

0

f (s,v)∫ ∞
s f (u,v)du

∫ ∞
s f (u,v)du∫ ∞

s

∫ ∞
0 f (u,v)dudv

dv1{T1≥s} ds

=
∫ ∞

0 f (s,v)dv∫ ∞
s

∫ ∞
0 f (u,v)dudv

1{T1≥s} ds.

Remark 2.3.1. Let X = (X1,X2) be a two dimensional semimartingale defined on the
stochastic basis (Ω ,F X ,FX ,P) and such that its F

X characteristic triple uniquely
determines its finite dimensional distributions. We know, at least in some special
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cases, how to compute the F
Xi

characteristics of the components Xi, i = 1,2, from
the corresponding F

X characteristic triple. We still have to establish whether the F
Xi

characteristic triple uniquely determines the finite dimensional distributions of the
components Xi, say (B̃i,C̃i, ν̃ i). We can give a positive answer under the assumption
that there exists a unique probability measure P

i on F Xi
such that Xi is a semi-

martingale with F
Xi

characteristic triple (B̃i,C̃i, ν̃ i). Then necessarily the restriction
P|

F Xi must coincide with P
i. This implies that, at least in this case, the F

Xi
charac-

teristics indeed determine the finite dimensional distributions of Xi.

Semimartingale copulae. We are now ready to proceed with the presentation
of semimartingale copulae. In fact, the discussion earlier in this section, and, in
particular, the discussion in Remark 2.3.1 indicate a recipe for constructing bivariate
semimartingales with given margins. We construct (Ω ,F X ,FX ,P) in such a way
that the F

Xi
characteristics of the coordinate processes Xi, i = 1,2, are identical (as

functions of trajectories) to the F
Y i

characteristics of Y i, i = 1,2. This implies that
for i = 1,2, Xi and Y i are equal in law.

Indeed, Xi and Y i live in the same canonical space Ωi (this means that the canon-
ical σ -algebras FY i

and F Xi
contain the same events), and the F

Xi
characteristics

of Xi and the F
Y i

characteristics of Y i coincide (as functions of trajectories), so
uniqueness implies that Xi and Y i have the same finite dimensional distributions.

We now proceed to define the concept of semimartingale copula for two dimen-
sional semimartingales (this definition can be readily extended to higher dimen-
sional processes).

Let Y 1,Y 2 be two R-valued semimartingales defined on possibly different (canon-
ical) filtered probability spaces (Ωi,FY i

,FY i
,Pi). Let (B̂i,Ĉi, ν̂ i) denote the charac-

teristics of Y i, i = 1,2, and assume that the finite dimensional distributions of Y i

are uniquely determined by its characteristic triple. Let X denote the vector val-
ued, canonical process on the filtered canonical stochastic basis (Ω ,F X ,FX ), where
Ω = Ω1×Ω2.

Definition 2.3.1. We say that a triple (B,C,ν) defined on the basis (Ω ,F X ,FX ) is
a semimartingale copula for Y i, i = 1,2, if the following conditions hold:

i) there is a unique probability measure P on F X such that the canonical process
on the stochastic basis (Ω ,F X ,FX ) is a semimartingale with characteristic triple
(B,C,ν);
ii) under P, the F

Xi
characteristics of Xi, say (B̃i,C̃i, ν̃ i), are equal (as functions

of trajectories) to (B̂i,Ĉi, ν̂ i) for i = 1,2.

Now we introduce a suitable measure of dependence between components of the
process X . Let J = 2{1,...,d}, Ji = {S ∈J : S contains at least i elements} and let
card(S) denote the cardinality of the set S.

Definition 2.3.2. Let X = (X1,X2, . . . ,Xd) be an E = Xd
i=1Ei ⊂ R

d valued locally
square integrable semimartingale. Let T < ∞. The d-volume is defined as
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Dvol(XT ) = E

(∫ T

0

1
2

m

∑
i, j=1,i �= j

|d〈Xi,X j〉cs |+ ∑
S∈J2

card(S)νS(T )

)
, (2.4)

where 〈Xi,X j〉c is the process compensating [Xi,X j]c in the filtration F
X , νS

t is the
F

X -dual predictable projection of the process

JS
t :=

∫ t

0

∫
ES×0Sc

μ(dx,ds),

μ(dx,ds) is an integer valued random measure counting the jumps of the process X ,
and ES×0Sc is a set in R

d defined as Xi∈SEi×Xi∈Sc{0}.

Remark 2.3.2. The d-volume is a measure of “dynamic” dependence between com-
ponents of a multivariate semimartingale X . The dependence between processes
is also related to the dependence structure intrinsic to the initial state X0, but this
"static" dependence is not accounted for in the d-volume.

To motivate this choice, we give the following simple example.

Example 2.3.3. Let X = (X1,X2) be a nondegenerate jump diffusion with

dX1 = μ1(X1)dt +σ11(X1)dW 1(t)+σ12(X1)dW 2(t)+dN1(t)+dN2(t),
dX2 = μ2(X2)dt +σ21(X2)dW 1(t)+σ22(X2)dW 2(t)+dN2(t)+dN3(t),

where W 1,W 2 are independent Brownian motions and N1,N2,N3 are independent
Poisson processes with intensities λ1,λ2,λ3 respectively. In this case the covariance
between the continuous components of X1 and X2 is measured by

dci j =
(
σ12(X1)σ21(X2)+σ12(X1)σ22(X2)

)
dt,

while the tendency of the processes to jump together is measured by

ν(dt) = λ2 dt.

Proposition 2.3.4. Let X = (X1,X2, . . . ,Xm) be an E-valued semimartingale. Then

0≤ Dvol(XT )≤ E

(
1
2

m

∑
i, j=1,i �= j

(〈Xi,Xi〉cT )
1
2 (〈X j,X j〉cT )

1
2 + ∑

S∈J1

card(S)νS(T )

)
.

Proof. This is an immediate consequence of the Kunita-Watanabe inequality (see
Protter [27, Chap. II, Theorem 25]) and the observation that ∑S∈J2

card(S)νS
T ≤

∑S∈J1
card(S)νS

T . �

Example 2.3.4. We construct now a semimartingale copula for a vector one-point
process. Suppose we are given two one-point processes Y i defined on the basis
(Ωi,FY i

,FY i
,Pi), where Ωi is the canonical space of one-point processes on R.

Let T̃1 and T̃2 denote the jump times of Y 1 and Y 2, respectively, and assume that,
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under P
i, T̃ i is exponentially distributed with parameter λi, i = 1,2. Let Fi denote

the corresponding distribution function. It can be easily verified that Y i admits jump
characteristic ν̃ i(dt,dx) = δ1(dx)λi1{T̃i≥t} dt. Let N = (N1,N2) denote the canon-

ical point process on the stochastic basis (Ω ,F N ,FN), where Ω = Ω1×Ω2. Next
define two positive random variables T1, T2 as follows: T1 = inf{t ≥ 0 : ΔN1

t = 1},
T2 = inf{t ≥ 0 : ΔN2

t = 1}. Let C(·, ·) be an arbitrary two dimensional abso-
lutely continuous copula function, and c(·, ·) the density of the distribution function
C(F1(·),F2(·)). In addition, define the following random measure on B(R+)⊗ 2E

(here E = {0,1}2):

ν(ds,{(0,0)}) = 0,

ν(ds,{(1,0)}) =
( ∫ ∞

s c(s,v)dv∫ ∞
s

∫ ∞
s c(u,v)dudv

I{s≤T1∧T2}+
c(s,T2)∫ ∞

s c(u,T2)du
I{T2<s≤T1}

)
ds,

ν(ds,{(0,1)}) =
( ∫ ∞

s c(u,s)du∫ ∞
s

∫ ∞
s c(u,v)dudv

I{s≤T1∧T2}+
c(T1,s)∫ ∞

s c(T1,v)dv
I{T1<s≤T2}

)
ds,

ν(ds,{(1,1)}) = 0.

First we prove that the measure ν(dt,dx) is F
N predictable. To this end con-

sider the simple random function W = 1A(1C01{t≤T1∧T2}+1C11{T1∧T2<t≤T1∨ T2}+
1C21{t>T1∨ T2}), where A is a set in E, C0 ∈F N

0 ,C1 ∈F N
T1∧T2

and C2 ∈F N
T1∨T2

. Since
W ∗ ν is of the form D01{t≤T1∧T2} + D11{T1∧T2<t≤T1∨T2} + D21{t>T1∨ T2}, where
D0 ∈ F N

0 , D1 ∈ F N
T1∧T2

and D2 ∈F N
T1∨T2

we see that W ∗ ν is an F
N predictable

process (Lemma III 1.29 in [20]). Hence ν is an F
N predictable random measure

by a monotone class argument. By direct verification we see that the probability
measure P defined by the distribution function

P(T1 ≤ t1,T2 ≤ t2) = C(F1(t1),F2(t2))

is a solution to the martingale problem for ν . In fact, if μ(dt,dx) denote the optional
counting measure associated to N, then μ((0, t],(1,0)) = N1

t and μ((0, t],(0,1)) =
N2

t , and the martingale property of μ((0, t],A)−ν((0, t],A), for all A ∈ 2E , follows
from a straightforward application of the Fubini theorem. Next, we deduce that, for
all predictable simple random functions W , the process W ∗ (μ − ν) is a martin-
gale, implying that P is a solution to the martingale problem for ν . It follows from
known results (e.g. [24, Chap. 4, Theorem 5]) that P is the unique probability mea-
sure on F N such that the canonical process N is a bivariate one-point process with
compensator ν .

Moreover, by arguments analogous to those used in Example 2.3.2, the F
N1

dual
predictable projection of N1 is given by

ν̃1(ds,dx) = δ1(dx)
∫ ∞

0 c(s,s2)ds2∫ ∞
s

∫ ∞
0 c(s1,s2)ds2 ds2

1{s≤T1} ds

= δ1(dx)
λ1 exp(−λ1s)

exp(−λ1s)
1{s≤T1} ds = δ1(dx)λ11{s≤T1} ds.
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We conclude that the random measure ν(dt,dx) is a semimartingale copula for
Y 1,Y 2.

The above example relied on the fact that we are able to compute the projections
of the F

N jump characteristic of Ni, i = 1,2. In the general case, if we had to compute
projections in order to construct a semimartingale copula, the practical usefulness
of the theory presented so far would be rather restricted. So we try to construct
nontrivial semimartingale copulae without computing projections. We start from a
construction of a vector one-point process N = (N1,N2) different from that given in
Example 2.3.4.

Example 2.3.5. Let the setting be as in Example 2.3.4. Again, we would like to
construct a probability measure on (Ω ,F N ,FN) such that the distributions of the
jump time of the components Ni, i = 1,2, are exponential with intensity λi, i.e.,
Ni are equal in law to Y i for i = 1,2. To do this, let λ12 be a positive real number
satisfying the condition λ12 ≤ λ1∧λ2 and define the following random measure on
B(R+)⊗2E (E = {0,1}2):

ν(ds,{(0,0)}) = 0,

ν(ds,{(1,0)}) =
(
λ11{s≤T1} −λ121{s≤T1∧T2}

)
ds,

ν(ds,{(0,1)}) =
(
λ21{s≤T2} −λ121{s≤T1∧T2}

)
ds,

ν(ds,{(1,1)}) =
(
λ121{s≤T1∧T2}

)
ds.

By arguments analogous to those used in Example 2.3.4 we infer that the nonneg-
ative measure ν(dt,dx) is F

N predictable. By a direct verification, a solution to the
martingale problem for ν is given by the probability measure P defined by the dis-
tribution function

P(T1 ≤ t1,T2 ≤ t2) = 1− e−λ1 t1 − e−λ2 t2 + e−(λ1−λ12)t1−(λ2−λ12)t2−λ12 t1∨t2 .

To see this, we prove that Mt = μ((0, t],A)− ν([0, t],A), where μ(dt,dx) is the
counting measure associated to N, is an F

N martingale for every set A in 2E . Let,
for example, A = {(1,1)}. Then μ((0, t],(1,1)) = 1{T1∧T2≤t,T1=T2} and by direct
computation

P(T1 ≤ t,T2 ≤ t,T1 = T2|{T1∧T2 > s}) =
∫ t

s
λ12e−(λ1+λ2−λ12)(u−s) du,

P(T1∧T2 ≥ t|{T1∧T2 > s}) = e−(λ1+λ2−λ12)(t−s).

Therefore, Mt satisfies

E(Mt
∣∣F N

s ) = Ms +P({s < T1∧T2 ≤ t,T1 = T2}|F N
s )−λ12

∫ t

s
P(T1∧T2 ≥ u|F N

s )du

= Ms +
∫ t

s
e−(λ1+λ2−λ12)(u−s) du1{T1∧T2>s} −

∫ t

s
e−(λ1+λ2−λ12)(u−s) du1{T1∧T2>s} = Ms.
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P is the unique probability measure on F N such that the canonical process N is a
bivariate one-point process with compensator ν . Moreover, under P, the F

N com-
pensator and the F

Ni
compensator of the coordinate process Ni, i = 1,2, coincide,

i.e., ν̃ i = ν i. In fact, the F
N compensator of N1 is given by

ν1(ds,{1}) = ν(ds,{(1,0)}∪{(1,1)})
= λ11{s≤T1} −λ121{s≤T1∧T2}+λ121{s≤T1∧T2} = λ11{s≤T1},

and ν1(ds,{x}) = 0 if x �= 1, i.e., ν1(ds,dx) = δ1(dx)λ11{s≤T1} ds, and similarly for

ν2(ds,dx). Therefore, for i = 1,2, ν i(ds,{1}) is F
Ni

predictable and ν i(ds,dx) is
as well the compensator of Ni in the filtration F

Ni
. It is then obvious that the F

Ni

characteristic of the component process is the same (as a function of trajectories) as
the F

Y i
characteristic of Y i, i.e., the random measure ν(dt,dx) is a semimartingale

copula.

Remark 2.3.3. The probability measure P solving the martingale problem for
ν(dt,dx) given in Example 2.3.5 can be constructed via the Marshall-Olkin copula
between two exponential random variables with intensity λ1 and λ2 (see [26, Sect.
3.1.1]). By direct computation, if t1, t2 > 0, then P(T1 ≤ t1,T2 ≤∞) = 1−e−λ1 t1 and
P(T1 ≤ ∞,T2 ≤ t2) = 1− e−λ2 t2 .

Remark 2.3.4. Note that the nature of dependence between the coordinate processes
exhibited in Example 2.3.5 is very different from that seen in Example 2.3.4. In Ex-
ample 2.3.4 the F

N characteristics of each component may also depend functionally
on the trajectories of the other components. On the other hand, in Example 2.3.5, the
dependence between components is only given by the possibility of common jumps
of the processes (the jump measure of the set {(1,1)} is positive).

2.3.2 Consistent Semimartingale Copulae

From the above examples we can draw some useful conclusions. Given the F
X char-

acteristic triple of a multivariate process X , the computation of the F
Xi

characteris-
tics of the components Xi can be made much simpler if we construct the multivariate
process in such a way that the F

X characteristic triple of Xi is F
Xi

predictable. In
this case the computation of projections can be avoided. As we have seen in the
examples, projecting the F

X characteristics in the filtration F
Xi

is rather difficult,
and in fact this is possible only in very simple and special cases. These observations
suggest the following definition:

Definition 2.3.3. We say that a two dimensional semimartingale X = (X1,X2) de-
fined on a stochastic basis (Ω ,F X ,FX ,P) is consistent with respect to F

Xi
if the

F
X characteristic triple (Bi,Ci,ν i) and the F

Xi
characteristic triple (B̃i,C̃i, ν̃ i) of the

component process Xi coincide (as functions of trajectories).
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Let Y 1,Y 2 be two R-valued semimartingales defined on possibly different (canon-
ical) filtered probability spaces (Ωi,FY i

,FY i
,Pi), i = 1,2. Moreover, let (B̂i,Ĉi, ν̂ i)

denote the characteristics of Y i, i = 1,2, and assume that the finite dimensional dis-
tributions of Y i are uniquely determined by its characteristic triple. Let X = (X1,X2)
denote the vector valued, canonical process on the filtered canonical stochastic basis
(Ω ,F X ,FX ) where Ω = Ω1×Ω2.

Definition 2.3.4. We say that a triple (B,C,ν) defined on the basis (Ω ,F X ,FX ) is
a consistent semimartingale copula for Y i, i = 1,2, if the following conditions hold:

i) there is a unique probability measure P on F X such that the canonical process
on the stochastic basis (Ω ,F X ,FX ) is a semimartingale with characteristic triple
(B,C,ν);
ii) under P, X is consistent with respect to F

Xi
and (Bi,Ci,ν i) are equal (as func-

tions of trajectories) to (B̂i,Ĉi, ν̂ i) for i = 1,2.

Note that the difference in the definitions of semimartingale copula and consistent
semimartingale copula lies in the requirement of consistency imposed in the latter
case; as we explained earlier, the consistency property allows one to avoid compu-
tations of projections of the characteristics on smaller filtrations. We devote the rest
of this section to construct examples of consistent semimartingale copulae for some
important classes of semimartingales.4

Copulae between pure jump Lévy processes. We shall now provide an ele-
mentary example of a semimartingale copula that is also a Lévy copula. There is
a one-to-one correspondence between a homogeneous Poisson process with values
in R

2 and a homogeneous Poisson measure on E = {0,1}2 \{(0,0)}. We let ν de-
note the F dual predictable projection of a Poisson measure μ . The measure ν is a
measure on a finite set, so it is uniquely determined by its values on the atoms in E.
Therefore a Poisson process X in R

2 is uniquely determined by

ν(dt,{1,0}) = λ10dt, ν(dt,{0,1}) = λ01dt, ν(dt,{1,1}) = λ11dt (2.5)

for some positive constants λ10, λ01 and λ11.

Example 2.3.6. Let us consider two Poisson processes X1 and X2 with values in
R

1, with intensities λ1 and λ2 respectively. We will show that if real numbers
λ10,λ01,λ11 satisfy

λ1 = λ10 +λ11,

λ2 = λ01 +λ11, (2.6)

λ11 ∈ [0, λ1∧λ2],

then the measure ν in (2.5) is a semimartingale copula for X1,X2. First, (2.6) implies
that ν is positive. Moreover, ν defines uniquely the probability law of a Poisson ran-
dom measure on {0,1}2. The vector Poisson process corresponding to ν can, in fact,

4 Since all semimartingale copulae constructed below are consistent we often omit the qualifier
consistent and we only talk about semimartingale copulae.
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be easily constructed from a vector of three independent unit Poisson processes, say
(N1,N2,N3), by using time-changing. If Y 1

t = N1
λ10t +N2

λ11t and Y 2
t = N3

λ01t +N2
λ11t ,

then it is straightforward to verify that the probability law of Y = (Y 1,Y 2) is a
solution of the martingale problem for ν(dt,dx). Uniqueness of the martingale
problem for the triple (0,0,ν) follows from [24, Chap. 4, Theorem 5]. Finally,
since

ν1(dt,{1}) = ν(dt,{(1,0)})+ν(dt,{(1,1)}) = λ10dt +λ11dt = λ1dt

and ν1(dt,{x})= 0, ∀x �= 1 (and similarly for ν2(dt,{1})) we conclude that ν(dt,dx)
is a semimartingale copula.5

Copulae between diffusion processes. Let us consider two R-valued diffusion
processes X1 and X2 defined on the spaces (Ω ′1,G 1,P1) and (Ω ′2,G 2,P2), where
(Ω ′i,G i,Pi) supports the Standard Brownian Motion (SBM) W i, i = 1,2, and the
filtration G̃

i is generated by the SBM W i. Assume that the diffusions are driven by
the following SDEs:

dXi(t) = μi(Xi(t))dt +σi(Xi(t))dW i(t), Xi(0) = xi, i = 1,2. (2.7)

For the moment, we suppose that Xi, i = 1,2, are strong solutions. We shall re-
lax this assumption later on. It is well known that the F

Xi
characteristics of Xi are

determined by μi and σi.
Now, let (Ω ′,G ,G) be a filtered probability space supporting a two dimensional

Brownian motion, W , where G is the filtration generated by W and Ω ′ = Ω ′1×Ω ′2.
The problem of constructing a semimartingale copula for Xi is equivalent to finding
functions m = [m1,m2]T : R

2→ R
2 and Σ = [σi j] : R

2→ L(R2,R2) such that the
F

Y characteristic triple of the diffusion process Y = (Y 1,Y 2), solving the SDE

dY (t) = m(Y (t))dt +Σ(Y (t))dW (t), Y i(0) = xi, (2.8)

satisfies Definition 2.3.1.

Remark 2.3.5. Note that, in the diffusion case, the filtered stochastic basis (Ω ′,G ,G)
is not constructed according to the canonical setting. In fact, in this case, the filtra-
tion G may be strictly larger (or smaller) than F

Y . However, in view of Jacod and
Shiryaev [20, Sect. 2.26, Theorem III 2.26], if a unique solution-measure to (2.8)
exists, it is the unique probability measure on the canonical space (Ω ,FY ,FY ) such
that the process Y has characteristic triple (m(Y ),σ(Y ),0). We can therefore con-
struct a semimartingale copula on the stochastic basis (Ω ′,G ,G).

Proposition 2.3.5. Suppose that the function Σ is chosen so that a strong solution
of (2.8) exists and

σ2
11(x,y)+σ2

12(x,y) = σ2
1 (x), σ2

21(x,y)+σ2
22(x,y) = σ2

2 (y), (2.9)

5 The first requirement in condition (iii) of Definition 2.3.1, namely that Y is consistent with respect
to F

Y i
, i = 1,2, is trivially satisfied since the characteristics are deterministic.
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with

sup
y
σ2

12(x,y)≤ σ2
1 (x) and sup

x
σ2

21(x,y)≤ σ2
2 (y). (2.10)

In addition, suppose that the function m satisfies

m1(x,y) = μ1(x), m2(x,y) = μ2(y). (2.11)

Then the processes Y i are diffusion processes, and m = [m1,m2]T and Σ = [σi j]
define a semimartingale copula for X1,X2, which we term a diffusion copula.

The next proposition is the counterpart of Proposition 2.3.5 when the system of
SDEs (2.8) does not necessarily admit a unique strong solution. We now only as-
sume that the coefficients of Eq. (2.7) satisfy all conditions needed for existence of
a weak solution.

Proposition 2.3.6 (see [4, 32]). Let Y be a (weak) solution of the SDE (2.8). Sup-
pose that the function Σ is measurable and satisfies the conditions (2.9) with

sup
y
σ2

12(x,y) < σ2
1 (x) and sup

x
σ2

21(x,y) < σ2
2 (y). (2.12)

In addition, suppose that the function m satisfies (2.11). Then the processes Y i are
diffusion processes, and m = [m1,m2]T and Σ = [σi j] define a semimartingale cop-
ula for X1,X2, which we term a diffusion copula.

Note that in view of (2.11) we have no freedom in the choice of the function m.
However, we do have freedom in the choice of Σ . Dependence between components
of Y is then fully described in terms of the functions σ12 and σ21. It is easy to verify
that in the diffusion case

Dvol(YT ) = E

(∫ T

0

(
σ11(Y 1

s ,Y 2
s )σ21(Y 1

s ,Y 2
s )+σ12(Y 1

s ,Y 2
s )σ22(Y 1

s ,Y 2
s )

)
ds

)
.

We immediately have the following bounds for the d-volume associated to Y :

0 < Dvol(YT )≤ E

(∫ T

0

(
σ1(Y 1

s )2 +σ2(Y 2
s )2)ds

)
(2.13)

as this condition is necessary for the diffusion matrix to be nonnegative definite (see
[32] for a more detailed discussion).

Copulae between finite Markov chains. Since, in general, when dealing with
Markov chains we are given their generator matrix, rather than their characteristic
triple, we find it convenient to work with a counting measure which can be more
directly related to the infinitesimal generator of the chain.

Finite Markov chains and related random measures. As before, let (Ω ,F X ,P)
be the underlying probability space. We consider on this space a stochastic process
X = (Xt)t≥0 with values in a finite set X = {1,2, . . . ,N} ⊂ N. As usual, by F

X
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we shall denote the natural filtration generated by X . As anticipated above, rather
than looking at the jump characteristic of the chain, we are going to introduce a
counting measure that can be more easily associated to its infinitesimal generator.
To this end, for any two states i, j ∈X such that i �= j, we define the following
F

X -optional random measure on [0,∞):

Ni j((0, t]) = ∑
0<s≤t

1{Xs−=i,Xs= j}. (2.14)

We shall simply write Ni j(t) in place of Ni j((0, t]). Obviously, Ni j(t) represents
the number of jumps from state i to state j that X executes over the time interval
(0, t]. Let us denote by ν i j the dual predictable projection, with respect to F

X , of
the random measure Ni j. We are now going to relate the collection of the random
measures ν i j, i, j ∈X , i �= j, to the infinitesimal generator of the chain X . To this
end, let us define a matrix valued function A on [0,∞) by

A(t) = [λi, j(t)]i, j∈X , (2.15)

where λi, j are real valued, locally integrable functions on [0,∞) such that for t ≥ 0
and i, j ∈X , i �= j, we have

λi, j(t)≥ 0 and λi,i(t) =−∑
j �=i

λi, j(t).

Note that λi, j(t) is the time-t intensity of jump from state i to state j. The follow-
ing proposition establishes the connection between the random measures ν i j, i, j ∈
X , i �= j, and the infinitesimal generator of X .

Proposition 2.3.7 (see [4]). The process X is a Markov chain (with respect to F
X )

with infinitesimal generator A(t) = [λi, j(t)] iff the dual predictable projections with
respect to F

X of the counting measures Ni j(dt), i, j ∈X , are of the form

ν i j(dt) = 1{Xt−=i}λi, j(t)dt. (2.16)

Copulae between Markov chains. As usual, we shall only consider the case of
bivariate Markov chains. The general multivariate case can be treated similarly. In
the rest of this section we denote by S and O two finite sets. Let X = (X1,X2)
denote a two dimensional Markov chain on X = S ×O, with generator function
A(t) = [λX

ih, jk(t)]i, j∈S ,k,h∈O . Assume that the following conditions hold:

∑
k∈O

λX
ih, jk(t) = ∑

k∈O

λX
ih′, jk(t), ∀h,h′ ∈O, ∀i, j,∈S , i �= j, (2.17a)

∑
j∈S

λX
ih, jk(t) = ∑

j∈S

λX
i′h, jk(t), ∀i, i′ ∈S , ∀k,h ∈O h �= k. (2.17b)

Intuitively, conditions (2.17a) and (2.17b) requires that the jump intensity of the
component X1 does not depend on the state of X2 and vice versa. As shown in the
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following proposition, conditions (2.17a) and (2.17b) are sufficient to yield Marko-
vianity of the components Xi, i = 1,2, in the filtration F

X . Moreover, we obtain an
explicit characterization of the infinitesimal generator matrix of the components Xi

in terms of A(t).

Proposition 2.3.8 (see [4]). Suppose that conditions (2.17a) and (2.17b) hold and
define

fi, j(t) := ∑
k∈O

λX
ih, jk(t), i, j ∈S , i �= j, fi,i(t) :=−∑

j∈S , j �=i

fi, j(t), ∀i ∈S ,

(2.18)

and

gh,k(t) := ∑
j∈S

λX
ih, jk(t), k,h ∈O, h �= k, gh,h(t) :=−∑

k∈O,k �=h

gh,k(t), ∀h ∈ O.

(2.19)

Then the components X1 and X2 of the Markov chain X are Markov chains with
respect to their natural filtrations with generator functions A1(t) = [ fi, j(t)]i, j∈S

and A2(t) = [gh,k(t)]k,h∈O , respectively.

In view of Proposition 2.3.8, it is clear how to construct the generator of a bivariate
Markov chain whose components have prescribed infinitesimal generators.

Corollary 2.3.1. Consider two Markov chains Y1 and Y2, with respect to their own
filtrations, F

Y 1
and F

Y 2
, with values in S and O , respectively. Suppose that their

generators are A1(t) = [λY 1

i, j (t)]i, j∈S and A2(t) = [λY 2

h,k(t)]h,k∈O . Next, consider the

system of equations in the unknowns λX
ih, jk(t), where i, j ∈S , h,k ∈ O and (i,h) �=

( j,k): ⎧⎪⎪⎨
⎪⎪⎩
∑

k∈O

λX
ih, jk(t) = λY 1

i, j (t), ∀h ∈O, ∀i, j ∈S , i �= j

∑
j∈S

λX
ih, jk(t) = λY 2

h,k(t), ∀i ∈S , ∀h,k ∈ O, h �= k.
(2.20)

Suppose that the above system admits a solution such that the matrix function A(t) =
[λX

ih, jk(t)]i, j∈S ,k,h∈O , with

λX
ih,ih(t) =− ∑

( j,k)∈S×O,( j,k) �=(i,h)
λX

ih, jk(t), (2.21)

properly defines an infinitesimal generator function of a Markov chain with values in
S ×O. Consider a bivariate Markov chain X := (X1,X2) on S ×O with generator
function A(t). Then the components X1 and X2 are Markov chains with respect to
their own filtrations, with generators A1(t) and A2(t).

Note that, typically, system (2.20) contains many more unknowns than equations.
In fact, given that the cardinalities of S and O are KS and KO , respectively, the



54 Tomasz R. Bielecki, Jacek Jakubowski and Mariusz Niewęgłowski

system consists of KS (KS − 1) + KO(KO − 1) equations in KS KO(KS KO − 1)
unknowns. Thus, in principle, one can create several bivariate Markov chains X
with given margins.

Now we embed the above results in the framework of semimartingale copulae.
First note that the elements of the mark space of X1, say J 1, can be uniquely
identified with the integers l = j− i with i, j ∈ S . Similarly, the elements of the
mark space of X2, say J 2, can be uniquely identified with the integers r = k− h
with h,k ∈ O . Thus, we can uniquely construct the jump characteristic6 of X1 from
the collection of the random measures ν i j in the following way:

ν1([0, t), l) = ∑
i, j: j−i=l

ν i j
t ,

where, as usual, ν i j(dt) = 1{Xt−=i}λi, j(t)dt. Now let ν be a random measure on
J 1×J 2 given by

ν(dt,(0,0)) = 0, (2.22)

ν(dt,(l,r)) = ∑
i, j: j−i=l

∑
h,k:k−h=r

ν ih, jk(dt),

where, as usual, ν ih, jk(dt) = 1{X1
t−=i,X2

t−=h}λ
X
ih, jk(t)dt.

Proposition 2.3.9 (see [4]). Let ν be the random measure in (2.22). If, for i, j ∈S ,
h,k ∈O and (i,h) �= ( j,k), λX

ih, jk is a positive solution of the system (2.20), then the

triplet (0,0,ν) is a semimartingale copula for Y 1 and Y 2.

It needs to be stressed that in the case of semimartingales that are also Markov
processes, we can either apply the semimartingale copula methodology described
above, or the Markov copula methodology, described in the following section, to
model dependence between univariate components of a multivariate process with
preservation of margins. This remark applies, in particular, to the Markov chain
case of Proposition 2.3.9, as well as to the diffusion case of Proposition 2.3.6. In
Sect. 2.5 we shall use semimartingale copulae for Markov chains in order to price
ratings triggered step-up bonds.

2.4 Markov Copulae

In this section, which is based on [6, 31], we tackle the problem of defining and
constructing “Markov copulae” using infinitesimal generators. First we introduce
the class of consistent Markov processes for which we next define and construct
Markov copulae.

6 Analogous arguments hold for the jump characteristic of X2 as well.
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2.4.1 Consistent Markov Processes

Let E = Xd
i=1Ei, where Ei are locally compact separable spaces. We recall the nota-

tion:

1. For any index set I ⊂ {1, . . . ,d}, we denote by Ic its complementary set, and we
write EI = Xi∈IEi. For x ∈ E we use the notation xI = (xi, i ∈ I).

2. B(E) is the space of bounded functions on E endowed with the supremum norm.
Likewise, B(EI) is the space of bounded functions on EI .

3. For a linear operator A ⊂ B(E)×B(E), we denote its domain by D(A). For a
suitably large set D(E)⊆D(A), we let L(E) := D(E)7.

To ensure regularity of the sample paths of the Markov processes under consider-
ation, we shall assume that D(E) ⊆ C0(E) (and therefore L(E) ⊆ C0(E) as well).
Additionally, we assume that D(E) is the closure of a tensor product space, i.e.,

D(E) = DI(EI)⊗̂DIc(EIc),

for suitable spaces DI(EI)⊆C0(EI) and DIc(EIc)⊆C0(EIc).8 In addition we assume
the space L(E) is a separating subspace of B(E). This condition as well will be
satisfied in all the cases considered in this survey.

Definition 2.4.1. We define the following subspaces:

1. BI(E) := { f ⊗1EIc : f ∈ B(EI)},
2. DI(E) := {h ∈ BI(E) : (h,g) ∈ the b.p. closure of A for g ∈ B(E) and h = f ⊗

1EIc for some f ∈ DI(EI)}9,
3. LI(EI) := DI(EI), where we assume that LI(EI) is a separating subset of the space

B(EI).

Remark 2.4.1. Note that if ( f 1
n ,A f 1

n )
b.p.→ ( f ,h1) and ( f 2

n ,A f 2
n )

b.p.→ ( f ,h2), then

h1(x) = h2(x) = lim
t↓0

T (t) f (x)− f (x)
t

, ∀x ∈ E.

This implies that if ( f ,h1) and ( f ,h2) both belong to the bounded pointwise closure
of A, then h1 = h2.

Let now P be a probability measure on the filtered probability space (Ω ,F ,F) and
let X = (X1, . . . ,Xd) be an F-Markov process under P, taking values in E. In general,
the components of a vector F-Markov process are not F-Markovian themselves.

7 For an operator A⊂ B(E)×B(E) or a subspace X of B(E), the notations A and X signify that the
closure is taken in the ‖ · ‖∞ norm.
8 It is shown in [31] that this assumption will be satisfied in all the cases considered in this section.
9 We implicitly assume that all functions of the form f ⊗1EIc , where f ∈ DI(EI) belong to the
bounded pointwise closure of D(E) (for definition of the b.p. closure see [15]). This is the case in
all our applications.
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Example 2.4.1. Consider the vector process Yt := (Wt ,Mt), where W is a SBM,

Mt := N

(∫ t

0
exp(σWs)ds

)

and N is a standard Poisson process. It is well known that M is a Cox process, Y is
Markov in its natural filtration F

Y , but the component M is not F
Y -Markov. In fact,

since the filtration generated by
∫ t

0 exp(σWs)ds is contained in FW
t , W is still an F

Y

Brownian motion and

E(Mt+s|FY
t ) = Mt +E

(∫ t+s

t
exp(σWu)du|FY

t

)
= Mt + exp(σWt)

2exp(σ
2

2 s)−1

σ2 .

It turns out that the converse statement is also false, namely we construct a vector
process which is not Markov itself with all components Markovian (in their natural
filtration).

Example 2.4.2. Consider a pair of random times τ1 and τ2 with exponential distri-
bution and intensities λ1 and λ2, and denote by H = H

1 ∨H
2 the minimal filtra-

tion making τ1 and τ2 stopping times. It can be checked that the indicator processes
Hi

t :=1{τi≤t}, i = 1,2, are Markovian in the respective natural filtrations H
i, i = 1,2.

In fact, for t ≥ s,

P
(
Hi

t = 0 |H i
s

)
= P

(
τi ≥ t |H i

s

)
= (1−Hi

s)exp(−λi(t− s)).

Assume that the joint distribution of (τ1,τ2) is given by a Gaussian copula, i.e.,

P(τ1 ≤ t1,τ2 ≤ t2) := C(F1(t1),F2(t2)),

with C(·, ·) := Φ2(Φ−1(·),Φ−1(·)), where Φ2 is the CDF of a bivariate Gaussian
random variable with mean vector (0,0) and covariance matrix Σ , Φ is the CDF
of a standard Gaussian random variable, and Fi(ti) = 1− exp(λiti), i = 1,2, are the
marginal CDFs.
Consider now the bivariate process (H1,H2). It is not Markovian in its natural fil-
tration H. To see this, it is sufficient to notice that10

P(H1
t = 1 |Hs) =

(
1−∂2C(F1(t),F2(τ2))
1−∂2C(F1(s),F2(τ2))

)
1{τ1>s,τ2≤s}

+
(

1−F1(t)
1−C(F1(s),F2(s))

)
1{τ1>s,τ2>s},

which is clearly nonmeasurable in σ(H1
s )∨σ(H2

s ). In this example, starting from
Markovian “marginal processes” H1 and H2, we constructed a non-Markovian vec-
tor process with given marginal laws.

10 By ∂2C(u1,u2) we denote the partial derivative of C with respect to its second variable, evaluated
at u2.
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Remark 2.4.2. The above examples show that requiring that the F-Markov process X
has F-Markov component XI is a stringent requirement. However, if the components
of a multivariate Markov process X are themselves Markovian, then one can apply
the rich analytical apparatus of Markov processes to the analysis of both X and its
components. This observation motivates the following definition.

Definition 2.4.2. We say that a Markov process X has the Markovian consistency
property for XI (or briefly consistency property if XI is predetermined) if

E( f (XI
t+s) |Ft) = E( f (XI

t+s) | XI
t ), ∀ f ∈ B(EI), (2.23)

where XI = (Xi, i ∈ I).
If, in addition, the law of XI agrees with the law of a given Markov process Y tak-

ing values in EI , and defined on some probability space (Ω̃ ,F̃ , P̃), i.e., for any posi-
tive integer n, any t1, t2, . . . , tn ≥ 0, and any measurable subsets of EI , A1,A2, . . . ,An,

P(XI
ti ∈ Ai, i = 1,2, . . . ,n) = P̃(Yti ∈ Ai, i = 1,2, . . . ,n), (2.24)

then we say that X has the Markovian consistency property for (XI ,Y ).

Remark 2.4.3. Let F
I be the natural filtration of the process XI and let G be any

filtration satisfying F
I ⊆ G ⊆ F. It is an immediate consequence of (2.23) and the

chain rule for conditional expectation that XI remains a Markov process with re-
spect to G. In other words, Markovian consistency also implies Markovianity of the
component in its own filtration.

2.4.2 Markov Copulae: Generator Approach

In this section, which is based on [6, 31], we tackle the problem of defining and
constructing “Markov copulae” using infinitesimal generators. In what follows, we
provide conditions on the infinitesimal generator of X that ensure that the Markov
consistency property for XI holds. We can and will assume that the paths of X are P-
a.s. in DE [0,∞). By T (t) we denote the semigroup of operators on B(E) defined by
the transition function corresponding to X , and by A its infinitesimal generator. We
fix an index set I ⊂ {1, . . . ,d}. Proposition 2.4.1 below yields a necessary condition
for Markovian consistency to hold.

Remark 2.4.4. For f ∈D(A), A f (x) determines the expected infinitesimal evolution
of the process f (Xt), given the initial state Xt = x. Intuitively, for XI to have the
Markov property in the filtration F, its infinitesimal probabilistic behavior should
not depend on the state of the components XIc . In terms of the infinitesimal gen-
erator, this means that for a function f which is a constant function of xIc , A f (x)
should only depend on the variables xI . This intuition is formalized in the following
proposition.
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Proposition 2.4.1 (see [6, 31]). Assume that X is conservative and that its compo-

nent XI is F-Markov. If f ∈ DI(E) and D(E)×A(D(E)) � ( fn,A fn)
b.p.→ ( f ,h), then

h belongs to BI(E).

The next proposition gives sufficient conditions on the infinitesimal generator
of a Markov process that ensure the Markovian consistency for components XI . In
addition, it provides an explicit characterization of the infinitesimal generator of XI ,
which will be very helpful in the actual construction of Markov copulae.

Proposition 2.4.2. Let A be the infinitesimal generator of an E-valued Markov pro-
cess X, and assume that X is conservative. In addition, assume that

∀g ∈ DI(EI), there is a sequence fn ∈ D(E),and hg ∈C0(EI) such that

( fn,A fn)
b.p.→ (g⊗1EIc ,hg⊗1EIc ). (2.25)

Then:
(i) we can define an operator (AI ,DI(EI)) by

AIg = hg, for all g ∈ DI(EI). (2.26)

Assume, in addition, that R(λ · Id−AI) is dense in LI(EI) for some λ > 0. Then:
(ii) AI generates a strongly continuous contraction semigroup T I(t) on LI(EI),
and
(iii) XI is the unique Markov process corresponding to T I(t).

Later in this section we shall be concerned with constructing operators A satisfy-
ing Markovian consistency conditions, starting from the infinitesimal generators of
the component processes XI . The following corollary will be useful to this end:

Corollary 2.4.1. Let A, X and F be as in Proposition 2.4.2. Assume that condition
(2.25) holds and that the operator AI, as defined in Proposition 2.4.2, generates
a strongly continuous contraction semigroup on LI(EI). Then XI is an F-Markov
process and AI coincides with the infinitesimal generator of XI on DI(EI).

Finally, we state sufficient conditions on the multivariate generator A such that
the component XI is Markovian with given finite dimensional distributions.

Proposition 2.4.3. Let X be a Markov process on E with generator A, and let Y
be an EI-valued Markov process, with infinitesimal generator AY . Suppose that the
conditions of Proposition 2.4.2 are satisfied and define AI by (2.26). Moreover, sup-
pose that AI = AY on DI(EI). Then X satisfies the Markovian consistency conditions
for (XI ,Y ).

In Proposition 2.4.2 we considered a vector-valued F-Markov process and pro-
vided conditions on its generator ensuring that a given component is also Markov.
Now we consider the problem from the opposite perspective. Given a collection of
Markov processes, say (Y i), where Y i is Ei-valued, i = 1, . . . ,d, we want to con-
struct a vector process X = (X1,X2, . . . ,Xd) with values in E = E1×E2×·· ·×Ed ,
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that is Markov with respect to its natural filtration, say F, and has the Markovian
consistency property for (Xi,Y i), i = 1, . . . ,d.

Suppose that we are given a collection of operators, say A = {(Ai,D(Ai)) :
i = 1, . . . ,d}, such that the closure of Ai restricted to Di(Ei) ⊂ D(Ai) generates a
strongly continuous, positive contraction semigroup on Li(Ei) := Di(Ei) ⊆C0(Ei).
We denote by Y i, i = 1, . . . ,d, the corresponding Ei-valued Markov processes.

Definition 2.4.3. Assume D(E) ⊆ ⊗̂d
i=1Di(Ei). Let C A ⊂L (B(E),B(E)) be a set

of linear operators satisfying11:
i) For every element A in C A , the operator A|D(E) generates a strongly continuous

positive contraction semigroup on L(E) := D(E),
ii) For each i = 1,2, . . . ,d, and for every g ∈Di(Ei) there exists fn ∈D(E) such that

( fn,A fn)
b.p.→ (g⊗1Eic ,A

ig⊗1Eic ).
If A is not empty, then we call an element in C A a Markov copula for A with

respect to D(E).

Remark 2.4.5. The question whether A is nonempty is not easy. In some special
cases it is shown by construction that A is not empty. In general, this question
requires analysis of existence of appropriate solutions to an operator equation. In
Sect. 2.4.3 we discuss symbolic Markov copulae. The question of existence of such
copulae corresponds to the question of existence of solutions to certain functional
equations.

Let us fix i. Then in view of Corollary 2.4.1, the process Xi is Markov with
respect to the natural filtration of X and admits a generator Ai. Now by applying
Proposition 2.4.3 we have

Proposition 2.4.4. Let A be an element of C A . Then the canonical Markov process
X = (X1, . . . ,Xd) corresponding to the semigroup generated by A has the Markovian
consistency property for (Xi,Y i), i = 1, . . . ,d.

2.4.2.1 Examples

In this subsection, we consider some important classes of Markov processes and
provide a constructive answer to the problem introduced at the beginning of this
section. Given a collection of Markov processes Y i, how do we construct a multi-
variate process X = (X1, . . . ,Xd) that is Markov with respect to its natural filtration
F, and satisfies the Markovian consistency conditions for (Xi,Y i)? We shall con-
struct elements of the set C A in the following cases, which we consider important
for applications:

1. The marginal processes Y i, generated by Ai, are R-valued diffusion processes;
2. The marginal processes Y i, generated by Ai, are R-valued pure jump Markov

processes;

11 We use the notation introduced in Definition 2.4.1.
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3. The marginal processes Y i, generated by Ai, are R-valued diffusion modulated
jump processes.

Diffusion Processes. We consider a collection of d operators,

Ai f (xi) = bi(xi)∂xi f (xi)+
1
2
σi(xi)2∂xi∂xi f (xi), (2.27)

on Di(Ei) := C∞
c (Ei), where the coefficients bi(xi) and σi(xi) are given functions

in C2
b(Ei). We know that Ai is a core of the infinitesimal generator of a Markov

diffusion Y i, taking values in Ei = R (see [15, Chap. 8, Theorem 2.1]). In this section
we assume that E = R

d .
In what follows we use the shorthand notation I{i}

c⊗̂Ai for I1⊗̂ . . .⊗̂Ai⊗̂ . . .⊗̂Id ,
where Im is the identity operator on the space B(Em), for m = 1, . . . ,d.

Proposition 2.4.5. Let Ai be as in (2.27) and define a linear operator A on D(E) :=
C∞

0 (E) as

A f (x) : =
d

∑
i=1

I{i}
c⊗̂Ai f (x)+

d

∑
i, j=1,i �= j

1
2

ai j(xi,x j)∂xi∂x j f (x) (2.28)

where ai j(xi,x j) are such that aii(xi) = σ2
i (xi) and the (diffusion) matrix Σ(x) =

[ai j(xi,x j)] is symmetric nonnegative definite and admits a square root [σi j] := Σ 1
2 ∈

C2
b(E). Then the operator A is a Markov copula for {(Ai,D(Ai)) : i = 1, . . . ,d}.

Remark 2.4.6. In view of Proposition 2.4.4, the (canonical) Markov process X , cor-
responding to the semigroup generated by A, has the Markovian consistency prop-
erty for (Xi,Y i).

Remark 2.4.7. Note that dependence between the components Xi is entirely char-
acterized by the functions ai j(·, ·), i �= j. Therefore, every diffusion copula can be
associated to a particular choice of the functions ai j(·, ·).

Markov jump processes: General case. In this section, we assume that Ei ⊂ R

are compact sets for all i. For i = 1, . . . ,d, we consider a family of operators on
D(Ei) := C(Ei) given by

Ai f (xi) = η i(xi)
∫

Ei

( f (zi)− f (xi))ν i(xi,dzi), (2.29)

where η i(xi) are continuous functions, ν i(xi,dzi) ∈P(Ei), and the mapping xi →
ν i(xi,B) is continuous for all i and B ⊂ Ei. In view of the discussion in
[15, Chap. 8, Sect. 3], Ai are the generators of pure jump Feller processes taking
values in Ei, i = 1, . . . ,n.

Proposition 2.4.6 (see [32]). Let Ai be as in (2.29), and define an operator A on
C(E) as
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A f (x) :=
d

∑
i=1

I{i}
c⊗̂Ai f (x)+ ∑

S∈J2

λ S(x)
∫

E
( f (z)− f (x))νS(x,dz) (2.30)

−
d

∑
i=1

∑
S∈J2:i∈S

λ S(x)
∫

E
( f (z)− f (x))ν{i}(x,dz),

where Jn = {S ∈ 2{1,...,d} : card(S)≥ n} and:
i) νS(x,dz) ∈P(E) is defined for S ∈ 2{1,...,d} \ /0 as

νS(x,dz) :=⊗i∈Sν i(xi,dzi)⊗ j∈Sc δx j(dz j),

ii) for any S ∈J2, the functions λ S are nonnegative, continuous, and

∑
S∈J2:i∈S

λ S(x)≤ η i(xi), ∀x ∈ E, ∀i ∈ {1, . . . ,d}. (2.31)

Let D(E) = C(E). Then the operator A is a Markov copula for {(Ai,D(Ai)) : i =
1, . . . ,d}.

Remark 2.4.8. a) Notice that we can rewrite (2.30) in the form

A f (x) := ∑
S∈J1

λ S(x)
∫

E
( f (z)− f (x))νS(x,dz), (2.32)

with λ {i}(x) = η i(xi)−∑S∈J2:i∈S λ S(x) for all i. This, in particular, implies that

∑S∈J1:i∈S λ S(x) = η i(xi).
b) In view of Proposition 2.4.4, the Markov process X , corresponding to the semi-
group generated by A, has the Markovian consistency property for (Xi,Y i), i =
1, . . . ,d.

Markov jump processes: Case of space homogeneous jump size distribution. In
this subsection, we consider special pure jump processes with generators {Ai,C(Ei)}
defined by

Ai f (xi) = η i(xi)
∫

Ei

( f (zi)− f (xi))ν i(dzi), (2.33)

where η i(xi) are continuous and ν i(dzi) ∈P(Ei). Let Di(Ei) = C(Ei). The jump
distribution ν i(dzi) is space homogeneous (does not depend on x). It turns out that it
is possible to construct multivariate Markov jump processes with an arbitrary jump
distribution.

Proposition 2.4.7 (see [31]). Let Ai be as in (2.33) and let
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A f (x) :=
d

∑
i=1

I{i}
c⊗̂Ai f (x)+ ∑

S∈J2

λ S(x)
∫

E
( f (z)− f (x))νS(dz) (2.34)

−
d

∑
i=1

∑
S∈J2:i∈S

λ S(x)
∫

E
( f (z)− f (x))ν{i}(dz)

be an operator on C(E), where
i) νS(dz) ∈P(E) is defined as

νS(dz) := CS(ν i(dzi), i ∈ S)⊗ j∈Sc δx j(z j),

for some copula function CS : [0,1]S→ [0,1],
ii) the nonnegative continuous functions λ S are such that:

∑
S∈J2:i∈S

λ S(x)≤ η i(xi), ∀x ∈ E, ∀i ∈ {1, . . . ,d}.

Let D(E) := C(E). Then the operator A is a Markov copula for {(Ai,D(Ai)) : i =
1, . . . ,d}.
Diffusion modulated Markov jump processes. Let Y be a diffusion process in R

n,
with infinitesimal generator L given by

L f (y) = b(y)T∇ f (y)+ trace(a(y)∇∇T ) f (y),

where b(·) and a(·) are regular enough to ensure that L |C∞
c (E) generates a strongly

continuous contraction semigroup on C0(Rn). Using L we define a collection of d
operators on C∞,0

c (Rn×Ei), i = 1, . . . ,d, by

Ai f (y,xi) = L ⊗̂Ii f (y,xi)+ Ãi f (y,xi), (2.35)

where Ii is the identity operator on Ei (a compact subset of R) and

Ãi f (y,xi) = η i(y,xi)
∫

Ei

( f (y,zi)− f (y,xi))ν i(y,dzi), (2.36)

η i(·, ·) is a continuous and bounded function of both arguments, and ν i(y,dzi) is a
probability measure for every y, such that for every measurable set B in Ei the map
y→ ν i(y,B) is continuous and bounded for i = 1,2, . . . ,d.

Using our assumptions about L , i.e., boundedness of the operators Ãi, we see by
[15, Chap. 1, Corollary 7.2] that for each i the operator Ai generates a strongly con-
tinuous semigroup of operators on C0(Ei×R

n). The functions η i, i = 1, . . . ,d, are
nonnegative, so Ãi satisfies the positive maximum principle. Hence the semigroup
generated by Ai is positive and contractive in view of the Ethier and Kurtz theo-
rem [15, Chap. 1, Theorem 7.1]. Hence (2.35) is indeed the generator of a Markov
process on R.

Proposition 2.4.8. Define an operator A on C∞,0
c (Rn×E) by
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A f (x,y) := L ⊗̂I f (y,x)+
d

∑
i=1

I{i}
c⊗̂Ãi f (y,x) (2.37)

+ ∑
S∈J2

λ S(y,x)
∫

E
( f (y,z)− f (y,x))νS(y,dz)

−
d

∑
i=1

∑
S∈J2:i∈S

λ S(y,x)
∫

E
( f (y,z)− f (y,x))ν{i}(y,dz),

where

i) νS(y,dz) ∈P(E) is defined as

νS(y,dz) := CS(ν i(y,dzi), i ∈ S)⊗ j∈Sc δx j(dz j)

for some copula function CS : [0,1]S→ [0,1],
ii) the nonnegative continuous functions λ S(y,x) are such that

∑
S∈J2:i∈S

λ S(y,x)≤ η i(y,xi), ∀(x,y) ∈ E×R
n, ∀i ∈ {1, . . . ,d}.

Let D(E) := C∞,0
c (Rn × E). Then A is a Markov copula for {(Ai,D(Ai)) : i =

1, . . . ,d}.

It is now easy to measure the dependence between the Markovian components
(Y,Xi). The d-volume is, in this case12:

Dvol((Y,XT )) = E

∫ T

0

(
1
2

d

∑
i, j=1
|a(Ys)|+ ∑

S∈J2

card(S)λ (Ys,Xs)

)
ds.

2.4.3 Markov Copulae: Symbolic Approach

In the previous section we have presented a construction of a copula between
Markov processes in terms of infinitesimal generators. Here, based on [3], we
present a symbolic approach, which makes use of pseudo-differential operators
(PDO). This approach is more transparent and gives relatively simple conditions
guaranteeing that a multivariate Markov process have Markovian components with
respect to their own filtration. It also allows one to construct a Markov process with
prescribed marginal laws. In this approach, to construct the symbol corresponding
to a Markov copula, one just has to construct nonnegative definite functions satis-
fying appropriate conditions, whereas in the approach in [4] one has to construct
an operator acting on functions. Thus, the symbolic approach allows one to avoid

12 For an element S of S (space of symmetric matrices), the norm |S| is understood to be given by√
trace(SS).
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using tensor products of infinitesimal generators and investigation of b.p. closure of
operators, but it has some limitations which follow from Hoh’s theorem.

In Sect. 2.4.3.1 we investigate the connection of Markovian consistency proper-
ties with the corresponding PDOs, in particular we study the question of construct-
ing a multivariate Feller process with given marginal laws in terms of symbols of
some related PDOs. Examples are provided in Sect. 2.4.3.2. In what follows, we
shall only consider time-homogeneous Markov processes.

2.4.3.1 Dependence and Symbols

Consider X = (X j, j = 1, . . . ,n), a time-homogeneous Markov process, defined on
an underlying probability space (Ω ,F ,P), taking values in R

n.
As before, we are interested in the Markovian consistency properties (see Def-

inition 2.4.2) of a Feller Markov process X . For simplicity of exposition we limit
ourselves to one-dimensional margins, i.e., we consider I = { j}, but all results can
be extended to the case of an arbitrary subset of components of the process X .

Therefore our first goal is to provide necessary and sufficient conditions which
guarantee that the components of X are Markov processes with respect to their nat-
ural filtrations. The second goal is to provide necessary and sufficient conditions
which guarantee that the Markovian consistency condition holds for (X j,Y j) for a
given one-dimensional Markov process Y j defined on (Ω̃ ,F̃ , P̃).

The Markov consistency properties, which are properties of transition probabili-
ties, can be formulated in terms of the conditional characteristic functions of Xt and
X j

t defined as

λt(x,ξ ) := E

(
e−i(Xt−x,ξ )

∣∣∣X0 = x
)

, λ j
t (x j,ξ j) := E

(
e−i(X j

t −x j)ξ j

∣∣∣X j
0 = x j

)
,

ψ j
t (y j,ξ j) := Ẽ

(
e−iξ j(Y

j
t −y j)

∣∣∣Y j
0 = y j

)
.

Since there are no explicit formulae for the transition probabilities or conditional
characteristic functions of general Markov processes, solving our problems in terms
of the entire families λt , λ j

t and ψ j
t is quite inconvenient. The general form of con-

ditional characteristic functions is well known only in the case of Lévy processes.13

So we have to solve our problems using a different language. The key observation
is that the study of our problems in terms of the families of functions λt , λ j

t and ψ j
t

turns out to be equivalent to the study of these problems in terms of the Markov
semigroups corresponding to X , X j and Y j. In Jacob [18] it is shown that for a
family of functions λt we can compute the semigroup (Tt)t≥0 corresponding to X in
the following way:

Ttu(x) := E
xu(Xt) = (2π)n/2

∫
Rn

ei(x,ξ )λt(x,ξ )û(ξ )dξ ,

13 Note that in the case of Lévy processes these conditions can be significantly simplified in the
sense that they can be reduced to considering t = 1 only.
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where û denotes the Fourier transform of the function u : R
n→ R, that is,

û(ξ ) := (2π)−n/2
∫

Rn
e−i(x,ξ )u(x)dx.

Analogous properties hold for the families λ j
t and ψ j

t and the corresponding semi-
groups, say T j

t and S j
t .

Moreover, in view of the results of Courrège [9], the generator A of X , acting on
u ∈ C∞

0 (Rn), the space of infinitely differentiable functions with compact support,
has a representation

Au(x) =−q(x,D)u(x) :=−(2π)−n/2
∫

Rn
ei(x,ξ )q(x,ξ )û(ξ )dξ , (2.38)

where q : R
n×R

n→C is a measurable, continuous function in ξ and for every x the
function q(x, ·) is negative definite. In this context, the function q(x,ξ ) is called the
symbol of the pseudo-differential operator q(x,D) (cf. [19]), and it has the following
form:

q(x,ξ ) = i(b(x),ξ )+(ξ ,a(x)ξ )+
∫

Rn\{0}

(
1− ei(y,ξ ) +

i(y,ξ )
1+ |y|2

)
ν(x,dy) (2.39)

where a,b are Borel measurable functions, b(x) ∈R
n, a(x) is a symmetric nonnega-

tive definite matrix, and ν(x,dy) is a Lévy kernel. Moreover, if q(x,ξ ) is continuous
(in all variables) then q(x,D) maps C∞

0 (Rn) into C(Rn) [19, Vol. 1, Theorem 4.5.7,
p. 337]. Analogous results hold for q j and ρ j. In particular, in the case of Y j, the
infinitesimal generator B j, acting on w ∈C∞

0 (R), satisfies

B jw(x j) =−(2π)−1/2
∫

R

eix jξ j ŵ(ξ j)ρ j(x j,ξ j)dξ j,

where

ρ j(x j,ξ j) = ib j(x j)ξ j + c j(x j)ξ 2
j +

∫
R\{0}

(
1− eiz jξ j +

iz jξ j

1+ |z j|2
)
ν j(x j,dz j).

(2.40)
So we pursue the study of our problems in terms of symbols of pseudo-differential
operators. We shall adopt the following convention: We suppose that f : R→ R

and that f j : R
n→ R is defined by f j(x) = f (x j). Note, however, that even though

f may be of compact support, f j will not be a function of compact support. Recall
that by e j we denote the standard unit vector in R

n with 1 in the j-th position.

Proposition 2.4.9. Let X be a Feller process with symbol q and the corresponding
generator A such that C∞

0 (Rn)⊆ D(A).
a) For every w ∈C∞

0 (R),

Aw j(x) =−(2π)−1/2
∫

R

eix jξ j ŵ(ξ j)q(x,Q j(ξ ))dξ j, (2.41)
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where Q j : R
n→ R

n is the projection Q j(ξ ) := e jξ j.
b) Assume that X j is a one-dimensional Feller process with symbol q j and that

q(x,e jξ j) = q j(x j,ξ j) for all x ∈ R
n and ξ j ∈ R. (2.42)

Then for every w ∈C∞
0 (R),

Aw j(x) = A jw(x j), ∀x ∈ R
n, (2.43)

where A is the generator of X, and A j is the generator of X j.

The following proposition gives a necessary condition for Markovian consistency
for X j.

Proposition 2.4.10. Let X be a Feller process with symbol q. If X j is a 1-dimensional
Feller processes with symbol q j, then (2.42) holds.

Before we consider the question of sufficiency of condition (2.42), we intro-
duce conditions, due to Hoh [16], guaranteeing that the pseudo-differential op-
erator −q(x,D) has a unique extension which generates a Feller semigroup. Let
ψ : R

n→ R be a continuous negative definite function such that for some positive
constants r and c we have ψ(ξ )≥ c |ξ |r for |ξ | ≥ 1. We define

λ (ξ ) := (1+ψ(ξ ))1/2

and let M be the smallest integer such that M > ( n
r ∨2)+n, and set k = 2M +1−n.

For a continuous negative definite symbol q : R
n×R→ C we make the following

assumptions:
C0: the function q is continuous in both variables;
C1: the map x �→ q(x,ξ ) is k times continuously differentiable and∣∣∣∂βx q(x,ξ )

∣∣∣≤ cλ 2(ξ ), β ∈ N
n
0, |β | ≤ k;

C2: for some strictly positive function γ : R
n→ R,

q(x,ξ )≥ γ(x)λ 2(ξ ) for |ξ | ≥ 1,x ∈ R
n;

C3:
sup
x∈Rn
|q(x,ξ )|−→

ξ→0
0.

It is proved in Hoh [16, Theorem 5.24, p. 82] that under C0–C3 the pseudo-
differential operator−q(x,D) :C∞

0 (Rn)→C∞(Rn) has an extension which generates
a Feller semigroup given by Pt f (x) = E

x f (Xt), where E
x is expectation with respect

to the solution of the associated well-posed martingale problem starting at x.

Theorem 2.4.1. Let X be a Feller process with symbol q. Assume that
C4: the function q(x,e jξ j) as a function of x depends only on x j

and denote
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q̃ j(x j,ξ j) := q(x,e jξ j). (2.44)

If q̃ j satisfies conditions C0–C3, then the component X j of X is a Feller process with
generator given by the symbol q̃ j.

The above theorem demonstrates that (2.42) (with q j = q̃ j) is a sufficient condition
for Markov consistency to hold, provided that q̃ j satisfies conditions C0–C3.

Corollary 2.4.2. Let X be a Feller process with symbol q satisfying conditions C0–
C4. Then the component X j of X is a Feller process with generator given by the
symbol q̃ j.

Now we formulate an answer to the problem of Markovian consistency conditions
for (Xi,Y i) which combines the results of Proposition 2.4.10 and Theorem 2.4.1.

Theorem 2.4.2. Let X = (X1, . . . ,Xn) be a Feller process with symbol q, and
Y 1, . . . ,Y n be an n-tuple of one-dimensional Feller processes with symbols ρ1, . . . ,ρ j.
Assume that ρ1, . . . ,ρ j satisfy assumptions C0–C3. The marginal distribution of the
j-th coordinate of X is equal to the distribution of Y j given by the symbol ρ j if and
only if

q(x,e jξ j) = ρ j(x j,ξ j) for all x ∈ R
n and ξ j ∈ R. (2.45)

Therefore the j-th coordinate of X is a Feller process with respect to its natural
filtration.

All these considerations allow us to provide an algorithm for construction of an
n-dimensional Feller process with given marginal distributions, and such that its
components are also Feller processes. In view of Theorem 2.4.2 we can introduce

Definition 2.4.4 (Symbolic Markov copulae). We say that a symbol q is a Markov
symbolic copula for symbols q1, . . . ,qn if for all j = 1, . . . ,n,

q(x,e jξ j) = q j(x j,ξ j). (2.46)

Now, our aim is to give a recipe for constructing a symbol q, starting from given
one dimensional symbols q1, . . . ,qn, such that q satisfies condition (2.46). Taking
into account (2.39) and (2.40) we are looking for a vector function b such that

b j(x) = d j(x j), (2.47)

a symmetric nonnegative definite matrix function a such that

a j j(x) = c j(x j), (2.48)

and a Lévy measure ν(x,dy) on R
n such that

∫
Rn\{0}

(
1− eiy jξ j +

iy jξ j

1+ |y|2
)
ν(x,dy) =

∫
R\{0}

(
1− eiy jξ j +

iy jξ j

1+ |y j|2
)
ν j(x j,dy j).

(2.49)
The triple (d j,c j,ν j) will be called the characteristic triple for the copula q j.
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2.4.3.2 Examples

Now we present some examples to illustrate how this idea works.

Example 2.4.3 (Product copula). A copula for symbols q1, . . . ,qn with characteristic
triples (d j,c j,ν j)n

j=1 is a product copula if its characteristic triple (b,a,ν) is defined
by

b j(x) := d j(x j), ai j(x) := c j(x j)1{i= j},

ν(x,dy) :=
n

∑
j=1
⊗k �= jδ{0}(dyk)⊗ν j(x j,dy j).

It is easy to see that the symbol q corresponding to (b,a,ν) defined above is a copula
for given symbols q1, . . . ,qn. It is a copula that corresponds to independent Feller
processes.

Example 2.4.4 (Diffusion copula). Consider n one-dimensional diffusion processes
with symbols given by q j(x j,ξ j) = id j(x j)ξ j + c j(x j)ξ 2

j , where di, ci are functions
such that qi satisfies C0–C3. We define q by

q(ξ ,x) = i(b(x),ξ )+(ξ ,a(x)ξ ),

where the functions b : R
n→ R

n and a : R
n→ R

n
n satisfy

b j(x) = d j(x j), a j j(x) = c j(x j) ∀ j = 1, . . . ,n, (2.50)

and moreover b, a are chosen in such a way that C0–C3 hold. Then q is a symbolic
copula for q1, . . . ,qn.

Example 2.4.5 (Lévy copulae). Consider n one-dimensional Lévy processes Z1, . . . ,Zn

with Lévy measures ν1, . . . ,νn, and a Lévy copula F . A Lévy measure ν , which is
determined by the set of tail integrals defined by formula (2.1), gives a symbol
that satisfies (2.49). Therefore the construction of Lévy copulae due to Kallsen and
Tankov [21] provides also a construction of symbolic copulae.

Example 2.4.6 (Poisson copula). Consider two one-dimensional Poisson processes.
Their symbols are given by qi(ξi) = (1−eiξi)ηi, where ηi are nonnegative constants
for i = 1,2. A symbol q given by

q(ξ1,ξ2) = (1− eiξ2)λ(0,1) + (1− eiξ1)λ(1,0) + (1− ei(ξ1+ξ2))λ(1,1),

where λ(0,1),λ(1,0),λ(1,1) are nonnegative constants, defines a Markov copula iff
λ(0,1),λ(1,0),λ(1,1) satisfy the following system of linear equations:{

λ(0,1) +λ(1,1) = η2,

λ(1,0) +λ(1,1) = η1.

The above system has infinitely many solutions which can be parameterized by
λ(1,1). Since we are interested in positive solutions, we restrict λ(1,1) to the interval
[0,λ1∧λ2]. Generalization to the n-dimensional case is immediate.
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We can generalize Example 2.4.6 by allowing λ to depend on x. In this case we
have to deal with generalized n-dimensional Markov point processes. Moreover, we
can construct copulae for Markov jump processes and Markov jump processes with
the possibility of common jumps with space homogeneous jump size distribution.
All these examples are presented in [3].

2.5 Applications in Finance

We present an application to finance of the results discussed in the previous sections.
Towards this end we shall borrow some results from [5]. These results illustrate
an application of Markov copulae (and semimartingale copulae) to valuation of so
called rating-triggered, step-up bonds. We refer to [5] as well as to [1, 10] for some
other financial applications of Markov copulae.

Rating-triggered step-up bonds were issued by some European telecom compa-
nies in recent 10 years. These products are of interest because they offer protection
against credit events other than defaults. In particular, rating-triggered corporate
step-up bonds (step-up bonds for short) are corporate coupon issues for which the
coupon payment depends on the issuer’s credit quality: in principle, the coupon
payment increases when the credit quality of the issuer declines. In practice, credit
quality is reflected in credit ratings assigned to the issuer by at least one credit
rating agency (Moody’s-KMV or Standard & Poor’s). The provisions linking the
cash flows of the step-up bonds to the credit rating of the issuer have different step
amounts and different rating event triggers. In some cases, a step-up of the coupon
requires a downgrade to the trigger level by both rating agencies. In other cases,
there are step-up triggers for actions of each rating agency. Here, a downgrade by
one agency will trigger an increase in the coupon regardless of the rating from the
other agency. Provisions also vary with respect to step-down features which, as the
name suggests, trigger a lowering of the coupon if the company regains its original
rating after a downgrade. In general, there is no step-down below the initial coupon
for ratings exceeding the initial rating.

Let Rt stand for some indicator of credit quality at time t (note that in this case,
the process R may be composed of two, or more, distinct rating processes). Assume
that ti, i = 1,2, . . . ,n, are coupon payment dates. Here we adopt the convention that
coupon paid at date tn depends only on the rating history through date tn−1, that is:
cn = c(Rt , t ≤ tn−1) are the coupon payments. In other words, we assume that no
accrual convention is in force.

Assuming that the bond’s notional amount is 1, the cumulative discounted cash
flow of the step-up bond is (as usual we assume that the current time is 0)

(1−HT )βT +
∫

(0,T ]
(1−Hu)βu dCu +βτZτHT , (2.51)

where Ct =∑ti≤t ci, τ is the bond’s default time, Ht = 1τ≤t , and Zt is a (predictable)
recovery process.
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2.5.1 Pricing Rating-Triggered Step-Up Bonds via Simulation

Here, using our results on Markov copulae, we shall apply a simulation approach to
pricing rating-triggered step-up bonds.

Let us consider a rating-triggered step-up bond issued by an obligor XY Z. Re-
call that, typically, cash flows associated with a step-up bond depend on ratings
assigned to XY Z by both Moody‘s Investors Service (Moody’s in what follows)
and Standard & Poor’s (S&P in what follows). Thus, a straightforward way to
model joint credit migrations would be to consider a credit migration process R
such that Rt = (Mt ,SPt), where Mt and SPt denote the time t credit rating assigned
to XY Z by Moody’s and SPt , respectively. We assume that the process M is a time-
homogeneous Markov chain with respect to its natural filtration, under the statistical
probability P, and that its state space is K1 = {1,2, . . . ,K1}. Likewise, we assume
that SP is a time-homogeneous Markov chain with respect to its natural filtration,
under the statistical probability P, and that its state space is K2 = {1,2, . . . ,K2}.

Typically, we are only provided with individual statistical characteristics of each
of the processes M and SP. Thus, in a sense, we know the marginal distributions
of the joint process R under the statistical measure P (where M and SP are con-
sidered as “univariate” margins). The crucial issue is thus appropriate modeling of
dependence between M and SP. In particular, we want to model dependence, under
P, between M and SP so that the joint process R is a time-homogeneous Markov
chain, and so that the components M and SP are time-homogeneous Markov chains
with given P-generators, say AM and ASP, respectively. Thus, essentially, we need to
model a P-generator matrix, say AR, so that R is a time-homogeneous Markov chain
with P-generator AR and that M and SP are time-homogeneous Markov chains with
P-generators AM and ASP. We can of course deal with this problem using the theory
of Markov copulae.

Towards this end, we fix an underlying probability space (Ω ,F ,P). On this
space we consider two univariate Markov chains M and SP, with given infinites-
imal P-generators AM = [aM

i j ] and ASP = [aSP
hk ], respectively. Next, we consider the

system of equations in variables aR
ih, jk⎧⎪⎪⎨

⎪⎪⎩
∑

k∈K2

aR
ih, jk = aM

i j , ∀i, j ∈K1, i �= j, ∀h ∈K2,

∑
j∈K1

aR
ih, jk = aSP

hk , ∀h,k ∈K2,h �= k, ∀i ∈K1.
(2.52)

Now, provided that the system (2.52) has a positive solution, it follows from Corol-
lary 2.3.1 in Sect. 2.3.2 that the resulting matrix14 AR = [aR

ih, jk]i, j∈K1,h,k∈K2 satisfies
conditions for a P-generator matrix of a bivariate time-homogenous Markov chain,
whose components take values in finite state spaces K1 and K2 with cardinalities
K1 and K2, respectively, and, more importantly, they are Markov chains with the

14 System (2.52) does not involve diagonal elements of AR. These elements are obtained as aR
ih,ih =

−∑( j,k)∈K1×K2\{(i,h)} aR
ih, jk.
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same distributions as M and SP under P. Thus, indeed, the system (2.52) essentially
serves as a Markov copula between the Markovian margins M, SP and the bivariate
Markov chain R.

Note that the system (2.52) contains many more variables than equations. Thus,
one can create several bivariate Markov chains R with the given margins M and SP.
In financial applications this feature leaves a lot of flexibility for various modeling
options and for calibration of the model. For example, as observed by Lando and
Mortensen [23], although the ratings assigned by S&P and Moody’s to the same
company do not necessarily coincide, split ratings are rare and are usually only ob-
served in short time intervals. This feature can easily be modelled using the Marko-
vian copula system (2.52) via imposing side constraints for the unknowns aR

ih, jk. In
order to model such observed behavior of the joint rating process, we thus impose
additional constraints on the variables in the system (2.52). Specifically, we postu-
late that

aR
ih, jk =

{
0 if i �= j and h �= k and j �= k,
αmin(aM

i j ,a
SP
hk ) if i �= j and h �= k and j = k,

(2.53)

where α ∈ [0,1] is a modeling parameter. Using constraints (2.53) we can easily
solve system (2.52) (in this case the system actually becomes fully decoupled) and
we can obtain the generator of the joint process. The interpretation of constraints
(2.53) is the following: The components M and SP of the process R migrate accord-
ing to their marginal laws, but they tend to join, that is, they tend to both take the
same value. The strength of that tendency is measured by the parameter α . When
α = 0 then, in fact, the two components are independent processes; when α = 1
the intensity of both components migrating simultaneously to the same rating cate-
gory is maximum (given the specified functional form for the intensities of common
jumps).

For pricing purposes the statistical probability measure is changed to the EMM.
Typically, the Radon-Nikodym density is chosen in such a way that the resulting
(risk-neutral) default probabilities are consistent with the term structure of CDS
spreads. In addition, we require that the process R, which is Markovian under the
statistical measure, is also Markovian under the pricing measure.

We recall that AR = [aR
ih, jk] is the generator of R under the statistical measure P.

In view of Corollary 4.1 in [5], given a vector h = [h11, · · · ,hK1K2 ] ∈ R
K1K2 , we can

change the statistical measure P to an equivalent “risk-neutral” measure Q in such
a way that R is a time-homogeneous Markov chain under Q, and its Q-infinitesimal
generator is given by

ÃR = [ãih, jk],

where

ãih, jk = aih, jk
h jk

hih
, ∀i, j ∈K1, ∀h,k ∈K2, (i,h) �= ( j,k)

and
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ãih,ih =− ∑
( j,k)∈K1×K2\{(i,h)}

aih, jk
h jk

hih
.

Remark 2.5.1. Note that, although the change of measure preserves the Markov
property of the joint process R, its components may not be Markov (in their natural
filtration) under the new probability measure. This however is not an issue for us, as
all we need to conduct computations is the Markov property of the joint process R
under the new measure.

An arbitrary choice of the vector h may lead to a heavy parametrization of the
pricing model. We suggest that the vector hi j be chosen as follows:

hi j = exp(α1i+α2 j), ∀i ∈K1,∀ j ∈K2,

where α1 and α2 are parameters to be calibrated. It turns out, as the calibration
results provided below indicate, that this is a good choice.

2.5.2 Model Calibration and Pricing

The model is fully specified by three parameters, namely α, α1, α2, which are cali-
brated to market data.

Let us consider a vanilla bond, which is equivalent15 to the given step-up bond.
One would presume that the price of a step-up bond is equal to the price of the
equivalent vanilla bond plus the (positive) value of the step-up provision. In gen-
eral, equivalent vanilla bonds are not traded on the market. However, their price
can be synthesized by applying a standard bootstrapping-interpolation procedure
to the market prices of traded vanilla bonds. Surprisingly, the value of the step-
up provision is often negligible or even negative. This was already noted by some
recent empirical literature (cf. e.g. [23]), which provides strong evidence that the
market typically “underprices” step-up bonds. These findings suggest that step-up
bond investors are more risk averse than vanilla bond investors. In particular, on the
theoretical level, this means that the pricing kernel implied by step-up bonds prices
should be different from that implied by vanilla bonds. For calibration purposes,
this implies that the model parameters, or at least those relative to credit migrations,
should not be calibrated to vanilla bond prices. Nevertheless, such data provides
useful information. In particular, under the assumptions given below, vanilla bond
prices can be used to compute a term structure of firm-specific, liquidity-adjusted,
discount factors (risk-free rate + liquidity spread).

15 By equivalent, we mean a coupon bearing bond, backed by the same company, whose all pro-
visions, other than the step-up provision, are identical to those of the given step-up bond. That
is, maturity and coupon dates are the same, and the coupons of the equivalent bond are equal to
the fixed coupons of the step-up bond. In addition, credit risk is the same and liquidity risk is
comparable. The term vanilla means that the step-up provision is not present.
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Our first assumption is that the vanilla bond market assesses likelihood of the de-
fault event in the same way as the CDS (Credit Default Swap) market.16 Our second
assumption is that liquidity risk is priced identically by the step-up and vanilla bond
markets.

Given the above, we can apply a standard bootstrapping-interpolation procedure
to a pool of reference bonds17 to obtain a term-structure of firm specific, liquidity ad-
justed, zero-coupons. The straightforward procedure is briefly described below. We
are given a set of J reference bonds with associated cash flows CF j

t j
i

, j = 1, . . . ,J,

and coupon dates t j
0 = 0, . . . , t j

N = T j such that T 1 < T 2 < · · ·< T J . The cash flows
are then adjusted by the default probability implied by the CDS spreads. Let τ de-
note the default time of the relevant obligor. Then the default adjusted cash flows are

C̃F
j

t j
i
= CF j

t j
i

Q(τ > t j
i ). The interpolation-bootstrapping procedure is now applied to

the reference bonds with default-risk adjusted cash flows, so that the resulting dis-
count factors account only for the firm specific liquidity spread.18 At this point, the
price of an arbitrary step-up bond can be computed by simulating the evolution of
the joint rating process and the relative discounted cash flows.19 The model param-
eters, α, α1, α2 are calibrated to step-up bond prices.

2.5.2.1 Calibration Results

We shall present now some calibration results. The bond data, obtained from
Bloomberg’s Corporate Bonds section, is relative to mid market quotes on April
5, 2006.

We calibrated the model parameters to a DT (Deutsche Telecom) step-up issue
described in Table 2.1:

Table 2.1 DT step-up issue on April 5, 2006.

ISIN XS0132407957
Maturity 07/11/11

Coupon 6
5
8 Annual

Step provision

{
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+

16 This is not necessary since default risk can be inferred from yield spreads in the bond market,
but the higher liquidity of the CDS market makes it a preferable choice.
17 We adopt here terminology from [23] to denote vanilla bonds of several maturities which have
comparable liquidity and are issued by the same company as the relevant step-up bond.
18 Plus market risk spreads other than credit spread.
19 Simulation seems to be the only feasible computation technique, because of certain path depen-
dencies in the payoff structure, induced by the step-down provision present in most step-up issues.
Such path dependency is well explained in [23].
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Given the default probability implied by the 5-y CDS spread of DT (46 bps), the
liquidity adjusted discount rates are obtained using the above mentioned bootstrapping-
interpolation procedure from the following pool of reference bonds (Table 2.2):

Table 2.2 Reference bonds pool on April 5, 2006.

ISIN Maturity Coupon Mid-price

XS0141544691 01/22/07 5
1
4 1.015698

DE0002317807 05/20/08 5
1
4 1.031821

XS0242840345 02/02/09 3 0.979798
XS0217817112 04/22/09 3 0.978352

XS0210319090 01/19/10 3
1
4 0.976716

XS0210318795 01/19/15 4 0.960349

The calibration results are given in Table 2.3:

Table 2.3 Calibration results.
Model price Market price

Bond price 1.11705 1.11705
Step-up provision 0.00574 –

We remark that, since our calibration problem is overdetermined (three param-
eters are calibrated to one piece of data), the value of the step-up provision is not
uniquely defined. This can be easily overcome by calibrating the model to more
step-up issues of different maturities and/or provisions.

2.5.2.2 Valuation of Step-Up Bonds

Using the calibrated model, we price selected issues of DT step-up bonds; we refer
to Tables 2.4 and 2.5 for the description of the bonds.

Table 2.4 DT step-up issue XS0113709264 on April 5, 2006.

ISIN XS0113709264
Maturity 07/06/10

Coupon 6
5
8 Annual

Step provision

{
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+
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Table 2.5 DT step-up issue XS0155788150 on April 5, 2006.

ISIN XS0155788150
Maturity 10/07/09

Coupon 6
1
2 Annual

Step provision

{
+50 bps, if both downgraded below Baa1/BBB+;
−50 bps, if both subsequently upgraded above Baa2/BBB

Table 2.6 presents the pricing results as well as the corresponding market quotes.
The results are very satisfactory, indicating that the model is robust and prices con-
sistently across maturities and step-up provisions.

Table 2.6 Pricing results using calibrated model.

Mkt price/Model price
ISIN XS0113709264 XS0155788150

Bond price 1.10105/1.103546 1.08435/1.08685
Step-up provision – /0.003752 – /0.00215
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