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1. Introduction

In this paper we contribute to the study of conditional Markov chains
(CMCs) with �nite state spaces, which was initiated in Bielecki, Jakubowski
and Niew¦gªowski Bielecki et al. (2015) in an e�ort to enrich the theory of
CMCs that was originated in Bielecki and Rutkowski Bielecki and Rutkowski
(2004).

CMCs were conceptualized in the context of credit risk, where they have
been found to provide a useful tool for modeling credit migrations. In many
ways, a CMC is an important generalization of the concept of a default time
with stochastic compensator, a key concept in the models of �nancial markets
allowing for default of parties of a �nancial contract. Such a model of default
time is really just a special example of a CMC: it is a CMC taking values
in a state space consisting of only two states, say 0 and 1, where 0 is the
transient state and 1 is the absorbing state.

In Bielecki et al. (2015) we proposed a modi�ed de�nition of the condi-
tional Markov property, which was less general than De�nition 11.3.1 used
in Chapter 11.3 in Bielecki and Rutkowski (2004). The reason for this was
that the de�nition of conditional Markov property proposed in Bielecki et al.
(2015) was aimed at providing a suitable framework for study of structured
dependence between conditional Markov chains, a feature that can not be
achieved within the CMC framework proposed in Bielecki and Rutkowski
(2004). Still, the construction of a CMC presented in Bielecki et al. (2015)
was not general enough, as it did not allow for study of conditional Markov
families, because in that paper we only dealt with processes starting from
a �xed, non-random initial state. Here, we generalize the construction of
a CMC to allow for the initial state of the chain to have a non-degenerate
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conditional initial distribution, and, consequently, to allow for study of con-
ditional Markov families, a study that will be conducted elsewhere.

Classical conditional Markov chains, that is, the ones de�ned originally
in Bielecki and Rutkowski (2004), have already proven to play important
role in applications in �nance and in insurance (cf. Bielecki and Rutkowski
Bielecki and Rutkowski (2000, 2003, 2004), Jakubowski and Niew¦gªowski
Jakubowski and Niew¦gªowski (2010b, 2011), Eberlein and Özkan Eberlein
and Özkan (2003), Eberlein and Grbac Eberlein and Grbac (2013), Biagini,
Groll and Widenmann Biagini et al. (2013)). The main advantage of these
processes is that, via appropriate conditioning, their primary Markov prop-
erties are mixed with dependence of their in�nitesimal characteristics on
relevant random factors, that do not have to be Markovian. The study of
structured dependence between CMCs, which is the main theme of this pa-
per, is crucial in applications to credit and counterparty risk, among other
applications.

An important family of jump processes, so called doubly stochastic Markov
chains, was introduced in Jakubowski and Niew¦gªowski Jakubowski and
Niew¦gªowski (2010a). The conditional Markov chains constructed in the
present paper turn out to be doubly stochastic Markov chains. In particular,
the bene�t from the construction provided here is three-fold:
• The constructed CMCs enjoy the conditional Markov property, which

has unquestionable practical appeal, and
• The constructed CMCs enjoy the doubly stochastic Markov property,

which has critical theoretical implications allowing for applying important
tools from stochastic analysis to studying CMCs.
• The family of CMCs that can be constructed using our method is quite

rich, as minimal postulates are imposed on the intensity processes used in
the construction (cf. Section 3).

As said above, the main theme of the present paper is the study of struc-
tured dependence between CMCs. In a nutshell, the modeling of structured
dependence between CMCs can be summarized as follows (we use a bivariate
example for simplicity): given two conditional Markov chains, say Y 1 and
Y 2, the modeling problem is to construct a non-trivial bivariate conditional
Markov chain, say X = (X1, X2), such that the coordinate processes X1

and X2 are conditionally Markovian (in some �ltration), and such that the
conditional law of X i is the same as the conditional law of Y i, i = 1, 2. The
process X is a model for the structured dependence between Y 1 and Y 2, in
the sense that the marginal processes X1 and X2, whose conditional laws
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coincide with the conditional laws of Y 1 and Y 2, are Markovian, and that
the process X is conditionally Markovian. Two important comments are
in order: (1) A trivial bivariate Markov process X = (X1, X2) would be a
process such that components X1 and X2 are conditionally independent - a
situation, that is generally not of much interest. (2) Note that, in general, the
bivariate process (Y 1, Y 2) may not be conditionally Markov in any �ltration.

The study of structured dependence between CMCs is composed of the
study of Markovian consistency and the study of Markovian copulae. The
concepts of Markovian consistency and Markovian copulae were developed
in the context of the problem of constructing a multivariate stochastic pro-
cess in such a way that distributional laws of the univariate components of
that process agree with given, predetermined laws (cf. Bielecki, Vidozzi and
Vidozzi Bielecki et al. (2008c), Bielecki, Jakubowski, Vidozzi and Vidozzi
Bielecki et al. (2008b), Bielecki, Jakubowski and Niew¦gªowski Bielecki et al.
(2010, 2013d)).

Markov copulae have been already successfully used in various applica-
tions (cf. Bielecki, Vidozzi and Vidozzi Bielecki et al. (2008c), Liang and
Dong Liang and Dong (2014), Goutte and Ngoupeyou Goutte and Ngoupeyou
(2013), Bielecki, Crepey, Jeanblanc and Zagrari Bielecki et al. (2012a), Bi-
elecki, Cialenco and Iyigunler Bielecki et al. (2013a), and Bielecki, Cousin,
Crepey and Herbertsson Bielecki et al. (2014d,c,a,b)).

In the present paper, we focus on the investigation of Markovian con-
sistency and Markovian copulae with regard to �nite CMCs, which are also
doubly stochastic Markov chains. We follow up on the study of Marko-
vian consistency and Markovian copulae for ordinary Markov chains that we
presented in Bielecki, Jakubowski and Niew¦gªowski Bielecki et al. (2013d).
In fact, here we elevate the study done in Bielecki et al. (2013d) to the
world of conditional Markov chains. We introduce and study the concepts
of strong Markovian consistency and weak Markovian consistency for con-
ditional Markov chains. Accordingly, we introduce and study the concepts
of strong Markov copulae and weak Markov copulae for conditional Markov
chains, which we call strong CMC copulae and weak CMC copulae, respec-
tively. We refer to the discussion of practical relevance of the concepts of
strong/weak Markov copulae that was done in Bielecki et al. (2013d) (see
also Bielecki, Cousin, Crépey and Herbertsson Bielecki et al. (2014d) and
Jakubowski and Pytel Jakubowski and Pytel (2016)). Much of what was
said there applies in the context of strong/weak CMC copulae.

As already said, we con�ne our study to the case of �nite CMCs. One
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might question the choice of �nite CMCs as the object of interest in this
paper, as one might think that this choice is very restrictive. In Bielecki,
Jakubowski and Niew¦gªowski Bielecki et al. (2012b) we studied strong Marko-
vian dependence in the context of (nice) Feller processes, whereas in Bielecki
et al. (2013d) we studied strong and weak Markovian dependence in the con-
text of �nite Markov chains. What we have learned from work on both these
papers is that from the point of view of mathematical challenges involved
in modeling of structured dependence between components of a multivariate
Markov process, the �nite state space set-up is actually not restrictive at all!
Likewise, as it will be seen throughout this paper, studying the concepts of
consistency and copulae in case of �nite CMCs is quite challenging and by
no means restrictive.

From the mathematical perspective, the problem of modeling of depen-
dence between CMCs, generalizes the problem of modeling of dependence
between random times. The latter problem is one of the key problems stud-
ied in the context of portfolio credit risk and counterparty risk, in case when
one only considers two possible states of �nancial obligors: the pre-default
state and the default state, with the additional caveat that the default state
is absorbing, and the issue in question is the issue of modeling dependence be-
tween default times of various obligors (cf. e.g. Bielecki, Cousin, Crépey and
Herbertsson Bielecki et al. (2014d, 2013b,c)). The study done in this paper
allows for tackling more general problems, such as the problem of model-
ing of dependence between evolutions of credit ratings of �nancial obligors
in cases where conditioning reference information is relevant; in particular,
it opens a door for generalizing the set-up that was used in Biagini, Groll
and Widenmann Biagini et al. (2013) to deal with an interesting problem
of evaluation of premia for unemployment insurance products for a pool of
individuals. This is done in response to the need for modeling dependence
between dynamic systems in cases when some conditional properties of a sys-
tem are important and should be accounted for. We refer to Section 8, where
we discuss a relevant practical problem, which is motivated by the problem
considered in Biagini et al. (2013).

The paper is organized as follows: In Section 2 we introduce the concept
of CMC, which underlies the present study. In this section we also introduce
and discuss the relevant concept of stochastic generator (or an intensity ma-
trix) of a CMC. Section 3 is devoted to presentation of a speci�c method
for constructing a CMC with a given intensity. In Section 4 we relate con-
ditional Markov chains to doubly stochastic Markov chains. In particular,
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we show that any conditional Markov chain constructed using the change
of measure technique used in Section 3 is also a doubly stochastic Markov
chain. In Sections 5 and 6 we introduce and study the concepts of strong
and weak consistency for CMCs, respectively. Section 7 is devoted to pre-
sentation of strong and weak CMC copulae, the concepts that are in the core
of modeling of structured dependence between CMCs, and we also present
related examples there. In Section 8 we propose a possible application of the
theory developed in this paper. Finally, in the Appendix, we collect several
technical results that are used throughout the text.

2. Conditional Markov Chain and Its Intensity

Let T > 0 be a �xed �nite time horizon. Let (Ω,A,P) be an under-
lying complete probability space, which is endowed with two �ltrations,
F = (Ft)t∈[0,T ] and G = (Gt)t∈[0,T ], that are assumed to satisfy the usual
conditions. The standing assumption throughout will be that all �ltrations
used in the paper are completed, with respect to relevant probability mea-
sures. For the future reference we also de�ne

Ĝt := FT ∨ Gt, t ∈ [0, T ], (2.1)

as well as the corresponding �ltration Ĝ := (Ĝt)t∈[0,T ]. In what what follows,
we will not require that it is right-continuous.

Typically, processes considered in this paper are de�ned on (Ω,A,P),
and are restricted to the time interval [0, T ]. Moreover, for any process U
we denote by FU the completed right-continuous �ltration generated by this
process. In addition, we �x a �nite set S, and we denote by d the cardinality
of S. Without loss of generality we take S = {1, 2, 3, . . . , d}.

De�nition 2.1. An S-valued, G-adapted càdlàg process X is called an (F,G)�
conditional Markov chain if for every x1, . . . , xk ∈ S and for every 0 ≤ t ≤
t1 ≤ . . . ≤ tk ≤ T it satis�es the following property

P(Xt1 = x1, . . . , Xtk = xk|Ft ∨ Gt) = P(Xt1 = x1, . . . , Xtk = xk|Ft ∨ σ(Xt)).
(2.2)

Remark 2.2. (i) We will call �ltration G the base �ltration, and we will call
�ltration F the reference �ltration. Usually G = FX .
(ii) It needs to be stressed that an (F,G)�conditional Markov chain may not
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be a classical Markov chain (in any �ltration). However, if G is independent
of F, then the above de�nition reduces to the case of a classical Markov
chain with respect to �ltration G, or G �Markov chain. In other words,
a classical G-Markov chain is an (F,G)�conditional Markov chain for the
reference �ltration independent of the base �ltration.

In what follows we shall write (F,G)-CMC, for short, in place of (F,G)-
conditional Markov chain.

2.1. Intensity of an (F,G)-CMC

Let X be an (F,G)-CMC. For each x ∈ S we de�ne the corresponding
state indicator process of X,

Hx
t := 1{Xt=x}, t ∈ [0, T ]. (2.3)

Accordingly, we de�ne a column vector Ht = (Hx
t , x ∈ S)>, where > denotes

transposition. Similarly, for x, y ∈ S, x 6= y, we de�ne the process Hxy that
counts the number of transitions from x to y,

Hxy
t := #{u ≤ t : Xu− = x and Xu = y} =

∫
]0,t]

Hx
u−dH

y
u , t ∈ [0, T ]. (2.4)

The following de�nition generalizes the concept of the generator matrix
(or intensity matrix) of a Markov chain.

De�nition 2.3. We say that an F-adapted (matrix valued) process Λt =
[λxyt ]x,y∈S such that

λxyt ≥ 0, ∀x, y ∈ S, x 6= y, and
∑
y∈S

λxyt = 0, ∀x ∈ S, (2.5)

is an F-stochastic generator or an F-intensity matrix process for X, if the
process M := (Mx, x ∈ S)> de�ned as

Mt = Ht −
∫ t

0

Λ>uHudu, t ∈ [0, T ], (2.6)

is an F ∨G � local martingale (with values in Rd).

Remark 2.4. We remark that even though the above de�nition is stated for
an (F,G)-CMC process X, it applies to S-valued semimartingales.
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We will now discuss the question of uniqueness of F-intensity.

De�nition 2.5. We say that two processes Λ and Λ̂ are equivalent relative
to X if ∫ t

0

(Λu − Λ̂u)
>Hudu = 0, ∀t ∈ [0, T ]. (2.7)

Proposition 2.6. Let X be an (F,G)-CMC.

i) If Λ and Λ̂ are F-intensities of X, then they are equivalent relative to
X. In particular, F-intensity of X is unique up to equivalence relative
to X.

ii) Let Λ be an F-intensity of X. If Λ̂ is an F-adapted process equivalent

to Λ relative to X, then Λ̂ is F-intensity of X.

Proof. i) By assumption, M given by (2.6) and M̂ de�ned as

M̂t = Ht −
∫ t

0

Λ̂>uHudu, t ∈ [0, T ],

are F ∨G� local martingales. We have that

M̂t −Mt =

∫ t

0

(Λu − Λ̂u)
>Hudu.

Thus M̂ −M is a continuous �nite variation F∨G-martingale starting from
0, and hence it is a constant null process. Thus (2.7) holds.

ii) Note that (2.7) implies that for F ∨G martingale M given by (2.6) it
holds

Mt = Ht−
∫ t

0

Λ>uHudu+

∫ t

0

(Λu−Λ̂u)
>Hudu = Ht−

∫ t

0

Λ̂>uHudu, t ∈ [0, T ].

Thus Λ̂ is an F-intensity of X.

In Example 5.12 we exhibit an (F,G)-CMC X, which admits two di�erent
intensities that are equivalent relative to X.

In the case of classical Markov chains with �nite state space, intensity
matrix may not exist if the matrix of transition probabilities is not di�eren-
tiable (e.g. when X is not quasi left continuous). In the case of (F,G)-CMC
the situation is similar. That is, there exist (F,G)-CMCs that do not admit
F-intensities. We illustrate this possibility by means of the following example
(see Bielecki et al. (2015) for details):
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Example 2.7. LetW be a Brownian motion and let E be a random variable
with unit exponential distribution and independent from W. It is shown in
Bielecki et al. (2015) that the process X de�ned by Xt := 1{τ≤t}, t ≥ 0,
where τ := inf

{
t > 0 : supu∈[0,t] Wu > E

}
is an (FW ,FX)-CMC which does

not admit an FW -intensity matrix.

Theorem 2.8 below provides more insight into the issue of existence of
F-intensity for an (F,G)-CMC.

The F-intensity matrix of an (F,G)-CMC X is related to the F ∨ G-
compensators of processes Hxy, x, y ∈ S, x 6= y. In fact, we have the
following result, which is a special case of (Jakubowski and Niew¦gªowski,
2010a, Lemma 4.3), and thus its proof is omitted.

Theorem 2.8. Let X be an (F,G)-CMC.

1) Suppose that X admits an F-intensity matrix process Λ. Then for every
x, y ∈ S, x 6= y, the process Hxy admits an absolutely continuous F∨G�
compensator given as

∫ ·
0
Hx
uλ

xy
u du, i.e. the process Kxy de�ned by

Kxy
t = Hxy

t −
∫ t

0

Hx
uλ

xy
u du, t ∈ [0, T ], (2.8)

is an F ∨G � local martingale.

2) Suppose that we are given a family of nonnegative F-progressively mea-
surable processes λxy, x, y ∈ S, x 6= y, such that for every x, y ∈ S,
x 6= y, the process Kxy given in (2.8) is an F ∨ G � local martingale.
Then, the matrix valued process Λt = [λxyt ]x,y∈S, with diagonal elements
de�ned as

λxx = −
∑

y∈S,y 6=x

λxy, x ∈ S,

is an F-intensity matrix of X.

We see that the F-intensity may not exist since F ∨ G-compensators of
Hxy may not be absolutely continuous with respect to Lebesgue measure. On
the other hand, absolute continuity of F ∨ G-compensators of all processes
Hxy, for x, y ∈ S, x 6= y, is not su�cient for existence of an F-intensity.
This is due to the fact that the density of F ∨G compensator is, in general,
F ∨G-adapted, whereas the F-intensity is only F-adapted.

In order to focus our study, we now introduce the following restriction:

10



In the rest of this paper we restrict ourselves to CMCs, which admit F-intensity.

2.2. (F,G)-CMC as a pure jump semimartingale

It is important to note that an (F,G)-CMC X, admitting F-intensity
process Λ, can be viewed as a pure jump semimartingale,1 with values in S,
whose corresponding random jump measure µ de�ned by (cf. Jacod Jacod
(1974/75))

µ(ω, dt, dz) =
∑
s<T

δ(s,∆Xs(ω))(dt, dz)1{∆Xs(ω)6=0} =
∑
n≥1

δ(Tn(ω),∆XTn(ω)(ω))(dt, dz)1{Tn(ω)<T},

where

Tn := inf
{
t : Tn−1 < t ≤ T, Xt 6= XTn−1

}
∧ T, T0 = 0,

has the F ∨G predictable projection under P (the (F ∨G,P)�compensator)
given as

ν(ω, dt, dz) =
∑
x∈S

Hx
t

( ∑
y∈S\{x}

δy−x(dz)λxyt

)
dt =

∑
x∈S

1{Xt=x}

( ∑
y∈S\{x}

δy−x(dz)λxyt

)
dt.

So the problem of construction of an (F,G)-CMC with an F-intensity (ma-
trix) process Λ is equivalent to the problem of construction of any G-adapted,
S-valued pure jump semimartingale with the (F∨G,P)�compensator ν given
as above, and additionally satisfying condition (2.2).

Remark 2.9. With a slight abuse of terminology, we shall refer to a G-
adapted, S-valued pure jump semimartingale X with the F∨G compensator
ν given above, as to a G-adapted, S-valued pure jump semimartingale admit-
ting the F-intensity process Λ. In particular, this also means that the process
M corresponding to X as in (2.6) (see Remark 2.4) is an F ∨G � local mar-
tingale and, even though X is not necessarily (F,G)-CMC, the conclusions
1) and 2) of Theorem 2.8 hold.

Theorem 2.11 below shows that a G-adapted, S-valued pure jump semi-
martingale admitting F-intensity process Λ is, under some additional condi-
tions, an (F,G)-CMC with the same F-intensity process Λ. Before stating
the theorem, we recall the notion of immersion between two �ltrations.

1We adhere to the standard convention that semimartingale processes (taking values
in �nite dimensional spaces) are càdlàg.
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De�nition 2.10. We say that a �ltration F is P-immersed in a �ltration H
if F ⊂ H and if every (P,F) � local martingale is a (P,H) � local martingale.

We now have,

Theorem 2.11. Assume that

F is P�immersed in F ∨G. (2.9)

Let X be a G-adapted, S-valued pure jump semimartingale admitting the
F-intensity process Λ. Moreover suppose that

all real valued F− local martingales are orthogonal to components Mx, x ∈ S,
(2.10)

of process M given by (2.6).

Then X is an (F,G)-CMC with the F-intensity process Λ.2

Proof. Let us �x 0 = t0 ≤ t1 ≤ . . . ≤ tk ≤ T, and x1, . . . , xk ∈ S. It is enough
to show that the martingale N , given as

Nt = P(Xt1 = x1, . . . , Xtk = xk|Ft ∨ Gt), t ∈ [0, T ],

is such that Nt is Ft ∨ σ(Xt) measurable for any t ∈ [0, t1]. Indeed, this
implies that

P(Xt1 = x1, . . . , Xtk = xk|Ft∨Gt) = P(Xt1 = x1, . . . , Xtk = xk|Ft∨σ(Xt)), t ∈ [0, t1],

which is the (F,G)-CMC property. To this end, for each n = 1, . . . , k, we
de�ne a process V n

t by

V n
t :=

n−1∏
l=1

1{Xtl
=xl}H

>
t E
(
ZtYtnexn

k−1∏
m=n

e>xmZtmYtm+1exm+1 |Ft
)
, t ∈ [0, T ],

where ex denotes a column vector in Rd with 1 at the coordinate correspond-
ing to state x and with zeros otherwise, and Z, Y are solutions of the random

2We refer to He, Wang and Yan (He et al., 1992, De�nition 7.33), for notion of orthog-
onality of local martingales.
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ODE's3

dZt = −ΛtZtdt, Z0 = I, t ∈ [0, T ],

dYt = YtΛtdt, Y0 = I, t ∈ [0, T ].

We will show, that

V n
t = Nt, for t ∈ [tn−1, tn], n = 1, 2, . . . , k, (2.11)

which, in particular, implies that for every t ∈ [0, t1] the random variable
Nt = V 1

t is measurable with respect to Ft ∨ σ(Xt).
We �rst note that, in view of Lemma 9.5 in Appendix B, the process V n

is an F ∨G martingale on [tn−1, tn]. Moreover, we have that

V n
tn = V n+1

tn . (2.12)

Indeed,

V n+1
tn =

n∏
l=1

1{Xtl
=xl}H

>
tnE
(
ZtnYtn+1exn+1

k−1∏
m=n+1

e>xmZtmYtm+1exm+1|Ftn
)

=
n−1∏
l=1

1{Xtl
=xl}H

>
tnexnH

>
tnE
(
ZtnYtn+1exn+1

k−1∏
m=n+1

e>xmZtmYtm+1exm+1 |Ftn
)

=
n−1∏
l=1

1{Xtl
=xl}H

>
tnE
(
ZtnYtnexne

>
xnZtnYtn+1exn+1

k−1∏
m=n+1

e>xmZtmYtm+1exm+1|Ftn
)

=
n−1∏
l=1

1{Xtl
=xl}H

>
tnE
(
ZtnYtnexn

k−1∏
m=n

e>xmZtmYtm+1exm+1|Ftn
)

= V n
tn ,

where the third equality follows from (9.7) in Appendix B, and from the fact
that

H>tnexnH
>
tn = H>tnexne

>
xn .

We will �nish the proof by demonstrating (2.11) with use of backward induc-
tion. Towards this end, we start from the last interval, i.e. we take n = k.

3The symbol ”I“ used below is a generic symbol for the identity matrix, whose dimen-
sion may vary depending on the context.
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Observing that

V k
tk

=
k−1∏
l=1

1{Xtl
=xl}H

>
tk
E
(
ZtkYtkexk |Ftk

)
=

k−1∏
l=1

1{Xtl
=xl}H

>
tk
exk =

k∏
l=1

1{Xtl
=xl},

and using the martingale property of V k on [tk−1, tk], we conclude that for
t ∈ [tk−1, tk]

V k
t = E(V k

tk
|Ft ∨ Gt) = P(Xt1 = x1, . . . , Xtk = xk|Ft ∨ Gt) = Nt.

Now, suppose that for some n = 2, . . . , k − 1, the process V n coincides with
N on [tn−1, tn]. This, together with (2.12), yields that

Ntn−1 = V n
tn−1

= V n−1
tn−1

.

Thus, by the martingale property of V n−1 on the interval [tn−2, tn−1], we
obtain that

V n−1
t = E(Ntn−1|Ft ∨ Gt) = Nt, t ∈ [tn−2, tn−1].

So the (backward) induction principle completes the proof.

Remark 2.12. A su�cient condition for orthogonality of real valued F � local
martingales and components of process M is that F � local martingales and
the process M do not have common jumps or, equivalently, that F � local
martingales and the process X do not have common jumps. Indeed, let Z be
an (F,P) � local martingale. SinceMx is a local martingale of �nite variation
we have that

[Z,Mx]t =
∑

0<u≤t

∆Zu∆M
x
u =

∑
0<u≤t

∆Zu∆H
x
u , t ∈ [0, T ].

Now, note that X jumps i� one of the processes Hx, x ∈ S, jumps. Thus
if X and Z do not have common jumps then [Z,Mx] is the null process,
hence it is a local martingale. Consequently Z and Mx are orthogonal local
martingales.

We refer to Proposition 2.13 in Bielecki et al. (2015a) for an interesting
example of �ltrations F and G that satisfy conditions (2.9) and (2.10) of
Theorem 2.11.
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3. Construction of (F,G)�CMC via change of measure

The construction of CMC given in this section generalizes the construction
done in Bielecki et al. (2015). In Bielecki et al. (2015) the authors constructed
CMCs that are starting from a given state with probability one. Here, we
construct a process (Xt)t∈[0,T ] such that X is an (F,G)�CMC with the F-
intensity matrix process Λ, and with X0 satisfying

P(X0 = x|FT ) = P(X0 = x|F0), x ∈ S. (3.1)

Even though in case of ordinary Markov chains a construction of a chain
starting from a given state with probability one directly leads to construction
of a chain with arbitrary initial distribution, this, in general, is not the case
when one deals with CMCs. In fact, some non-trivial modi�cations of the
construction argument used in Bielecki et al. (2015) will need to be introduced
below.

3.1. Preliminaries

In our construction we start from some underlying probability space, say
(Ω,A,Q), on which we are given:

(I1) A (reference) �ltration F.
(I2) An S-valued random variable ξ, such that for any x ∈ S we have

that
Q(ξ = x|FT ) = µx, (3.2)

for some F0 �measurable random variable µx taking values in [0, 1].
(I3) A familyN = (Nxy)x,y∈S

y 6=x
of mutually independent Poisson processes,

that are independent of FT ∨σ(ξ) and with non-negative intensities (axy)x,y∈S
y 6=x

(of course for axy = 0 we put Nxy = 0).
In what follows we take

Gt =
( ∨
x,y∈S
y 6=x

FNxy

t

)
∨ σ(ξ), t ∈ [0, T ]; (3.3)

the corresponding �ltration G is known to be right-continuous for t ∈ [0, T )
(see (Amendinger, 2000, Proposition 3.3) ).

Given G de�ned via (3.3), we will construct Ĝ-Markov chain, say X,
as a solution of an appropriate stochastic di�erential equation. This is an
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intermediate step in our goal of constructing an (F,G)�CMC with the F-
intensity matrix process Λ, and with X0 satisfying

P(X0 = x|FT ) = P(X0 = x|F0), x ∈ S, (3.4)

for a measure P to be constructed later.

Proposition 3.1. Let A = [axy]x,y∈S, where the diagonal elements of A are
de�ned as axx := −

∑
y∈S
y 6=x

axy. Assume that ξ is an S-valued random variable

and N = (Nx,y) are Poisson processes satisfying (I3). Then the unique strong
solution of the following SDE

dXt =
∑
x,y∈S
x 6=y

(y − x)1{x}(Xt−)dNxy
t , t ∈ [0, T ], X0 = ξ, (3.5)

is a Ĝ �Markov chain with the in�nitesimal generator A. Moreover, A is an
F-intensity of X under Q.

Proof. In view of (I3), the processes Nxy and Nxy′ , y 6= y′, do not jump
together. Thus, the process Hxy de�ned for x, y ∈ S, x 6= y by

Hxy
t =

∫ t

0

Hx
u−dN

xy
u , t ∈ [0, T ],

(cf. (2.3) for de�nition of Hx) counts number of transitions of X from state
x to state y. Independence of Nxy from FT ∨ σ(ξ) implies that Nxy is also
a Ĝ-Poisson processes with intensity axy. Thus, by boundedness and Ĝ-
predictability of (Hx

t−)t∈[0,T ], the process Lxy given as

Lxyt =

∫ t

0

Hx
u−(dNxy

u −axydu) = Hxy
t −

∫ t

0

Hx
u−a

xydu = Hxy
t −

∫ t

0

Hx
ua

xydu, t ∈ [0, T ],

(3.6)
is a Ĝ-martingale. Consequently, application of relevant characterization
theorem (Jakubowski and Niew¦gªowski, 2010a, Thm. 4.1) yields that X is
a Ĝ-Markov chain with the in�nitesimal generator A.

To �nish the proof we observe that since X given by (3.5) is a pure jump
process with �nite variation, it is a semimartingale. The (Ĝ,Q)�compensator
of the jump measure of X, that is, the jump characteristic of X relative to
(Ĝ,Q), is given in terms of matrix A (cf. (3.6)). Moreover, since X is
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adapted to �ltration F∨G ⊆ Ĝ, then we see that X is a semimartingale with
the (F∨G,Q)�compensator of its jump measure given in terms of matrix A.
Now, A is F�adapted (since it is deterministic), so, in view of the terminology
introduced earlier (cf. De�nition 2.3), A is an F-intensity of X under Q.

The fact that X is a Markov chain in �ltration Ĝ will be critically im-
portant below.

3.2. Canonical conditions

De�nition 3.2. We say that a matrix valued process Λ = [λxy]x,y∈S satis�es
canonical conditions relative to the pair (S,F) if:

(C1) Λ is an F-progressively measurable and it ful�lls (2.5).
(C2) The processes λxy, x, y ∈ S, x 6= y, have countably many jumps

Q-a.s, and their trajectories admit left limits.

Any F-adapted càdlàg process Λt = [λxyt ]x,y∈S, for which (2.5) holds,
satis�es canonical conditions. We are now ready to proceed with construction
of a CMC via change of measure.

3.3. Construction of a CMC

In this section we provide a construction of a probability measure P,
under which the process X following the dynamics (3.5) is an (F,G)-CMC
with a given F-intensity matrix Λ and with FT -conditional initial distribution
satisfying (3.4).

Theorem 3.3. Let Λ satisfy canonical conditions relative to the pair (S,F)
and assume that ξ satis�es (I2). Suppose that axy, introduced in (I3), is
strictly positive for all x, y ∈ S, x 6= y. Moreover, let X be the unique
solution of SDE (3.5). For each pair x, y ∈ S, x 6= y, de�ne the processes κxy

as

κxyt =
λxyt−
axy
− 1, t ∈ [0, T ],

and assume that the random variable ϑ given as

ϑ =
∏

x,y∈S:x 6=y

exp

(
−
∫ T

0

Hx
u−a

xyκxyu du

) ∏
0<u≤T

(1 + κxyu ∆Hxy
u ),
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satis�es EQϑ = 1.4 Finally, de�ne on (Ω, ĜT ) the probability P by

dP
dQ
∣∣
ĜT

= ϑ. (3.7)

Then
(i) P|FT = Q|FT .
(ii) X is an (F,G)�CMC under P with the F-intensity matrix process Λ,

and with the initial distribution satisfying

P(X0 = x|FT ) = P(X0 = x|F0) = Q(X0 = x|FT ), x ∈ S. (3.8)

Proof. In view of Theorem 2.11, in order to prove (ii) it su�ces to prove
that:
(a) under measure P process X has an F-intensity Λ,
(b) F is P�immersed in F ∨G,
(c) all real valued (F,P)-martingales are orthogonal (under P) to martingales
Mx, x ∈ S,
(d) (3.8) holds.
We will prove these claims in separate steps. In the process, we will also
demonstrate (i) (see Step 2).
Step 1: Here we will show that Λ is an F-intensity of X under P. Towards

this end, we consider a Ĝ-adapted process η given as

ηt =
∏

x,y∈S:x 6=y

exp

(
−
∫ t

0

Hx
u−a

xyκxyu du

) ∏
0<u≤t

(1 + κxyu ∆Hxy
u ), t ∈ [0, T ],

so that

dηt = ηt−

( ∑
x,y∈S:x 6=y

κxyt dL
xy
t

)
, η0 = 1,

where Lxy is a (Ĝ,Q)-martingale given by (3.6). Consequently, process η is
a (Ĝ,Q)-local martingale. Now, note that ηT = ϑ, and thus EQηT = 1 = η0.
Thus η is (Ĝ,Q)�martingale (on [0, T ]).

Since κxy is a left-continuous and F-adapted process, and since F ⊂ Ĝ,
we conclude that κxy is Ĝ-predictable. Thus, by the Girsanov theorem (see

4There exist many di�erent su�cient conditions ensuring that EQϑ = 1. For example
uniform boundedness of Λ is such a condition.

18



Brémaud (Brémaud, 1981, Thm. VI.T3)), we conclude that the (Ĝ,P) com-
pensator of Hxy has density with respect to the Lebesgue measure given
as5

1{x}(Xt−)axy(1+κxyt ) = 1{x}(Xt−)axy
(

1 +
λxyt−
axy
− 1

)
= 1{x}(Xt−)λxyt−, t ∈ [0, T ].

So, for any x 6= y, the process K̂xy de�ned as

K̂xy
t := Hxy

t −
∫ t

0

1{x}(Xu−)λxyu−du,

is a Ĝ � local martingale under P. Since X is a càdlàg process and since λxy

satis�es condition (C2) we see that

K̂xy
t = Hxy

t −
∫ t

0

Hx
uλ

xy
u du, t ∈ [0, T ], (3.9)

is a Ĝ � local martingale under P. Note that F∨G ⊂ Ĝ and that the process

K̂xy is F ∨G-adapted. Taking τn := inf

{
t ≥ 0 : Hxy

t ≥ n or
∫ t

0
λxyu du ≥ n

}
gives us a reducing sequence of Ĝ stopping times for K̂xy, which are also
F ∨ G stopping times. So, in view of (Föllmer and Protter, 2011, Theorem
3.7), we have that K̂xy is also a F∨G � local martingale. Thus according to
Remark 2.9 we can use Theorem 2.8 to conclude that Λ is an F-intensity of
X under P.

Step 2: Here we will prove (i). In Step 1 we proved that η is (Ĝ,Q)�
martingale. By de�nition of P and by the tower property of conditional
expectations we conclude that for an arbitrary ψ ∈ L∞(FT )

EP(ψ) = EQ(ψηT ) = EQ(EQ(ψηT |Ĝ0)) = EQ(ψEQ(ηT |Ĝ0)) = EQ(ψ).

Step 3: Next, we show that F is P-immersed in F∨G. In view of Proposi-
tion 5.9.1.1 in Jeanablanc, Yor and Chesney Jeanblanc et al. (2009) it su�ces
to show that for any ψ ∈ L∞(FT ) and any t ∈ [0, T ] it holds

EP(ψ|Ft ∨ Gt) = EP(ψ|Ft), P− a.s. (3.10)

5We use the usual convention that U0− := 0 for any real valued process U .
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Now, observe that

P(ηt > 0) = EQ(1{ηt>0}ηT ) ≥ EQ(1{ηT>0}ηT ) = EQ(ηT ) = 1,

so that P(ηt > 0) = 1. Moreover, ηt is Ft ∨ Gt measurable by (I3), (3.6) and
(C1). Thus we have

EP(ψ|Ft ∨ Gt) =
EQ(ψηT |Ft ∨ Gt)
EQ(ηT |Ft ∨ Gt)

=
EQ(ψEQ(ηT |Ĝt)|Ft ∨ Gt)

ηt

=
EQ(ψηt|Ft ∨ Gt)

ηt
= EQ(ψ|Ft ∨ Gt) = EQ(ψ|Ft), P− a.s.,

where the third equality holds in view of the fact that η is (Ĝ,Q)-martingale,
and where the last equality holds since F isQ-immersed in F∨G (see Corollary
9.2 in the Appendix). Hence, using (i) we conclude that

EP(ψ|Ft ∨ Gt) = EP(ψ|Ft), P− a.s.

Consequently, (3.10) holds.
Step 4: Now we show the required orthogonality, that is we prove claim

(c). Towards this end it su�ces to prove that all real valued (F,P)-martingales
do not have common jumps with X under P (see Remark 2.12). Let us take
Z to be an arbitrary real valued (F,P)-martingale. Then, in view of (i), Z
is an (F,Q)-martingale. By (I3), we have that (F,Q)-martingales and Pois-
son processes in N are independent under Q. Thus, by Lemma 9.3 in the
Appendix A, the Q probability that process Z has common jumps with any
process from family N is zero. Consequently, in view of (3.5), the (F,Q)-
martingale Z does not jump together with X, Q-a.s. Therefore, by absolute
continuity of P with respect to Q, P probability that Z jumps at the same
time as X is zero.

Step 5: Finally, we will show that (3.8) holds. Towards this end, let us
take an arbitrary real valued function h on S. The abstract Bayes rule yields

EP(h(X0)|FT ) =
EQ(h(X0)ηT |FT )

EQ(ηT |FT )
=

EQ(EQ(h(X0)ηT |Ĝ0)|FT )

EQ(EQ(ηT |Ĝ0)|FT )

= EQ(h(X0)EQ(ηT |Ĝ0)|FT ) = EQ(h(X0)|FT ) = EQ(h(X0)|F0),

where the last equality follows from the fact that by assumption (3.2) the
initial condition of the process X satis�es

Q(X0 = x|FT ) = Q(X0 = x|F0), x ∈ S. (3.11)
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Consequently,

EP(h(X0)|F0) = EP(EP(h(X0)|FT )|F0) = EP(EQ(h(X0)|F0)|F0) = EQ(h(X0)|F0) = EP(h(X0)|FT ).

This completes the proof of (3.8), and the proof of the theorem.

4. (F,G)�CMC vs (F,G)�DSMC

In this section we �rst re-visit the concept of the doubly stochastic Markov
chain. Then, we study relationships between conditional Markov chains and
doubly stochastic Markov chains. These relationships are crucial for the
theory of consistency of CMCs and for the theory of CMC copulae.

4.1. (F,G)�DSMC

The concept of (F,G)-doubly stochastic Markov chain ((F,G)�DSMC
for brevity), generalizes the notion of F-doubly stochastic Markov chain (cf.
Jakubowski and Niew¦gªowski (2010a)), as well as the notion of continuous
time G-Markov chain.

De�nition 4.1. A G-adapted càdlàg process X = (Xt)t∈[0,T ] is called an
(F,G)�doubly stochastic Markov chain with state space S if for any 0 ≤ s ≤
t ≤ T and for every y ∈ S it holds that

P(Xt = y | FT ∨ Gs) = P(Xt = y | Ft ∨ σ(Xs)). (4.1)

We refer to Jakubowski and Niew¦gªowski (2010a) for examples of pro-
cesses, which are (F,FX)-DSMCs. We remark that in Jakubowski and Niew¦gªowski
(2010a) it was assumed that the chain X starts from some point x ∈ S with
probability one, whereas here, we allow for the initial state X0 to be a non-
constant random variable.

With any X, which is an (F,G)-DSMC, we associate a matrix valued
random �eld P = (P (s, t), 0 ≤ s ≤ t ≤ T ), where P (s, t) = (pxy(s, t))x,y∈S
is de�ned by

px,y(s, t) =
P(Xt = y,Xs = x | Ft)

P(Xs = x|Ft)
1{P(Xs=x|Ft)>0} + 1{x=y}1{P(Xs=x|Ft)=0}.

(4.2)
The following result provides a characterization of (F,G)-DSMC.
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Proposition 4.2. A process X is an (F,G)-DSMC i� there exists a stochas-

tic matrix valued random �eld P̃ (s, t) = (p̃xy(s, t))x,y∈S, 0 ≤ s ≤ t ≤ T , such
that:

1) for every s ∈ [0, T ], the process P̃ (s, ·) is F�adapted on [s, T ],

2) for any 0 ≤ s ≤ t ≤ T and for every x, y ∈ S we have

1{Xs=x}P(Xt = y | FT ∨ Gs) = 1{Xs=x}p̃xy(s, t). (4.3)

Proof. We �rst prove the su�ciency. Using (4.3) we have

P(Xt = y | FT ∨ Gs) =
∑
x∈S

1{Xs=x}p̃xy(s, t). (4.4)

So, taking conditional expectations with respect to Ft ∨ σ(Xs) on both sides
of (4.4), observing that Ft ∨ σ(Xs) ⊂ FT ∨ Gs, and using the tower property
of conditional expectations, we obtain

P(Xt = y | Ft∨σ(Xs)) = E
(∑

x∈S

1{Xs=x}p̃xy(s, t) | Ft∨σ(Xs)

)
=
∑
x∈S

1{Xs=x}p̃xy(s, t),

where the last equality follows from measurability of
∑

x∈S 1{Xs=x}p̃xy(s, t)
with respect to Ft ∨ σ(Xs). This and (4.4) imply P(Xt = y | FT ∨ Gs) =
P(Xt = y | Ft ∨ σ(Xs)), which is (4.1).

Now we prove the necessity. First we observe that, using similar argu-
ments as in Jakubowski and Niew¦gªowski (Jakubowski and Niew¦gªowski,
2008, Lemma 3) (see also Bielecki, Crépey, Jeanblanc and Rutkowski (Bi-
elecki et al., 2008a, Lemma 2.1)), we have, for t ≥ s,

P(Xt = y | Ft ∨ σ(Xs)) (4.5)

=
∑
x∈S

1{Xs=x}

(
P(Xt = y,Xs = x | Ft)

P(Xs = x|Ft)
1{P(Xs=x|Ft)>0} + 1{y=x}1{P(Xs=x|Ft)=0}

)
P− a.s.

Consequently, in view of (4.2) we have P(Xt = y | Ft∨σ(Xs)) =
∑

x∈S 1{Xs=x}px,y(s, t).
It is enough now to let p̃x,y(s, t) = px,y(s, t), for x, y ∈ S, 0 ≤ s ≤ t ≤ T .

As we saw in the proof of Proposition 4.2 we can take P̃ = P , where P
is given by (4.2). In addition, we note that in view of the results in Rao Rao
(1972), for every s ∈ [0, T ] and for almost every ω ∈ Ω the function P (s, ·)
is measurable on [s, T ], and for every t ∈ [0, T ] and almost every ω ∈ Ω the
function P (·, t) is measurable on [0, t]. This, and (4.3) justify the following
de�nition
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De�nition 4.3. The matrix valued random �eld P = (P (s, t), 0 ≤ s ≤ t ≤
T ), de�ned by (4.2) is called the conditional transition probability matrix �eld
(c�transition �eld) of X.

Remark 4.4. For the future reference, we note that (4.3) can be written in
the following form (recall that we take P̃ = P ):

E(Hy
t | FT ∨ Gs) =

∑
x∈S

Hx
s pxy(s, t), for y ∈ S,

which is equivalent to

E (Ht | FT ∨ Gs) = P (s, t)>Hs. (4.6)

We know that in the case of classical Markov chains the transition semi-
group and the initial distribution of the chain characterize the �nite dimen-
sional distributions of the chain, and thus they characterize the law of the
chain. The next proposition is borrowed from Bielecki et al. (2015a) (see
Proposition 4.6 and its proof there). It shows that, in case of an (F,G)�
DSMC X, the c-transition �eld P of X and the conditional law of X0 given
FT characterize conditional law of X given FT .

Proposition 4.5. If X is an (F,G)�DSMC with c-transition �eld P, then,
for arbitrary 0 = t0 ≤ t1 ≤ . . . ≤ tn ≤ t ≤ T and (x1, . . . , xn) ∈ Sn,

P(Xt1 = x1, . . . Xtn = xn | FT ) =
∑
x0∈S

P(X0 = x0|FT )
n−1∏
k=0

pxk,xk+1
(tk, tk+1).

(4.7)
Moreover, if

P(X0 = x0|FT ) = P(X0 = x0|F0) for every x0 ∈ S, (4.8)

then, for arbitrary 0 ≤ t1 ≤ . . . ≤ tn ≤ t ≤ T and (x1, . . . , xn) ∈ Sn,

P(Xt1 = x1, . . . Xtn = xn | FT ) = P(Xt1 = x1, . . . Xtn = xn | Ft). (4.9)

Corollary 4.6. Let X be an (F,G)-DSMC with X0 satisfying (4.8). Then
F is P-immersed in F ∨ FX .

Proof. In view of Proposition 4.5 processX satis�es (4.9). This, by (Jakubowski
and Niew¦gªowski, 2008, Lemma 2), is equivalent to P-immersion of F in
F ∨ FX .

23



In analogy to the concept of F-intensity for (F,G)-CMCs, one considers
the concept of intensity with regard to (F,G)-DSMCs. De�nition 4.7 intro-
duces a concept of such intensity. This de�nition is stated in the form, which
is consistent with the way the original de�nition of intensity for DSMCs was
introduced in Jakubowski and Niew¦gªowski (2010a). Later on, we will show
that this de�nition can be equivalently stated in the form similar to De�nition
2.3.

De�nition 4.7. We say that an F�adapted matrix-valued process Γ = (Γs)s≥0 =
([γxys ]x,y∈S)s≥0 is an intensity of (F,G)-DSMC X if the following conditions
are satis�ed:
1) ∫

]0,T ]

∑
x∈S

|γxxs | ds <∞. (4.10)

2)

γxys ≥ 0 ∀x, y ∈ S, x 6= y, γxxs = −
∑

y∈S:y 6=x

γxys ∀x ∈ S. (4.11)

3) The Kolmogorov backward equation holds: for all v ≤ t,

P (v, t)− I =

∫ t

v

ΓuP (u, t)du. (4.12)

4) The Kolmogorov forward equation holds: for all v ≤ t,

P (v, t)− I =

∫ t

v

P (v, u)Γudu. (4.13)

Remark 4.8. The above Kolmogorov equations admit unique solution pro-
vided that Γ satis�es (4.10) (see formulae given by Peano-Baker series or by
Magnus expansion see e.g. Blanes, Casas, Oteo and Ros Blanes et al. (2009)).

4.1.1. Martingale characterizations of (F,G)-DSMC

It turns out that the (F,G)-DSMC property of process X is fully char-
acterized by the martingale property (with respect to the �ltration Ĝ given
by (2.1)) of some processes related to X. These characterizations are given
in the next theorem.
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Theorem 4.9. Let (Xt)t∈[0,T ] be an S�valued stochastic process and (Γt)t∈[0,T ]

be an F-adapted matrix valued process satisfying (4.10) and (4.11). The
following conditions are equivalent:
i) The process X is an (F,G)-DSMC with the intensity process Γ.

ii) The processes M̂x de�ned by

M̂x
t := Hx

t −
∫

]0,t]

γXu,x
u du, x ∈ S, (4.14)

are Ĝ � local martingales.
iii) Let Hxy

t =
∫

]0,t]
Hx
u−dH

y
u. The processes Kxy de�ned by

Kxy
t := Hxy

t −
∫

]0,t]

Hx
s γ

xy
s ds, x, y ∈ S, x 6= y, (4.15)

are Ĝ � local martingales.
iv) The process L de�ned by

Lt := Z>t Ht, (4.16)

where Z is a unique solution to the random integral equation

dZt = −ΓtZtdt, Z0 = I, (4.17)

is a Ĝ � local martingale.
v) For any t ∈ [0, T ], the process N t de�ned as

N t
s := P (s, t)>Hs for 0 ≤ s ≤ t. (4.18)

is a Ĝ martingale, where P (s, t) := ZsYt with

dYt = YtΓtdt, Y0 = I, t ∈ [0, T ].

Proof. The proof of equivalence of (i)�(iv) goes along the lines of the proof
of (Jakubowski and Niew¦gªowski, 2010a, Theorem 4.1); only minor and
straightforward modi�cations are needed, and therefore the proof is omitted.
Equivalence of (iv) and (v) follows from formula N t

s = Y >t Ls for 0 ≤ s ≤ t

and the fact that Yt is uniformly bounded Ĝ0 measurable invertible matrix
(Lemma 9.4).
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The following result is direct counterpart of Proposition 2.6 and therefore
we omit its proof.

Proposition 4.10. Let X be an (F,G)-DSMC.

i) If Γ and Γ̂ are intensities of X, then they are equivalent relative to X.
In particular, intensity of X is unique up to equivalence relative to X.

ii) Let Γ be an intensity of X. If Γ̂ is an F-adapted process equivalent to

Γ relative to X, then Γ̂ is intensity of X.

Since an (F,G)-DSMC X is a S-valued càdlàg process, then it is a pure
jump semimartingale. This observation sheds a new light on the intensity of
X as the following corollary shows.

Corollary 4.11. A intensity of an (F,G)-DSMC X is an F-intensity of X
in the sense of De�nition 2.3.

Proof. The process M̂ is a Ĝ-local martingale by Theorem 4.9.ii). In fact,
it is also an F∨G-local martingale. To see this, we take a reducing sequence
of Ĝ-stopping times τn := inf

{
t ≥ 0 :

∫ t
0

∑
y∈S |γyys |ds ≥ n

}
. Since M̂ is also

F∨G-adapted and (τn)n≥1 are also F∨G stopping times we see that M̂ is an
F ∨G-local martingale (see e.g. (Föllmer and Protter, 2011, Theorem 3.7)).
This implies that the F-adapted process Γ is an F-intensity of X.

4.2. Relation between CMC and DSMC

In this section we present some aspects of relationship between the classes
of (F,G)-CMCs and (F,G)-DSMCs.

Proposition 4.12. Assume that F and G satisfy the immersion property
(2.9), and that X is an (F,G)-DSMC. Then X is an (F,G)-CMC. In addition
if X considered as an (F,G)-DSMC admits intensity Γ, then X considered
as an (F,G)-CMC admits F-intensity Λ = Γ.

Proof. Let us �x arbitrary x1, . . . , xk ∈ S and 0 ≤ t ≤ t1 ≤ . . . ≤ tk ≤ T,
and let us de�ne a set A by A = {Xt1 = x1, . . . , Xtk = xk}. We need to show
that P(A|Ft ∨ Gt) = P(A|Ft ∨ σ(Xt)).

Towards this end we �rst note that, by Lemma 3.1 in Jakubowski and
Niew¦gªowski (2010a), we have

P(A|FT ∨ Gt)1{Xt=x} = 1{Xt=x}px,x1(t, t1)
k−1∏
n=1

pxn,xn+1(tn, tn+1). (4.19)
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The tower property of conditional expectation and (4.19) imply

P(A|Ft ∨ Gt) = E

(∑
x∈S

E (1A|FT ∨ Gt)1{Xt=x}|Ft ∨ Gt

)

= E

(∑
x∈S

1{Xt=x}px,x1(t, t1)
k−1∏
n=1

pxn,xn+1(tn, tn+1)|Ft ∨ Gt

)

=
∑
x∈S

1{Xt=x}E

(
px,x1(t, t1)

k−1∏
n=1

pxn,xn+1(tn, tn+1)|Ft ∨ Gt

)
.

Thus using the assumed immersion property of F in F ∨G we obtain

P(A|Ft ∨ Gt) =
∑
x∈S

1{Xt=x}E

(
px,x1(t, t1)

k−1∏
n=1

pxn,xn+1(tn, tn+1)|Ft

)
,

which implies the CMC property.
The second claim of the theorem follows immediately from Corollary 4.11.

Theorem 4.13. Suppose that X is an (F,G)-CMC admitting an F-intensity
Λ. In addition, suppose that X is also an (F,G)-DSMC with an intensity Γ.
Then Γ is an F-intensity of X and Λ is an intensity of X.

Proof. It follows from Corollary 4.11 that Γ is an F-intensity. Thus by Propo-
sition 2.6 Λ and Γ are equivalent relative toX. Consequently�, by Proposition
4.10 process Λ is an intensity of X.

Let us note that, in view of Theorem 4.13, the intensity of X considered
as an (F,G)�DSMC coincides, in the sense of De�nition 2.5, with the F-
intensity Λ of X considered as an (F,G)�CMC. Consequently, we introduce
the following de�nition

De�nition 4.14. We say that X is an (F,G)�CDMC with an F-intensity, if
it is both an (F,G)�CMC with an F-intensity and an (F,G)�DSMC admitting
an intensity.

Remark 4.15. It is worth noting that Theorem 4.13 and Proposition 4.5 im-
ply that if X is an (F,G)-CDMC with an F-intensity, then this F-intensity
and the FT -conditional distribution of X0 determine the FT -conditional dis-
tribution of X.
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In case of process X constructed in Theorem 3.3 the result of Theorem
4.13 can be strengthen as follows.

Proposition 4.16. Let X be a process constructed in Theorem 3.3, so that
X is an (F,G)-CMC process with an F-intensity process Λ. Then X is an
(F,G)-DSMC with an intensity process Γ = Λ. Thus, X is an (F,G)-CDMC
with F-intensity.

Proof. In Step 1 of the proof of Theorem 3.3 we showed that the processes
K̂xy, x, y ∈ S, x 6= y, given by (3.9), are Ĝ � local martingales. Thus, by
Theorem 4.9, X is an (F,G)-DSMC with intensity Λ.

The following example illustrates an alternative way for constructing an
(F,G)-CDMC. In particular, it illustrates use of Proposition 4.12.

Example 4.17. (Time changed discrete Markov chain) Consider process
C̄, which is a discrete time Markov chain with values in S = {1, . . . , K}
and with transition probability matrix P . In addition consider process N ,
which is a Cox process with càdlàg F-intensity process λ̃. From (Jakubowski
and Niew¦gªowski, 2008, Theorem 7 and 9) we know that under assumption
that the processes (C̄k)k≥0 and (Nt)t∈[0,T ] are independent and conditionally
independent given FT , the process

Ct := C̄Nt

is an (F,FC)-DSMC. Moreover C admits intensity process Γ = [γxy] given
as γxyt = (P − I)x,yλ̃t. Thus, by Corollary 4.6 and Proposition 4.12, the
process C is an (F,FC)-CMC with F-intensity Λ = Γ, and hence, it is also
an (F,FC)-CDMC.

We end this section with providing su�cient conditions for a pure jump
semimartingale to be a CDMC. The proof of the following theorem is omitted
here, and can be found in Bielecki et al. (2015a).

Theorem 4.18. Let F, G satisfy the immersion property (2.9). Assume that
S�valued G�adapted pure jump semimartingale X admits an F-intensity Λ.
Moreover suppose that the orthogonality property (2.10) is ful�lled. Then X
is an (F,G)-CDMC with an F-intensity Λ.
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5. Strong Markovian Consistency of Conditional Markov Chains

Let X = (X1, . . . , XN) be a multivariate (F,FX)-CMC 6 with values in
S := XNk=1 Sk, where Sk is a �nite set, k = 1, . . . , N.

De�nition 5.1. (i) Let us �x k ∈ {1, . . . , N}. We say that process X satis�es
the strong Markovian consistency property with respect to (Xk,F) if for every
xk1, . . . , x

k
m ∈ Sk and for all 0 ≤ t ≤ t1 ≤ . . . ≤ tm ≤ T, it holds that

P
(
Xk
tm = xkm, . . . , X

k
t1

= xk1|Ft ∨ FXt
)

= P
(
Xk
tm = xkm, . . . , X

k
t1

= xk1|Ft ∨ σ(Xk
t )
)
,

(5.1)
or, equivalently, if Xk is an (F,FX)-CMC.7

(ii) If X satis�es the strong Markovian consistency property with respect
to (Xk,F) for all k ∈ {1, . . . , N}, then we say that X satis�es the strong
Markovian consistency property with respect to F.

Remark 5.2. There is a relation between strong Markovian consistency of X
with respect to (Xk,F) and the concept of Granger's causality (cf. Granger
Granger (1969)): Suppose that process X satis�es the strong Markovian
consistency property with respect to (Xk,F). If the reference �ltration F
is trivial, then the collection {X i, i 6= k} does not Granger cause Xk. By
extenso, we may say that, in the case when reference �ltration F is not trivial,
then, �conditionally on F�, the collection {X i, i 6= k} does not Granger cause
Xk.

The next de�nition extends the previous one by requiring that the laws of
the marginal processes Xk, k = 1, . . . , N, are predetermined. This de�nition
will be a gateway to the concept of strong CMC copulae in Section 7.1.

De�nition 5.3. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CMC with values in Sk.

(i) Let us �x k ∈ {1, 2, . . . , N} and let process X satisfy the strong Markovian
consistency property with respect to (Xk,F). If the conditional law of Xk

6De�nitions of strong and weak Markov consistency can be naturally extended to the
case of process X = (X1, . . . , XN ), which is a multivariate (F,G)-CMC, with FX ⊆ G.
In the present paper we shall only work with X = (X1, . . . , XN ) being a multivariate
(F,FX)-CMC.

7In more generality, one might de�ne strong Markovian consistency with respect to a
collection XI := {Xk, k ∈ I ⊂ {1, 2, . . .}} of components of X. This will not be done in
this paper though.
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given FT coincides with the conditional law of Y k given FT , then we say that
process X satis�es the strong Markovian consistency property with respect to
(Xk,F, Y k).
(ii) If X satis�es the strong Markovian consistency property with respect to
(Xk,F, Y k) for every k ∈ {1, 2, . . . , N}, then we say that X satis�es the
strong Markovian consistency property with respect to (F,Y).

5.1. Su�cient and Necessary Conditions for Strong Markovian Consistency

In what follows we use the following assumption

Assumption (A):
(i) X is an (F,FX)�CDMC admitting an intensity.
(ii) P(X0 = x0|FT ) = P(X0 = x0|F0) for every x0 ∈ S.

In view of Proposition 4.16, we see that Assumption (A) is satis�ed for
the large class of processes.

Our next goal is to provide condition characterizing strong Markovian
consistency of processX with intensity Λ. Towards this end we �rst introduce
the following condition8

Condition (SM-k): There exist F-adapted processes λk;xkyk , xk, yk ∈ Sk, xk 6=
yk, such that

1{Xk
t =xk}

∑
yn∈Sn,

n=1,2,...,N,n6=k

λ
(X1

t ,...,X
k−1
t ,xk,Xk+1

t ,...,XN
t )(y1,...,yk,...,yN )

t

= 1{Xk
t =xk}λ

k;xkyk

t , dt⊗ dP-a.e. ∀xk, yk ∈ Sk, xk 6= yk.

(5.2)

We have the following proposition, which is a direct consequence of Propo-
sition 2.6, and thus we omit its proof.

Proposition 5.4. Let X satisfy Assumption (A) and let Λ, Λ̂ be F-intensities
of X. Then (SM-k) holds for Λ if and only if it holds for Λ̂.

The next theorem provides su�cient and necessary conditions for strong
Markovian consistency property of processX with respect to F. This theorem
elevates the results of Theorem 1.8 from Bielecki et al. (2013d) to the universe

8The acronym SM comes from Strong Markov.
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of conditional Markov chains studied here. We stress that Theorem 5.5 is not
just a mere extension of Theorem 1.8 from Bielecki et al. (2013d), but that
it opens a new horizons for studying structured dependence between jump
semimartingales. Similar remarks apply to other results presented here, that
are rooted in the study that we did in Bielecki et al. (2013d).

Theorem 5.5. Let X satisfy Assumption (A), and let us �x k ∈ {1, 2, . . . , N}.
Then, X is strongly Markovian consistent with respect to (Xk,F) if and only
if Condition (SM-k) is satis�ed. Moreover, in this case, process Xk admits
the F-intensity Λk = [λk;xkyk ]xk,yk∈Sk

, with λk;xkyk as in Condition (SM-k),

and with λk;xkxk given by

λk;xkxk

t = −
∑

yk∈Sk,yk 6=xk
λk;xkyk

t .

Proof. Let Λ be an F intensity of X. For simplicity of notation, but without
loss of generality, we give the proof for k = 1, and for N = 2, so that
S = S1 × S2, X = (X1, X2). In this case, (5.2) takes the form

1{X1
t =x1}

∑
y2∈S2

λ
(x1,X2

t )(y1,y2)
t = 1{X1

t =x1}λ
1;x1y1

t dt⊗ dP-a.e., ∀x1, y1 ∈ S1, x
1 6= y1.

(5.3)

Step 1: For x1, y1 ∈ S1, x
1 6= y1 and for x2 ∈ S2 we de�ne processes

H1;x1y1 , H1;x1 , H2;x2 by

H1;x1y1

t :=
∑

0<u≤t

1{X1
u−=x1,X1

u=y1} =
∑

x2,y2∈S2

H
(x1,x2)(y1,y2)
t

and H1;x1

t := 1{X1
t =x1}, H2;x2

t := 1{X2
t =x2}, for t ∈ [0, T ].

Next, we consider process K(x1,x2)(y1,y2), given as

K
(x1,x2)(y1,y2)
t = H

(x1,x2)(y1,y2)
t −

∫ t

0

H(x1,x2)
u λ(x1,x2)(y1,y2)

u du

= H
(x1,x2)(y1,y2)
t −

∫ t

0

H1;x1

u H2;x2

u λ(x1,x2)(y1,y2)
u du, t ∈ [0, T ].

In view of Theorem 2.8 process K(x1,x2)(y1,y2) is an F∨ FX � local martingale.
Since, in view of Assumption (A),X is also an (F,FX)-DSMC, then, Theorem
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4.9 implies thatK(x1,x2)(y1,y2) is also F̂X � local martingale, where F̂X := (FT∨
FXt )t∈[0,T ]. Consequently, process Kx1y1 given as

Kx1y1

t =
∑

x2,y2∈S2

K
(x1,x2)(y1,y2)
t = H1;x1y1

t −
∫ t

0

∑
x2,y2∈S2

H1;x1

u H2;x2

u λ(x1,x2)(y1,y2)
u du

(5.4)

is an F ∨ FX � local martingale as well as an F̂X � local martingale.
Step 2: Now, assume that (5.3) holds. Then, using (5.4) we obtain that

Kx1y1

t = H1;x1y1

t −
∫ t

0

H1;x1

u

∑
x2∈S2

H2;x2

u

∑
y2∈S2

λ(x1,x2)(y1,y2)
u

 du
= H1;x1y1

t −
∫ t

0

H1;x1

u

∑
y2∈S2

λ(x1,X2
u)(y1,y2)

u

 du = H1;x1y1

t −
∫ t

0

H1;x1

u λ1;x1y1

u du.

Since Kx1y1 is a F̂X � local martingale, then, by Theorem 4.9, the process X1

is (F,FX)-DSMC with intensity process Λ1. X is an (F,FX)-DSMC, so the
�ltration F is immersed in F∨FX (see Corollary 4.6). Consequently, applying
Proposition 4.12 we conclude that X1 is (F,FX)-CMC.
Step 3: Conversely, assume that X1 is an (F,FX)-CMC with F-intensity Λ1.

So, process K̂x1y1 given as

K̂x1y1

t = H1;x1y1

t −
∫ t

0

H1;x1

u λ1;x1y1

u du, t ∈ [0, T ],

is an F ∨ FX � local martingale. Recall that process Kx1y1 de�ned in (5.4)
is an F ∨ FX�local martingale. Consequently, the di�erence K̂x1y1 −Kx1y1 ,
which equals

K̂x1y1

t −Kx1y1

t =

∫ t

0

H1;x1

u

 ∑
x2,y2∈S2

H2;x2

u λ(x1,x2)(y1,y2)
u − λ1;x1y1

u

 du

=

∫ t

0

H1;x1

u

∑
y2∈S2

λ(x1X2
u)(y1y2)

u − λ1;x1y1

u

 du, t ∈ [0, T ],
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is a continuous F ∨ FX � local martingale of �nite variation, and therefore it
is equal to the null process. This implies (5.3). The proof of the theorem is
complete.

The next theorem gives su�cient and necessary conditions for strong
Markovian consistency property of X with respect to (F,Y). This theorem
will be used to prove Proposition 5.9, which will be critically important in
the study of strong CMC copulae in Section 7.1.

Theorem 5.6. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CDMC, with values in Sk, and with F-intensity Ψk

t =

[ψk;xkyk

t ]xk,yk∈Sk
. Let process X satisfy Assumption (A). Then, X satis�es

the strong Markovian consistency property with respect to (F,Y) if and only
if for all k = 1, 2, . . . , N , the following hold:

(i) Condition (SM-k) is satis�ed with

λk;xkyk = ψk;xkyk , xk, yk ∈ Sk, xk 6= yk.

(ii) The law of Xk
0 given FT coincides with the law of Y k

0 given FT .

Proof. First we prove su�ciency. In view of (i) we conclude from Theorem
5.5 that process X is strongly Markovian consistent with respect to (Xk,F),
and that Xk admits the F-intensity Ψk, for each k = 1, 2, . . . , N . This, com-
bined with (ii) implies, in view of Lemma 9.6, that X satis�es the strong
Markovian consistency property with respect to (F,Y).
Now we prove necessity. Since X satis�es the strong Markovian consistency
property with respect to (F,Y), then, clearly, the law of Xk

0 given FT coin-
cides with the law of Y k

0 given FT for all k = 1, 2, . . . , N . In addition, in
view of Theorem 5.5 and Lemma 9.6, we conclude that (5.2) is satis�ed with
Λk = Ψk, for all k = 1, 2, . . . , N .

5.2. Algebraic Conditions for Strong Markov Consistency

The necessary and su�cient condition for strong Markov consistency
stated in Theorem 5.5 may not be easily veri�ed. Here, we provide an al-
gebraic su�cient condition for strong Markov consistency, which typically
is easily veri�ed. Towards this end let us �x k ∈ {1, 2, . . . , N}, and let us
consider the following condition9

9The acronym ASM comes from Algebraic Strong Markov.
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Condition (ASM-k): The F-intensity process Λ of X satis�es, for every t ∈
[0, T ], and for all xk, yk ∈ Sk, xk 6= yk, and x̄n, xn ∈ Sn, n 6= k,∑

yn∈Sn,
n=1,2,...,N,n6=k

λ
(x1,...,xk,...,xN )(y1,...,yk,...,yN )
t =

∑
yn∈Sn,

n=1,2,...,N,n6=k

λ
(x̄1,...,x̄k−1,xk,x̄k+1,...,x̄N )(y1,...,yk,...,yN )
t .

Remark 5.7. Contrary to Condition (SM-k), whether condition (ASM-k)
holds or not depends on the choice of version of F intensity (see Example
5.12).

We note that Condition (ASM-k) generalizes the analogous condition in-
troduced in Bielecki, Jakubowski, Vidozzi and Vidozzi Bielecki et al. (2008b)
for Markov chains, and called there Condition (M). The importance of Con-
dition (ASM-k) stems from the fact that it is easily veri�able and from the
next result.

Lemma 5.8. Let process X satisfy Assumption (A), and let us �x k ∈
{1, 2, . . . , N}. Then, Condition (ASM-k) is su�cient for strong Markovian
consistency of X relative to (Xk,F) and for Λk = [λk;xkyk ]xk,yk∈Sk

to be an

F-intensity process of Xk, where λk;xkyk is given as

λk;xkyk =
∑
yn∈Sn,

n=1,2,...,N,n6=k

λ(x1,...,xk,...,xN )(y1,...,yk,...,yN ) (5.5)

for xk 6= yk, and

λk;xkxk = −
∑

yk∈Sk,yk 6=xk
λk;xkyk .

Proof. Condition (ASM-k) implies that for any xk, yk ∈ Sk, xk 6= yk, the
following sum ∑

yn∈Sn,
n=1,2,...,N,n6=k

λ
(x1,...,xk,...,xN )(y1,...,yk,...,yN )
t , (5.6)

does not depend on x1, . . . , xk−1, xk+1, . . . , xN . Thus, condition (5.2) holds
with λk;xkyk given by (5.5). Consequently, the result follows by application
of Theorem 5.5.

Proposition 5.9 below will play the key role in Section 7.1.
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Proposition 5.9. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CDMC with values in Sk, and with F-intensity Ψk

t =

[ψk;xkyk

t ]xk,yk∈Sk
. Let process X satisfy Assumption (A). Assume that

(i) There exists a version of F�intensity Λ which satis�es the following
condition:

for each k = 1, 2, . . . , N , xk, yk ∈ Sk, xk 6= yk,

ψk;xkyk

t =
∑
yn∈Sn,

n=1,2,...,N,n6=k

λ
(x1,...,xk,...,xN )(y1,...,yk,...,yN )
t . (5.7)

(ii) The law of Xk
0 given FT coincides with the law of Y k

0 given FT for all
k = 1, 2, . . . , N .

Then, X satis�es the strong Markovian consistency property with respect to
(F,Y).

Proof. We observe, that for F�intensity Λ satisfying (i), Condition (ASM-k)
holds for every k = 1, 2, . . . , N . Thus, by Lemma 5.8 it follows that (5.2)
holds with λk;xkyk = ψk;xkyk , ∀xk, yk ∈ Sk, xk 6= yk. From (ii) and Theorem
5.6, we conclude that X is strongly Markovian consistent with respect to
(F,Y).

5.2.1. Condition (ASM-k) is not necessary for strong Markovian consistency

Example 5.10 below shows that, in general, Condition (ASM-k) is not
necessary for strong Markovian consistency of X relative to (Xk,F). Thus,
Condition (SM-k) is (essentially) weaker than Condition (ASM-k). In fact,
Condition (ASM-k) is so powerful that it implies strong Markovian consis-
tency of X relative to (Xk,F) regardless of the initial distribution of process
X. However, whether or not Condition (SM-k) holds depends also on the
initial distribution of X.10

10 This observation suggests that the relation between Condition (ASM-k) and Condition
(SM-k) is analogous to the relationship between strong lumpability property and weak
lumpability property (cf. Ball and Yeo Ball and Yeo (1993), Burke and Rosenblatt Burke
and Rosenblatt (1958)).
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Example 5.10. Consider a bivariate process X = (X1, X2) taking values
in a �nite state space S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and such that it is an
(F,FX)�CDMC. Assume that X admits the F-intensity Λ of the form 11

Λt = [λxyt ]x,y∈S =


(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) −at 0 0 at
(0, 1) 0 0 0 0
(1, 0) 0 0 0 0
(1, 1) bt 0 0 −bt

. (5.8)

Let us suppose that FT�conditional distribution of X0 is given as

P(X0 = (0, 1)|FT ) = P(X0 = (1, 0)|FT ) = 0,

P(X0 = (0, 0)|FT ) = m0, P(X0 = (1, 1)|FT ) = m1,
(5.9)

where m0, m1 are F0 measurable random variables.
Now let us investigate Condition (SM-1) relative to thisX. One can verify

that c�transition �eld of X (see De�nition 4.3) has the following structure


(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) P 1
00(s, t) 0 0 P 1

01(s, t)
(0, 1) 0 1 0 0
(1, 0) 0 0 1 0
(1, 1) P 1

10(s, t) 0 0 P 1
11(s, t)

.
Thus, in view of Proposition 4.5, we conclude that for any t ∈ [0, T ]

P(Xt = (0, 1)|FT ) = P(Xt = (1, 0)|FT ) = 0, (5.10)

P(Xt = (0, 0)|FT ) = m0P
1
00(0, t) +m1P

1
10(0, t).

Consequently, as we will show now Condition (SM-1) (i.e. (5.2) for k = 1)
is satis�ed here. In fact, taking x1 = 0, y1 = 1 and invoking (5.9), we obtain
that

1{X1
t =0}(λ

(0,X2
t )(1,0)

t + λ
(0,X2

t )(1,1)
t )

= 1{X1
t =0,X2

t =0}(λ
(0,0)(1,0)
t + λ

(0,0)(1,1)
t ) + 1{X1

t =0,X2
t =1}(λ

(0,1)(1,0)
t + λ

(0,1)(1,1)
t )

= 1{X1
t =0,X2

t =0}at + 1{X1
t =0,X2

t =1}0 = (1{X1
t =0,X2

t =0} + 1{X1
t =0,X2

t =1})at = 1{X1
t =0}at,

11It was shown in Proposition 4.16 that one can always construct an (F,FX)�CDMC
with a given F-intensity Λ.
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where the third equality follows from the fact that

1{X1
t =0,X2

t =1} = 0, dt⊗ dP, (5.11)

which is a consequence of (5.10). Analogously, for x1 = 1, y1 = 0 it holds

1{X1
t =1}(λ

(1,X2
t )(0,0)

t + λ
(1,X2

t )(0,1)
t )

= 1{X1
t =1,X2

t =0}(λ
(1,0)(0,0)
t + λ

(1,0)(0,1)
t ) + 1{X1

t =1,X2
t =1}(λ

(1,1)(0,0)
t + λ

(1,1)(0,1)
t )

= 1{X1
t =1,X2

t =0}0 + 1{X1
t =1,X2

t =1}bt = (1{X1
t =1,X2

t =0} + 1{X1
t =1,X2

t =1})bt = 1{X1
t =1}bt,

where we used the fact that

1{X1
t =1,X2

t =0} = 0, dt⊗ dP. (5.12)

Thus, Condition (SM-1) holds here for λ1;01
t = at, λ

1;11
t = bt. Similarly, one

can show that Condition (SM-2) is ful�lled for λ2;01
t = at, λ

2;11
t = bt. Thus,

X is strongly Markovian consistent with respect to F. However, Condition
(ASM-1) is not satis�ed here (regardless of the initial distribution of X) since
for every t ∈ [0, T ] we have

λ
(0,0)(1,0)
t + λ

(0,0)(1,1)
t = at 6= 0 = λ

(0,1)(1,0)
t + λ

(0,1)(1,1)
t .

Remark 5.11. It is worth noting that strong Markovian consistency depends
on the initial distribution of X. Consequently, we may have two pro-
cesses: X which is (F,FX)-CMC and Y which is (F,FY )-CMCs with the
same F-intensity, such that one of them is strongly Markovian consistent
and the other one is not. In fact, let Y be an (F,FY )-CMC taking values in a
�nite state space S = {(0, 0), (0, 1), (1, 0), (1, 1)}, endowed with the same F-
intensity as in Example 5.10, and with the conditional initial distribution such
that either P(P(Y0 = (0, 1)|FT ) > 0) > 0, or P(P(Y0 = (1, 0)|FT ) > 0) > 0.
For process Y equality (5.11) is not satis�ed, and thus Condition (SM-1)
does not hold. Consequently, process Y is not strongly Markovian consistent
with respect to F.

In the next example we will show that an (F,FX)-CMC X may have
intensity for which Condition (ASM-k) does not hold, and it may admit
another version of intensity, in the sense of De�nition 2.5, for which Condition
(ASM-k) is ful�lled.
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Example 5.12. Let us take X as in Example 5.10. In that example we
proved that Conditions (ASM-1) and (ASM-2) are not satis�ed by the F-
intensity Λ given by (5.8). However there exists another version of F-intensity
of X, say Γ, for which Conditions (ASM-1) and (ASM-2) are satis�ed. In-
deed, let us consider that process Γ de�ned by

Γt = [γxyt ]x,y∈S =


(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) −at 0 0 at
(0, 1) bt −at − bt 0 at
(1, 0) bt 0 −at − bt at
(1, 1) bt 0 0 −bt

.
Γ is an F-intensity of X, by Proposition 2.6(ii), since in view of (5.11) and
(5.12) it holds that ∫ t

0

(Γu − Λu)
>Hudu = 0, t ∈ [0, T ].

Finally, we see that Conditions (ASM-1) and (ASM-2) are satis�ed for Γ,
because

γ
(0,0)(1,0)
t + γ

(0,0)(1,1)
t = at = γ

(0,1)(1,0)
t + γ

(0,1)(1,1)
t ,

γ
(1,1)(0,0)
t + γ

(1,1)(0,1)
t = bt = γ

(1,0)(0,0)
t + γ

(1,0)(0,1)
t ,

γ
(0,0)(0,1)
t + γ

(0,0)(1,1)
t = at = γ

(1,0)(0,1)
t + γ

(1,0)(1,1)
t ,

γ
(1,1)(0,0)
t + γ

(1,1)(1,0)
t = bt = γ

(0,1)(0,0)
t + γ

(0,1)(1,0)
t .

6. Weak Markovian Consistency of Conditional Markov Chains

We will study here the concept of weak Markovian consistency. As in
Section 5 let us consider X = (X1, . . . , XN) � a multivariate (F,FX)-CMC
with values in S := XNk=1 Sk (recall that Sk is a �nite set, k = 1, . . . , N), and
admitting an F-intensity Λ.

Remark 6.1. In many respects, the concept of weak consistency is more im-
portant in practical applications than the concept of strong Markovian con-
sistency. For example, in the context of credit risk strong Markovian con-
sistency prohibits so called default contagion, except for the extreme case of
joint defaults. On the contrary, weak Markovian consistency allows to model
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not only default contagion but, more generally, contagion of credit migra-
tions. We refer to Example 2.4 in Bielecki et al. (2014d) for some insight into
these issues.

As it will be seen below, the de�nitions and results regarding the weak
Markovian consistency to some extent are parallel those regarding the strong
Markovian consistency. But, as always, �the devil is in the details�, so the
reader is kindly asked to be patient with presentation that follows.

De�nition 6.2. (i) Let us �x k ∈ {1, . . . , N}. We say that the process X
satis�es the weak Markovian consistency property relative to (Xk, F) if for
every xk1, . . . , x

k
m ∈ Sk and for all 0 ≤ t ≤ t1 ≤ . . . ≤ tm ≤ T, it holds

P
(
Xk
tm = xkm, . . . , X

k
t1

= xk1|Ft ∨ FX
k

t

)
= P

(
Xk
tm = xkm, . . . , X

k
t1

= xk1|Ft ∨ σ(Xk
t )
)
,

(6.1)
or, equivalently, if Xk is a (F,FXk

)-CMC.
(ii) If X satis�es the weak Markovian consistency property with respect to
(Xk,F) for all k ∈ {1, . . . , N}, then we say that X satis�es the weak Marko-
vian consistency property with respect to F.

De�nition 6.3. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CMC with values in Sk.

(i) Let us �x k ∈ {1, 2, . . . , N} and let the process X satisfy the weak Marko-
vian consistency property with respect to (Xk,F). If the conditional law of
Xk given FT coincides with the conditional law of Y k given FT , then we
say that X satis�es the weak Markovian consistency property with respect to
(Xk,F, Y k).
(ii) If X satis�es the weak Markovian consistency property with respect to
(Xk,F, Y k) for every k ∈ {1, 2, . . . , N}, then we say that X satis�es the
weak Markovian consistency property with respect to (F,Y).

6.1. Su�cient and necessary conditions for weak Markovian consistency

We postulate in this subsection that the process X satis�es Assumption
(A) (see Section 5.1), and we aim here at providing a condition characterizing
weak Markovian consistency of the process X.

Let us start from introducing12

12The acronym WM comes from Weak Markov.
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Condition (WM-k): There exist F-adapted processes λk;xkyk , xk, yk ∈ Sk,
xk 6= yk, such that

1{Xk
t =xk}

∑
xn,yn∈Sn

n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t EP

(
1{X1

t =x1,...,Xk−1
t =xk−1,Xk+1

t =xk+1,...,XN
t =xN}

∣∣∣Ft ∨ FXk

t

)
=1{Xk

t =xk}λ
k;xkyk

t , dt⊗ dP-a.e. ∀xk, yk∈Sk, xk 6= yk.

(6.2)
Similarly as in the case of Condition (SM-k) we have the following propo-

sition, which is a direct consequence of Proposition 2.6:

Proposition 6.4. Let X satisfy Assumption (A) and Λ, Λ̂ be F-intensities
of X. Then (WM-k) holds for Λ if and only if it holds for Λ̂.

The next theorem characterizes weak Markovian consistency in the present
set-up.

Theorem 6.5. The process X with an F-intensity Λ is weakly Markovian
consistent relative to (Xk,F) if and only if Condition (WM-k) is satis�ed.
Moreover, Xk admits an F-intensity process

Λk := [λk;xkyk ]xk,yk∈Sk
, (6.3)

with λk;xkxk given by

λk;xkxk

t = −
∑

yk∈Sk,yk 6=xk
λk;xkyk

t , ∀xk ∈ Sk.

Proof. For simplicity of notation we give proof for k = 1 and N = 2. In this
case, (6.2) takes the following form (recall our notation: Hk;xk

t = 1{Xk
t =xk})

H1;x1

t

∑
x2,y2∈S2

λ
(x1x2)(y1y2)
t EP

(
H2;x2

t |Ft ∨ FX
1

t

)
=H1;x1

t λ1;x1y1

t , dt⊗ dP-a.e. ∀x1, y1∈X 1, x1 6= y1.

(6.4)

Step 1: In Step 1 of the proof of Theorem 5.5 we have shown that the process
Kx1y1 given in (5.4) is an F ∨ FX � local martingale. Now let us denote by
K̃x1y1 the optional projection of Kx1y1 on the �ltration F ∨ FX1

.13 Observe

13We note that for existence of optional projections we do not need right continuity of
the �ltration (see Ethier, Kurtz (Ethier and Kurtz, 1986, Theorem 2.4.2)).
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that the sequence

τn := inf

{
t ≥ 0 : H1;x1y1

t ≥ n or
∫ t

0

( ∑
x2,y2∈S2

λ(x1,x2)(y1,y2)
u

)
du ≥ n

}
, n = 1, 2, . . . ,

is sequence of F∨FX�stopping times, as well as F∨FX1
�stopping times, and

that is a reducing sequence for Kx1y1 . So, by (Föllmer and Protter, 2011,
Theorem 3.7), the process K̃x1y1 is an F ∨ FX1

� local martingale.
Following the reasoning in Theorem 5.25 in He et al. (1992), we obtain

that

E
(∫ t

0

H1;x1

u

∑
x2,y2∈S2

H2;x2

u λ(x1,x2)(y1,y2)
u du

∣∣∣Ft∨FX1

t

)
=

∫ t

0

H1;x1

u E
( ∑
x2,y2∈S2

H2;x2

u λ(x1,x2)(y1,y2)
u

∣∣∣Fu∨FX1

u

)
du

and hence the process K̃x1y1 given as

K̃x1y1

t = H1;x1y1

t −
∫ t

0

H1;x1

u E
( ∑
x2,y2∈S2

H2;x2

u λ(x1,x2)(y1,y2)
u

∣∣∣Fu∨FX1

u

)
du, t ∈ [0, T ],

(6.5)
is an F ∨ FX1

� local martingale.
Step 2: Now, suppose that (6.4) holds. Then we have

K̃x1y1

t = H1;x1y1

t −
∫ t

0

H1;x1

u λ1;x1y1

u du, t ∈ [0, T ].

Thus according to Remark 2.9 we can apply Theorem 2.8 to process X1 in
order to conclude that Λ1 is an F-intensity of X1, so that Rd-valued process
M̃1 = (M̃1;x1 ;x1 ∈ S1)>, given as

M̃1
t = H1

t −
∫ t

0

(Λ1
u)
>H1

udu, t ∈ [0, T ],

is an F ∨ FX1
� local martingale.

Next, using Theorem 2.11 we will show that X1 is an (F,FX1
)-CMC.

Towards this end, we �rst observe that Assumption (A) implies, by Corollary
4.6, that F is immersed in F∨FX , and thus F is immersed F∨FX1

. Moreover,
as we will show now, all real valued F-local martingales are orthogonal to
processes Mx, x ∈ S, that are components of process M de�ned in (2.6).
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Indeed, let us take an arbitrary real valued F-local martingale N . Then, by
de�nition ofM and the fact thatM is a pure-jump local martingale we have,
for any (x1, x2) ∈ S,

[N,M (x1,x2)]t =
∑

0<u≤t

∆Nu∆M
(x1,x2)
u =

∑
0<u≤t

∆Nu∆H
(x1,x2)
u , t ∈ [0, T ].

(6.6)

Now, since the jump times of N are F-stopping times, then by Proposition 6.1
in Jakubowski and Niew¦gªowski (2010a) we conclude that N and X do not
have common jump times, equivalently, N andM do not have common jump
times. Therefore, [N,Mx1,x2 ] = 0, so that N is orthogonal to all processes
Mx1,x2 .

From the above we will deduce that all real valued F-local martingales
are orthogonal to processes M̃1;x1 , x1 ∈ S1, that are components of process
M̃1 de�ned above. In fact taking N as above we see that orthogonality of N
and M̃1;x1 follows from the following equalities

[N, M̃1;x1 ]t =
∑

0<u≤t

∆Nu∆M̃
1;x1

u =
∑

0<u≤t

∆Nu∆H
1;x1

u =
∑

0<u≤t

∑
x2∈S2

∆Nu∆H
(x1,x2)
u

=
∑
x2∈S2

∑
0<u≤t

∆Nu∆H
(x1,x2)
u =

∑
x2∈S2

[N,M (x1,x2)]t = 0, t ∈ [0, T ],

where the penultimate equality follows from (6.6).
Consequently, we see that assumptions of Theorem 2.11 are ful�lled (tak-

ing there X = X1 and G = FX1
), and thus we may conclude that X1 is

(F,FX1
)-CMC with F-intensity Λ1(t) = [λ1;x1y1

t ]x1,y1∈S1
.

Step 3: Conversely, assume that X1 is an (F,FX1
)-CMC with F-intensity

Λ1(t) = [λ1;x1y1

t ]x1,y1∈S1
. Fix x1, y1 ∈ S1, x1 6= y1. In an analogous way as in

Step 3 of the proof of Theorem 5.5 we see that the di�erence K̃x1y1 − K̂x1y1 ,
where K̃x1y1 given in (6.5) and

K̂x1y1

t = H1;x1y1

t −
∫ t

0

H1;x1

u λ1;x1y1

u du, t ∈ [0, T ],

is a continuous F ∨ FX1
� local martingale of �nite variation. Therefore it is

equal to 0, which implies (6.4). The proof of the theorem is complete.

42



The next theorem gives su�cient and necessary conditions for weak Marko-
vian consistency property of X with respect to (F,Y). We omit the proof of
this theorem, as its proof can be derived from the proof of Theorem 5.6 by
using Theorem 6.5 instead of Theorem 5.5.

Theorem 6.6. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CDMC, with values in Sk, and with F-intensity Ψk

t =

[ψk;xkyk

t ]xk,yk∈Sk
. Let process X satisfy Assumption (A) and let Λ be a version

of its F-intensity. Then, X satis�es the weak Markovian consistency property
with respect to (F,Y) if and only if for all k = 1, 2, . . . , N , the following hold:

(i) Condition (WM-k) is satis�ed with Ψk in place of Λk.

(ii) The law of Xk
0 given FT coincides with the law of Y k

0 given FT .

6.2. Necessary condition for weak Markovian consistency

Conditions (WM-k) are mathematically interesting, but they are di�cult
to verify since they entail computations of projections on the �ltration F ∨
FXk

. Here we will formulate an �algebraic like� necessary condition for weak
Markovian consistency, which is easier to verify.

We start with imposing the following simplifying assumption on process
X:

Assumption (B): For each k ∈ {1, 2, . . . , N} it holds that

P
(
Xk
t = xk

∣∣Ft) > 0, dt⊗ dP-a.e., ∀xk ∈ Sk.

Clearly, this assumption imposes constraints on the initial distribution of the
chain, as well as constraints on the structure of the intensity process of X.
However, it allows to simplify and to streamline the discussion below. The
general case can be dealt with in a similar way, with special attention paid
to sets of ω-s for which P

(
Xk
t = xk|Ft

)
(ω) = 0.

Before we proceed we observe that Assumption (B) implies that

P
(
Xk
t = xk

)
> 0, dt-a.e., ∀xk ∈ S.

We will also need a simple technical result regarding events B(t, k, xk) and
C(t, k, xk) de�ned, for every t ∈ [0, T ], xk ∈ Sk and k ∈ {1, 2, . . . , N} as

B(t, k, xk) =
{
ω : Xk

t (ω) = xk
}
, C(t, k, xk) =

{
ω : P

(
Xk
t = xk|Ft

)
(ω) > 0

}
.
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Observe that (we write B and C in place of B(t, k, x) and C(t, k, x) to shorten
the formulae)

P(B∩C) = E (1B1C) = E (E (1B|Ft)1C) = E
(
P (B|Ft)1{P(B|Ft)>0}

)
= P (B) > 0.

We are now ready to state the main result in this section.

Proposition 6.7. Assume that X satis�es Assumptions (A) and (B). Fix
k ∈ {1, . . . , N}. Suppose that X is weakly Markovian consistent relative to
(Xk,F). Then, the F-intensity Λk of Xk de�ned by (6.3) satis�es

λk;xkyk

t (ω)=
∑

xn,yn∈Sn
n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t (ω)

P
(
X1
t = x1, . . . , XN

t = xN |Ft
)

(ω)

P
(
Xk
t = xk|Ft

)
(ω)

,

∀xk, yk∈Sk, yk 6= xk and ∀ω ∈ B(t, k, xk) ∩ C(t, k, xk),
(6.7)

for almost every t ∈ [0, T ].

Proof. Since weak Markovian consistency relative to (Xk,F) holds, then Λk

satis�es (6.2). Taking conditional expectations in (6.2), with respect to Ft ∨
σ(Xk

t ), yields

1{Xk
t =xk}λ

k;xkyk

t = E
(
1{Xk

t =xk}λ
k;xkyk

t |Ft ∨ σ(Xk
t )
)

= E
(
1{Xk

t =xk}

∑
xn,yn∈Sn

n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t

× E
(
1{X1

t =x1,...,Xk−1
t =xk−1,Xk+1

t =xk+1,...,XN
t =xN}|Ft ∨ F

Xk

t

)∣∣∣∣Ft ∨ σ(Xk
t )

)
= 1{Xk

t =xk}

∑
xn,yn∈Sn

n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t E

(
1{X1

t =x1,...,Xk−1
t =xk−1,Xk+1

t =xk+1,...,XN
t =xN}|Ft ∨ σ(Xk

t )
)
.

Now, let us take an arbitrary ω ∈ B(t, k, xk) ∩ C(t, k, xk). By Assumption
(B), using Jakubowski and Niew¦gªowski (Jakubowski and Niew¦gªowski,
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2008, Lemma 3), we have

λk;xkyk

t (ω)

=
∑

xn,yn∈Sn
n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t (ω)E

(
1{X1

t =x1,...,Xk−1
t =xk−1,Xk+1

t =xk+1,...,XN
t =xN}|Ft ∨ σ(Xk

t )
)

(ω)

=
∑

xn,yn∈Sn
n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t (ω)

P
(
X1
t = x1, . . . , XN

t = xN |Ft
)

(ω)

P
(
Xk
t = xk|Ft

)
(ω)

,

which shows that condition (6.7) is necessary for the weak Markovian con-
sistency of X relative to (Xk,F).

The next proposition can be used in construction of weak CMC copulae.

Proposition 6.8. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes such that

each Y k is an (F,FY k
)-CDMC, with values in Sk, and with an F-intensity

Ψk
t = [ψk;xkyk

t ]xk,yk∈Sk
. Assume that X satis�es Assumptions (A) and (B),

and let Λ be a version of its F-intensity. In addition, suppose that X is
weakly Markovian consistent relative to (F,Y). Then,

(i) For almost every t ∈ [0, T ] we have

ψk;xkyk

t (ω)=
∑

xn,yn∈Sn
n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t (ω)

P
(
X1
t = x1, . . . , XN

t = xN |Ft
)

(ω)

P
(
Xk
t = xk|Ft

)
(ω)

,

∀xk, yk∈Sk, yk 6= xk and ∀ω ∈ B(t, k, xk) ∩ C(t, k, xk).
(6.8)

(ii) The law of Xk
0 given FT coincides with the law of Y k

0 given FT .

Proof. Since X is weakly Markovian consistent relative to (F,Y), then, X
is weakly Markovian consistent relative to (Xk,F) for each k. Thus, in view
of (6.7) and Lemma 9.6 we conclude that (6.8) holds. This proves (i). The
conclusion (ii) is clear from the weak Markovian consistency of X relative to
(F,Y).

Remark 6.9. Even though the above proposition gives a necessary, rather
than a su�cient, condition for the weak Markovian consistency of X relative
to (F,Y), it will be skillfully used in construction of weak CMC copulae, in

45



Section 7.3. In the present time we do not have a workable su�cient condition
for the weak Markovian consistency of X relative to (F,Y) to hold. Thus,
for the time being, our strategy for constructing CMC copulae will be to use
the necessary condition (6.8) to construct process X which is a candidate for
a CMC copula, and then to verify that this process indeed furnishes a weak
CMC copula. We refer to Section 7.3 for details.

6.3. When does weak Markov consistency imply strong Markov consistency?

It is clear that the strong Markovian consistency for X implies the weak
Markovian consistency for X. As it will be seen in Section 7.3.1, process X
may be weakly Markovian consistent relative to (Xk,F), but may fail to sat-
isfy the strong Markovian consistency condition relative to (Xk,F). The fol-
lowing result provides su�cient conditions under which the weak Markovian
consistency of X relative to (Xk,F) implies the strong Markovian consistency
relative to (Xk,F) for process X.

Theorem 6.10. Assume that X satis�es the weak Markovian consistency
condition relative to (Xk,F). If F ∨ FXk

is P-immersed in F ∨ FX , then X
satis�es the strong Markovian consistency condition relative to (Xk,F).

Proof. Suppose that F∨FXk
is immersed in F∨FX . Fix arbitrary xk1, . . . , xkm ∈

Sk and 0 ≤ t1 ≤ . . . ≤ tm ≤ T. Let A =
{
Xk
tm = xkm, . . . , X

k
t1

= xk1
}
.

Xk is an (F,FXk
)-CMC, so we have, for s ≤ t1,

P(A|Fs ∨ σ(Xk
s )) = P(A|Fs ∨ FX

k

s ) = P(A|Fs ∨ FXs ),

where in the second equality we have used immersion of F ∨ FXk
in F ∨ FX

(cf. Section 6.1.1 in Bielecki and Rutkowski Bielecki and Rutkowski (2002)).
Thus Xk is an (F,FX)-CMC.

Remark 6.11. We note that the above theorem states only a su�cient condi-
tion for the weak Markovian consistency of X to imply the strong Markovian
consistency ofX (relative to (Xk,F)). As it is shown in (Bielecki et al., 2013d,
Theorem 1.17), in case of trivial �ltration F, the condition that FXk

is im-
mersed in FX is both su�cient and necessary for weak Markovian consistency
of X to imply the strong Markovian consistency of X (relative to Xk).
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7. CMC copulae

As mentioned in the Introduction, the objective of the theory and practice
of Markov copulae for classical Markov chains was to construct a non-trivial
family of multivariate Markov chains such that components of each chain in
the family are Markov chains (in some relevant �ltrations) with given laws.
Here, our goal is to extend the theory of Markov copulae from the universe of
classical (�nite) Markov chains to the universe of (�nite) conditional Markov
chains. Accordingly, we now use the term CMC copulae. As it turns out
such extension is not a trivial one. But, it is quite important both from the
mathematical point of view and from the practical point of view.

We will �rst discuss the so called strong CMC copulae, and then we will
study the concept of the weak CMC copulae. It needs to be stressed, that
an important role in applications is played by the so called weak only CMC
copulae, that is weak CMC copulae that are not strong CMC copulae (see
discussion in (Bielecki et al., 2013d, Remark 2.3)). An example of such CMC
copula will be given in Section 7.3.1.

We recall that in this paper the state space S of processX = (X1, . . . , XN)
is given as the Cartesian product S1 × S2 × . . .× SN .

7.1. Strong CMC copulae

De�nition 7.1. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes, de�ned

on some underlying probability space (Ω,A,Q), such that each Y k is an
(F,FY k

)-CMC with values in Sk. A strong CMC copula between processes
Y 1, . . . , Y N is any multivariate process X = (X1, . . . , XN), given on (Ω,A)
endowed with some probability measure P, such that X is an (F,FX)�CMC,
and such that it satis�es the strong Markovian consistency property with
respect to (F,Y).

The methodology developed in Section 3 allows us to construct strong
CMC copulae between processes Y 1, . . . , Y N , that are de�ned on some un-
derlying probability space (Ω,A,Q) endowed with a reference �ltration F,
and are such that each Y k is (F,FY k

)-CDMC with F�intensity, say, Ψk =
[ψk;xkyk ]xk,yk∈Sk

. The additional feature of our construction is that, typically,
the constructed CMC copulae X are also (F,FX)-DSMC.

In view of Theorem 3.3, Proposition 5.9 and Lemma 9.6 a natural starting
point for constructing a strong copula between Y 1, . . . , Y N is to determine
a system of stochastic processes [λxy]x,y∈S and an S-valued random variable
ξ = (ξ1, . . . , ξN) on (Ω,A), such that they satisfy the following conditions:
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(CMC-1)

ψk;xkyk

t =
∑
yn∈Sn,

n=1,2,...,N,n6=k

λ
(x1,...,xk,...,xN )(y1,...,yk,...,yN )
t ,

xn ∈ Sn, n = 1, . . . , N,
yk ∈ Sk, yk 6= xk,
k = 1, . . . , N, t ∈ [0, T ].

(CMC-2) The matrix process Λt = [λxyt ]x,y∈S satis�es canonical conditions
relative to the pair (S,F) (cf. De�nition 3.2).

(CMC-3)
Q(ξ = y|FT ) = Q(ξ = y|F0), ∀y ∈ S.

(CMC-4)

Q(ξk = yk|FT ) = Q(Y k
0 = yk|FT ), ∀yk ∈ Sk, k = 1, . . . , N.

We will call any pair (Λ, ξ) satisfying conditions (CMC-1)�(CMC-4) strong
CMC pre-copula between processes Y 1, . . . , Y N . Given a strong CMC pre-
copula between processes Y 1, . . . , Y N we can construct on (Ω,A) a probabil-
ity measure P and a process X, using Theorem 3.3 and starting from measure
Q as above14, such that X is an (F,FX)�CMC under P, and which satis�es
the strong Markovian consistency property with respect to (F,Y), in view of
Proposition 5.9 and Lemma 9.6.

Thus, it is a strong CMC copula between processes Y 1, . . . , Y N .

Remark 7.2. It follows from (i) and (3.8) in Theorem 3.3 that for P con-
structed as above we have

P(ξ = y|FT ) = P(ξ = y|F0), ∀y ∈ S.
P(ξk = yk|FT ) = Q(Y k

0 = yk|FT ), ∀yk ∈ Sk, k = 1, . . . , N.

Remark 7.3. (i) Note that in the de�nition of strong CMC copula it is re-
quired that FT -conditional distribution of Xk

0 coincides with FT -conditional
distribution of Y k

0 , for k ∈ 1, . . . , N , but the FT -conditional distribution
of the multivariate random variable X0 = (X1

0 , . . . , X
N
0 ) can be arbitrary.

Thus, in principle, a strong CMC copula between processes Y 1, . . . , Y N can

14It is always tacitly assumed that the probability space (Ω,A,Q) is su�ciently rich so
to support all stochastic processes and random variables that are considered throughout.
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be constructed with help of a strong CMC pre-copula between processes
Y 1, . . . , Y N , as well as a copula between the FT -conditional distributions of
Xk

0 s, for k ∈ 1, . . . , N . For instance, in Example 7.2.1 below, we take the
components X1, . . . , XN are conditionally independent given FT .
(ii) In general, there exist numerous systems of stochastic processes that sat-
isfy conditions (CMC-1) and (CMC-2), so that there exist numerous strong
pre-copulae between conditional Markov chains Y 1, . . . , Y N , and, conse-
quently, there exists numerous strong CMC copulae between conditional
Markov chains Y 1, . . . , Y N . This is an important feature in �nancial ap-
plications, as it allows to calibrate a CMC model to both marginal data and
to the basket data.

Below we provide examples of strong CMC copulae. The �rst example,
dealing with conditionally independent univariate CMCs, does not really ad-
dress the issue of modeling dependence between components of a multivariate
CMC. Nevertheless, on one hand, this example may have non-trivial prac-
tical applications in insurance, and, on the other hand, it is a non-trivial
example from the mathematical point of view. Moreover, this example pro-
vides a sort of a reality check for the theory of strong CMC copulae: it
would be not good for the theory if a multivariate conditional Markov chain
X = (X1, . . . , XN) with conditionally independent components would not
be a strong CMC copula.

7.2. Examples

7.2.1. Conditionally independent strong CMC copula

This example is a counterpart of the independent Markov copula example
presented in Section 2.1 in Bielecki et al. (2013d). Let Y 1, . . . , Y N be
processes such that each Y k is an (F,FY k

)-CDMC with values in Sk, and
with F�intensity Ψk

t = [ψk;xkyk

t ]xk,yk∈Sk
. Assume that for each k the process

Ψk satis�es canonical conditions relative to the pair (Sk,F) . Additionally
assume that

Q(Y k
0 = xk|FT ) = Q(Y k

0 = xk|F0), ∀xk ∈ Sk, k = 1, . . . , N. (7.1)

Consider a matrix valued random process Λ given as the following Kro-
necker sum

Λt =
N∑
k=1

I1 ⊗ . . .⊗Ik−1⊗Ψk
t⊗Ik+1⊗ . . .⊗IN , t ∈ [0, T ], (7.2)
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where⊗ is the Kronecker product (see e.g. Horn and Johnson Horn and John-
son (1994)), and where Ik denotes the identity matrix of dimensions |Sk| ×
|Sk|. Moreover, let us take an S-valued random variable ξ = (ξ1, . . . , ξN),
which has FT -conditionally independent coordinates, that is

Q(ξ1 = x1, . . . , ξN = xN |FT ) =
N∏
i=1

Q(ξi = xi|FT ), ∀x = (x1, . . . , xN) ∈ S.

(7.3)
Additionally assume that FT -conditional distributions of coordinates of ξ and
Y0 coincide:

Q(ξk = xk|FT ) = Q(Y k
0 = xk|FT ), ∀xk ∈ Sk, k = 1, . . . , N. (7.4)

As shown in (Bielecki et al., 2015b, Proposition 6.2), Λ satis�es conditions
(CMC-1) and (CMC-2). Furthermore, by (7.3) and (7.1), ξ satis�es (CMC-
3) and, by (7.4), also (CMC-4). Thus, (Λ, ξ) is a strong CMC pre-copula
between conditional Markov chains Y 1, . . . , Y N . Now, we can construct, with
the help of Theorem 3.3 , a multivariate (F,FX)-CDMC (see also Proposition
4.16), say X = (X1, . . . , XN), with values in S, which in view of Proposition
5.9 satis�es the strong Markovian consistency property with respect to (F,Y).
Therefore, the process X furnishes a strong CMC copula between processes
Y 1, . . . , Y N . Finally, (Bielecki et al., 2015b, Proposition 6.4) demonstrates
that components of X are conditionally independent given FT . It is quite
clear from (7.2) that components X i of X do not jump simultaneously; this,
indeed, is the inherent feature of the conditional independent CMC copula.

Next, we will present an example of a strong CMC copula such that its
components have common jumps.

7.2.2. Common jump strong CMC copula

Let us consider two processes, Y 1 and Y 2, such that each Y i is an (F,FY i
)-

CDMC taking values in the state space {0, 1}. Suppose that their F-intensities
are

Ψ1(t) =

( 0 1

0 −at at

1 0 0

)
, Ψ2(t) =

( 0 1

0 −bt bt

1 0 0

)
,

where a, b are nonnegative F-progressively measurable stochastic processes,
which have left limits and countably many jumps. Moreover assume that
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Q(Y 1
0 = 0) = Q(Y 2

0 = 0) = 1. Next, let Λ be a matrix valued process given
by

Λt =


(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) −(at + bt − ct) bt − ct at − ct ct
(0, 1) 0 −at 0 at
(1, 0) 0 0 −bt bt
(1, 1) 0 0 0 0

,
where c is an F-progressively measurable stochastic processes, which has left
limits and countably many jumps, and such that

0 ≤ ct ≤ at ∧ bt, t ∈ [0, T ].

Moreover, let ξ be an S-valued random variable satisfying Q(ξ = (0, 0)) = 1.
It can be easily checked that (Λ, ξ) satis�es conditions (CMC-1)-(CMC-4), so
that it is a strong CMC pre-copula between conditional Markov chains Y 1,
Y 2. Now, in view of Theorem 3.3 and Proposition 4.16, one can construct a
stochastic process X = (X1, X2), which is a two-variate (F,FX)-CDMC with
an F-intensity Λ and such that X0 = ξ. Moreover, by Proposition 5.9, the
process X is strongly Markovian consistent with respect to (F,Y) and hence
X is a strong CMC copula between Y 1 and Y 2. Note also that, in view of
interpretation of intensity, the coordinates of the process X have common
jumps, provided that c > 0.

Remark 7.4. We have chosen this very simple example just to illustrate an
idea of construction of strong copulae for CMC. One can, in a similar spirit
as in Bielecki et al. (2014d), generalize it to arbitrary dimension N pre-
serving that each marginal process is two-states absorbing CMC. Then the
F-intensity matrix has a similar structure as in the above example, i.e. its
entries are marginal intensities minus intensities of "common jumps" to ab-
sorbing states. Generalization to a higher number of non-absorbing states is
tricky and requires clever parametrization, since number of free parameters
in strong CMC copula becomes enormously large (see, e.g. Bielecki et al.
(2008c)).

7.2.3. Perfect dependence strong CMC copula

Let Y 1, . . . , Y N be processes such that each Y k is an (F,FY k
)-CMC,

and such that they have the same FT conditional laws. Consider process
X = (X1, . . . , XN), where Xk = Y 1, k = 1, 2, . . . , N . It is clear that X
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furnishes a strong CMC copula between conditional Markov chains Y 1, . . . ,
Y N .

Obviously other CMC copulae between Y 1, . . . , Y N , such as conditionally
independent copulae, can be constructed.

7.3. Weak CMC Copulae

De�nition 7.5. Let Y =
{
Y 1, . . . , Y N

}
be a family of processes, de�ned on

some underlying probability space (Ω,A,Q), such that each Y k is an (F,FY k
)-

CMC with values in Sk. A weak CMC copula between processes Y 1, . . . , Y N

is any multivariate process X = (X1, . . . , XN), de�ned on (Ω,A) endowed
with some probability measure P, such that X is an (F,FX)�CMC, and such
that it satis�es the weak Markovian consistency property with respect to
(F,Y).

Similarly as in the case of the strong CMC copulae, the methodology
developed in Section 3 allows us to construct weak CMC copulae between
processes Y 1, . . . , Y N , that are de�ned on some underlying probability space
(Ω,A,Q) endowed with a reference �ltration F, and are such that each Y k

is (F,FY k
)-CDMC with F�intensity, say, Ψk = [ψk;xkyk ]xk,yk∈Sk

.
In view of Theorem 3.3, Proposition 6.8, Lemma 9.6, as well as of Remark

6.9, a natural starting point for constructing a weak CMC copula X between
Y 1, . . . , Y N is to determine any system of stochastic processes (λxy)x,y∈S and
any S-valued random variable ξ = (ξ1, . . . , ξN) on (Ω,A) and to �nd a prob-
ability measure P, such that the following conditions are satis�ed:

(WCMC-1) The matrix process Λt = [λxyt ]x,y∈S satis�es canonical condi-
tions relative to the pair (S,F).

(WCMC-2)
P(ξ = y|FT ) = P(ξ = y|F0), ∀y ∈ S.

(WCMC-3)

P(ξk = yk|FT ) = Q(Y k
0 = yk|FT ), ∀yk ∈ Sk, k = 1, . . . , N.
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(WCMC-4)

ψk;xkyk

t (ω)=
∑

xn,yn∈Sn
n=1,2,...,N,n6=k

λ
(x1,...,xN )(y1,...,yN )
t (ω)

P
(
X1
t = x1, . . . , XN

t = xN |Ft
)

(ω)

P
(
Xk
t = xk|Ft

)
(ω)

,

∀xk, yk∈Sk, yk 6= xk and ∀ω ∈ B(t, k, xk) ∩ C(t, k, xk),
(7.5)

for almost every t ∈ [0, T ], where processX = (X1, . . . , XN) is a (F,FX)�
CMC (under probability measure P) with intensity Λ and initial distri-
bution given by ξ.

We will call any triple (Λ, ξ,X) satisfying conditions (WCMC-1)�(WCMC4)
a base for weak CMC copula between processes Y 1, . . . , Y N , and we will call
the process X in (Λ, ξ,X) a candidate for weak CMC copula between pro-
cesses Y 1, . . . , Y N . So, a possible method for constructing a weak CMC
copula between processes Y 1, . . . , Y N is to �rst construct a base (Λ, ξ,X) for
weak CMC copula between processes Y 1, . . . , Y N , and then to skillfully verify
that the candidate process X satis�es the weak Markovian consistency prop-
erty with respect to (F,Y), and thus, that it is a weak CMC copula between
processes Y 1, . . . , Y N . We will illustrate application of this method in Sec-
tion 7.3.1. Before we proceed to the next subsection, we observe that remark
analogous to Remark 7.3 applies in the case of the weak CMC copulae.

The next section provides an example of a weak only CMC copula.

7.3.1. Example of a weak CMC copula that is not strong CMC copula

In Section 7.2 we gave three examples of strong CMC copulae. Conse-
quently, they are also examples of weak CMC copulae. Here, we will give
an example of a weak only CMC copula. In particular, this property implies
that in the present example the immersion property formulated in Theorem
6.10 is not satis�ed.

Let us consider processes Y 1 and Y 2, de�ned on some probability space
(Ω,A,Q), such that each Y i is an (F,FY i

)-CDMC taking values in the state
space Si = {0, 1}. We assume that F-intensities of Y 1 and Y 2 are, respec-
tively,

Ψ1
t =

(
−(at + ct) + ct

αt

δt+αt
(at + ct)− ct αt

δt+αt

0 0

)
,
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Ψ2
t =

(
−(bt + ct) + ct

βt
δt+βt

(bt + ct)− ct βt
δt+βt

0 0

)
,

where

αt = e−
∫ t
0 audu

∫ t

0

bue
−

∫ u
0 (bv+cv)dvdu, βt = e−

∫ t
0 budu

∫ t

0

aue
−

∫ u
0 (av+cv)dvdu,

δt = e−
∫ t
0 (au+bu+cu)du,

for a, b, c being positive F-progressive stochastic processes, which have left
limits and countably many jumps. Moreover, suppose that Q(Y i

0 = 0) =
1, i = 1, 2, which implies Q(Y i

0 = 0|FT ) = 1.
Our goal is to �nd a weak CMC copula between Y 1 and Y 2. Towards

this end we will look for an (F,FX)-CMC process X de�ned on some prob-
ability space (Ω,A,P), satisfying condition (7.5) adapted to the present
setup. In particular, the state space of process X needs to be equal to
S = {(0, 0), (0, 1), (1, 0), (1, 1)}.

However, since condition (7.5) is a necessary condition for weak Marko-
vian consistency with respect to (F,Y), but not a su�cient one in general,
then a process satisfying (7.5) may not be weakly Markovian consistent with
respect to (F,Y). Nevertheless, we will construct an (F,FX)-CMC process X
that satis�es condition (7.5) and is weakly Markovian consistent with respect
to (F,Y), so that it is a weak CMC copula between Y 1 and Y 2.

Let us consider stochastic process X with state space S, which is an
(F,FX)-CDMC with an F-intensity matrix Λ given by

Λt =



(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) −(at + bt + ct) bt at ct

(0, 1) 0 −at 0 at

(1, 0) 0 0 −bt bt

(1, 1) 0 0 0 0

, (7.6)

and with the initial distribution P(X0 = (0, 0)) = 1. The components X1

and X2 are processes with state space S = {0, 1}, and such that the state
1 is an absorbing state for both X1 and X2. Thus, by similar arguments as
in (Bielecki et al., 2015, Example 2.4), X1 (resp. X2) is an (F,FX1

)-CDMC
(resp. (F,FX2

)-CDMC). Consequently, X is a weakly Markovian consistent
process relative to (X1,F) ((X2,F) resp.).
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It is shown in Bielecki et al. (2015b) that a version of F-intensity of X1

is given by

Λ1
t =

(
−(at + ct) + ct

αt

δt+αt
(at + ct)− ct αt

δt+αt

0 0

)
= Ψ1

t ,

and that a version of F-intensity of X2 is given by

Λ2
t =

(
−(bt + ct) + ct

βt
δt+βt

(bt + ct)− ct βt
δt+βt

0 0

)
= Ψ2

t .

Consequently, X is a weak CMC copula for Y 1 and Y 2.
Finally, we will demonstrate that X is in fact weak only CMC copula for

Y 1 and Y 2. We have

P(X1
t = 0|FT ∨ σ(Xs))1{X1

s=0,X2
s=0} = 1{X1

s=0,X2
s=0}(p(0,0)(0,0)(s, t) + p(0,0)(0,1)(s, t))

= 1{X1
s=0,X2

s=0}

(
e−

∫ t
s (au+bu+cu)du + e−

∫ t
s audu

∫ t

s

bue
−

∫ u
s (bv+cv)dvdu

)
,

and

P(X1
t = 0|FT ∨ σ(Xs))1{X1

s=0,X2
s=1} = 1{X1

s=0,X2
s=1}(p(0,1)(0,0)(s, t) + p(0,1)(0,1)(s, t))

= 1{X1
s=0,X2

s=1}e
−

∫ t
s audu.

Clearly(
e−

∫ t
s (au+bu+cu)du + e−

∫ t
s audu

∫ t

s

bue
−

∫ u
s (bv+cv)dvdu

)
6= e−

∫ t
s audu, (7.7)

unless c ≡ 0 on [s, t]. In this case (7.7) implies that

P
(
P(X1

t = 0|Fs ∨ FXs ) 6= P(X1
t = 0|Ft ∨ σ(X1

s ))
)
> 0.

Thus process X is not strongly Markovian consistent, so X is a weak only
CMC copula between Y 1 and Y 2 unless c ≡ 0. For c ≡ 0, it follows from
Section 7.2.2, that process X is a strong CMC copula between Y 1 and Y 2 .

Remark 7.6. Note that Λt admits the following representation

Λt = Ψ1
t ⊗ I2 + I1 ⊗Ψ2(t) +B12

t −B1
t −B2

t , (7.8)
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where the term Ψ1
t ⊗ I2 + I1⊗Ψ2

t gives the conditionally independent copula
between Y 1 and Y 2 (cf. Section 7.2.1), and the remaining terms

B12
t =


−ct 0 0 ct
0 0 0 0
0 0 0 0
0 0 0 0

 , B1
t =


−ct δt

δt+βt
ct

δt
δt+βt

0 0

0 0 0 0
0 0 −ct δt

δt+βt
ct

δt
δt+βt

0 0 0 0

 ,

B2
t =


−ct δt

δt+αt
0 ct

δt
δt+αt

0

0 −ct δt
δt+αt

0 ct
δt

δt+αt

0 0 0 0
0 0 0 0


introduce the dependence structure between Y 1 and Y 2.

Representations of the form (7.8) are important for construction of CMC
copulae and will be studied in detail in Bielecki, Jakubowski and Niew¦gªowski
Bielecki et al. (????).

8. Applications to the premium evaluation for unemployment in-
surance products

In the recent paper by Biagini, Groll and Widenmann Biagini et al. (2013)
a very interesting problem of evaluation of premia for unemployment insur-
ance products, for a pool of individuals, was considered. We would like to
suggest here a possible generalization of the model studied in Biagini et al.
(2013); this generalization, we believe, may provide a more adequate way to
deal with computation of the premia.

Biagini et al. Biagini et al. (2013) used the DSMC framework to model
the dynamics of employment status of an individual. The dynamics are
modeled in Biagini et al. (2013) under the probability measure, say P, called
a real-world measure. Then, using these dynamics they aim at computing
for t ∈ [0, T ] the insurance premium, which is denoted as Pt. In Biagini et al.
(2013), the evolution of the employment status of an individual k is given in
terms of a Markov chain, say Xk, which takes values in the state space Sk =
{1, 2}, where the state ”1“ indicates that the individual is employed, and the
”2“ indicates that the individual is unemployed. It is assumed that process
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Xk is an (FZ ,FXk
)-DSMC, where FZ is a reference �ltration generated by

some factor process Z.
As stated earlier, the quantity to be computed for the individual k is the

value of the premium of insurance against unemployment. Roughly speaking,
the premium P k

t at time t is given as

P k
t = EP(Φk(X

k)|Gkt ),

where Φk is some random functional of process Xk, and where Gkt = FZt ∨
FXk

t . In particular, the premium at time t = 0 needs to be computed, that is

P k
0 = EP(Φk(X

k)|Gk0 ).

Note, that we have written P k
0 as a conditional expectation, given Gk0 , rather

than the unconditional expectation, as it is done in formula (2) in Biagini
et al. (2013).
Proposed CMC copula approach. We think that, for the purpose of
evaluation of premia for unemployment insurance products for a pool of
individuals labeled as k = 1, 2, . . . , N, it is important to account for possible
dependence between processes Xk, k = 1, 2, . . . , N.

Thus, we think that it may be advantageous to enrich the model studied
in Biagini et al. (2013) by considering a process Y = (Y 1, . . . , Y N), which is
a CMC copula between processes Xk, k = 1, 2, . . . , N.

Thanks to copula property, the characteristics of dependence between
processes Xk, k = 1, 2, . . . , N can be estimated separately from estimation
of the distributional characteristics of each processXk. The latter task can be
e�ciently executed using the methodology outlined in Biagini et al. (2013).

The premium P k
t at time t is given in the CMC copula model as

P k
t = E(Φk(Y

k)|Ĝkt ),

where Ĝkt = FZt ∨ FY
k

t . If process Y is constructed as a weak only CMC
copula between processes Xk, k = 1, 2, . . . , N, then we have that, with Ĝt =
FZt ∨ FYt ,

E(Φk(Y
k)|Ĝkt ) 6= E(Φk(Y

k)|Ĝt).

This, of course, means that the employment status of the entire pool in�u-
ences the calculation of the individual premium, a feature, which we think is
important.
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The theory of strong and weak CMC copulae can be extended in straight-
forward manner to modeling structured dependence between subgroups of
processes Xk, k = 1, 2, . . . , N, . This will allow for study of insurance premia
modeling for relevant subgroups of employees.

9. Appendix

In this appendix we provide technical results needed for derivations done
in Section 3.

Lemma 9.1. Let ξ be an S�valued random variable de�ned on a �ltered
probability space (Ω,A,H, P̃) with H = {Ht}t∈[0,T ]. Suppose that

EP̃(h(ξ)|HT ) = EP̃(h(ξ)|H0) (9.1)

for every real valued function h on S. Then H is P̃�immersed in H ∨ σ(ξ).

Proof. It is su�cient to prove (c.f. (Bielecki and Rutkowski, 2004, Lemma
6.1.1)) that for every ψ ∈ L∞(HT ) it holds that

EP̃(ψ|Ht ∨ σ(ξ)) = EP̃(ψ|Ht), ∀t ∈ [0, T ]. (9.2)

Let us �x t ∈ [0, T ] and ψ ∈ L∞(HT ). By the standard π − λ system argu-
ments it is enough to show that

EP̃(ψ1A1B(ξ)) = EP̃(EP̃(ψ|Ht)1A1B(ξ)), ∀A ∈ Ht, B ⊆ S, (9.3)

where

1B(ξ) =

{
1, ξ ∈ B,
0, ξ /∈ B.

Towards this end we �rst derive another representation of the right hand side
in (9.3),

EP̃(EP̃(ψ|Ht)1A1B(ξ)) = EP̃(EP̃(ψ1A|Ht)1B(ξ)) = EP̃(EP̃(EP̃(ψ1A|Ht)1B(ξ)|HT ))

= EP̃(EP̃(ψ1A|Ht)EP̃(1B(ξ)|HT )) = EP̃(EP̃(ψ1A|Ht)EP̃(1B(ξ)|H0))

= EP̃(EP̃(ψ1AEP̃(1B(ξ)|H0)|Ht)) = EP̃(ψ1AEP̃(1B(ξ)|H0)),

where the fourth equality follows from (9.1). The left hand side of (9.3) can
be rewritten as

EP̃(ψ1A1B(ξ)) = EP̃(EP̃(ψ1A1B(ξ)|HT )) = EP̃(ψ1AEP̃(1B(ξ)|HT )) = EP̃(ψ1AEP̃(1B(ξ)|H0)),

where the last equality follows from (9.1). This proves (9.3) and thus con-
cludes the proof of the lemma.
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Corollary 9.2. Let K be a �ltration on (Ω,A, P̃), such that it is independent

of H ∨ σ(ξ). Suppose that ξ satis�es (9.1). Then H is P̃�immersed in H ∨
K ∨ σ(ξ).

Proof. The result follows from Lemma 9.1 and from the fact that if H1 and
H2 are two independent �ltrations on (Ω,A, P̃), then H1 is P̃-immersed in
H1 ∨H2.

In the next lemma we use the same probabilistic setup as in Section 2.

Lemma 9.3. Let X be an F adapted càdlàg process, and let N be a Poisson
process. Suppose that N and F are independent. Then

P ({ω ∈ Ω : ∃t ∈ [0, T ] s.t. ∆Xt(ω)∆Nt(ω) 6= 0}) = 0.

Proof. First note that both X and N have countable number of jumps on
[0, T ], and let denote their jump times as (Tn)n≥1 and (Sn)n≥1, respectively.
Independence of N and F implies that (Tn)n≥1 and (Sn)n≥1 are independent.
Since each random variable Sn is Gamma distributed and thus has density,
then for any n, k ≥ 1 it holds that P(Tn = Sk) = 0. Since

A := {ω : ∃t ∈ [0, T ] s.t. ∆Xt(ω)∆Nt(ω) 6= 0} =
⋃
n,k≥1

{ω : Tn(ω) = Sk(ω)}

we have
P(A) ≤

∑
n,k≥1

P(Tn = Sk) = 0.

Lemma 9.4. Let Z and Y be solutions of the random ODE's

dZt = −ΨtZtdt, Z0 = I, t ∈ [0, T ], (9.4)

dYt = YtΨtdt, Y0 = I, t ∈ [0, T ], (9.5)

where Ψ is an appropriately measurable matrix valued process satisfying (2.5)15

and ∑
x∈S

∫ T

0

|ψxxu |du <∞. (9.6)

15For any ω for which Ψ does not satisfy (2.5), we set Ψt(ω) = 0 for all t ∈ [0, T ].
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Then, the matrix valued random processes (Yt)0≤t≤T and (ZtYv)0≤t≤v, v ∈
[0, T ], have elements that are nonnegative and bounded by 1. Moreover

ZtYt = I for t ∈ [0, T ]. (9.7)

Proof. Using Remark 4.8 one can verify that for each t the functions Yt(·) and
Zt(·) are measurable, so that Y and Z are matrix valued random processes.

Since Ψ satis�es (2.5), then for every ω, Y·(ω) is a solution of matrix
forward Kolmogorov equation, and so its elements belong to the interval
[0, 1] (since they give conditional probabilities, see e.g. Gill and Johansen
(Gill and Johansen, 1990, Thm. 12 and Thm. 13)).

Next, observe that, letting Z(t, v) = ZtYv we have

dtZ(t, v) = (dZt)Yv = −ΨtZtYvdt = −ΨtZ(t, v)dt, 0 ≤ t ≤ v.

Moreover, it is easy to verify that Z(v, v) = ZvYv = Z0Y0 = I. We thus see
that for every ω, Z(·, v)(ω) satis�es the Kolmogorov backward equation,

dtZ(t, v) = −ΨtZ(t, v)dt, 0 ≤ t ≤ v, Z(v, v) = I,

and so, it has non-negative elements bounded by 1.

The following lemma is used in the proof of Theorem 2.11.

Lemma 9.5. Suppose that assumptions of Theorem 2.11 are satis�ed. Let
U be an Rd-valued bounded random variable, and let Z and Y be solutions
of the random ODE's (9.4) and (9.5), respectively. Fix u and v satisfying
0 ≤ u < v ≤ T, and �x set A ∈ Fu ∨ Gu. Then, the process V given by

Vt = 1AH
>
t ZtE(YvU |Ft), t ∈ [0, T ],

is an F ∨G martingale on the interval [u, v].

Proof. It su�ces to prove that the process V̂ given as

V̂t = H>t ZtE(YvU |Ft), t ∈ [0, T ],

is an F ∨ G martingale on [0, v]. Furthermore, since all components of Ht

and ZtYv are non-negative and bounded by 1 (for the latter see Lemma 9.4),
and since U is bounded, then it su�ces to show that V̂ is an F ∨ G local
martingale.
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Towards this end we �rst verify that vector valued process L = (Lx, x ∈
S)> de�ned by Lt := H>t Zt, t ∈ [0, T ], is an F ∨ G � local martingale with
the following representation

Lt = H>0 +

∫ t

0

dM>
u ·Zu, t ∈ [0, T ]. (9.8)

Indeed, since Λ is an F-intensity, integration by parts yields that

dLt = d(H>t Zt) = H>t−dZt + dH>t ·Zt = −H>t−ΛtZtdt+ dH>t ·Zt = dM>
t ·Zt.

Next, we observe that the vector valued process U(·, v) = (Ux(·, v), x ∈ S)>

de�ned by
Ux(t, v) =

∑
y∈S

E (Y xy
v Uy|Ft) , t ∈ [0, T ],

is an F-martingale. Since we assume that F is right-continuous we can take
right-continuous modi�cation of U(·, v).

Thus, by assumptions (2.9) and (2.10) in Theorem 2.11, its components
are orthogonal to components of M . Hence the square bracket processes
[My, Ux(·, v)], x, y ∈ S, are F∨G-local martingales. By properties of square
brackets (cf. Protter (Protter, 2005, Thm. II.6.29)) we obtain

[Lx, Ux(·, v)]t =
∑
y∈S

∫ t

0

Zy,x
u d[My, Ux(·, v)]u.

Thus, by predictability and local boundedness of Z, and by (Protter, 2005,
Thm. IV.2.29), we conclude that the process [Lx, Ux(·, v)] is a local martin-
gale, and consequently that the local martingales Lx and Ux(·, v) are orthog-
onal. Since,

V̂t = LtU(t, v) =
∑
x∈S

LxtU
x(t, v), t ∈ [0, T ],

we conclude that V̂ is an F∨G � local martingale as a sum of local martingales.

Lemma 9.6. Let Z be an (F,FZ)-CDMC and let U be an (F,FU)-CDMC,

with values in some (�nite) state space Ŝ, and with intensities ΓZ and ΓU ,
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respectively. Then, the conditional law of Z given FT coincides with the
conditional law of U given FT if and only if

ΓZ = ΓU du⊗ dP− a.e., (9.9)

P(Z0 = x|FT ) = P(U0 = x|FT ) ∀x ∈ Ŝ. (9.10)

Proof. First we prove su�ciency. Suppose that (9.9) and (9.10) hold. Recall
that the c-transition �elds PZ (PU respectively) satisfy Kolmogorov equa-
tions (4.12) and (4.13). Since (9.9) holds we see, by uniqueness of solutions
of Kolmogorov equations, that PZ = PU . This and (9.10), by Proposition
4.5 (see eq. (4.7) ) imply that conditional law of Z and U given FT coincide.
Now we prove necessity. Suppose that conditional laws of Z and U given FT
coincide, we want to show that (9.9) and (9.10) hold. First, note that the
equality of conditional laws of Z and U given FT implies (9.10). To show
that (9.9) holds it su�ces to show that their c-transition �elds are equal.
Indeed, this equality implies that, for any 0 ≤ v ≤ t ≤ T ,

0 = PZ(v, t)−PU(v, t) =

∫ t

v

(
PZ(v, u)ΓZ − PU(v, u)ΓUu

)
du =

∫ t

v

PZ(v, u)(ΓZu−ΓUu )du.

Consequently

PZ(v, u)(ΓZu − ΓUu ) = 0, du⊗ dP− a.e. (on [v, T ]),

since PZ(v, u) is invertible (cf. (Jakubowski and Niew¦gªowski, 2010a, Propo-
sition 3.11)). This in turn implies (9.9). This ends the proof.
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