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Abstract

A Markov model is constructed for studying the counterparty risk in a CDS contract.
The ‘wrong way risk’ in this model is accounted for by the possibility of the common
default of the reference name and of the counterparty. A dynamic copula property as
well as affine model specifications make pricing and calibration very efficient. We also
consider the issue of dynamically hedging the CVA with a rolling CDS written on the
counterparty. Numerical results are presented to show the adequacy of the behavior of
CVA in the model with stylized features.

Keywords: Counterparty Credit Risk, CDS, CVA, Wrong Way Risk, Dynamic Hedg-
ing.

1 Introduction

The sub-prime crisis has highlighted the importance of counterparty risk in OTC derivative
markets, particularly in the case of credit derivatives. We consider in this paper the case
of a Credit Default Swap with counterparty risk. This topic, which corresponds to the
emblematic case of CDSs between Lehman and AIG, already received a lot of attention in
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2 CDS with counterparty risk

the literature. It can thus be considered as a benchmark problem of counterparty credit
risk.

There has been a lot of research activity in the recent years devoted to valuation of counter-
party risk. To quote but a few references:
• Huge and Lando [21] propose a rating-based approach,
• Hull and White [20] study this problem in the set-up of a static copula model,
• Jarrow and Yu [22] use an intensity contagion model, further considered in Leung and
Kwok [26],
• Brigo and Chourdakis [11] work in the set-up of their Gaussian copula and CIR++ inten-
sity model, extended to the issue of bilateral counterparty credit risk in Brigo and Capponi
[10],
• Blanchet-Scalliet and Patras [8] or Lipton and Sepp [25] develop structural approaches,
• Stein and Lee [29] give a discussion of theoretical and practical issues regarding compu-
tations of credit valuation adjustment in the fixed income markets,
• Recent monographs of Cesari et al. [13] and Gregory [19] provide discussion of modeling
and computational aspects regarding managing of exposure to counterparty risk.

In this paper (see [15] for a preparatory study in the set-up of a deterministic intensities
model), we shall work in a Markovian copula set-up [5] with marginals auto-calibrated to
the related CDS curves, the model dependence structure being determined by the possibility
of simultaneous defaults of the counterparty and of the firm underlying the CDS. Here we
apply the Markov copula approach to model joint default between counterparty and the
reference name in a CDS contract. Exactly same approach can be applied to modeling the
”double-default” effect (cf. [2]).

Note that we limit ourselves to the so called unilateral counterparty risk, not considering the
counterparty risk due to the possibility of ‘one’s own default’. Whether counterparty risk
should be assessed on a unilateral or bilateral basis is a controversial issue. For discussion
of bilateral counterparty risk we refer the reader to, for instance, Brigo and Capponi [10],
Assefa et al. [1], or to Bielecki et al. [7].

There has been a lot of research activity in the recent years devoted to valuation of counter-
party risk. In contrast, almost no attention has been devoted to quantitative studies of the
problem of (dynamic) hedging of this form of risk. There is some discussion devoted to
dynamic hedging of counterparty exposure in Cesari et al. [13] and in Gregory [19].

In this paper, we present formal mathematical results that provide analytical basis for the
quantitative methodology of dynamic hedging of counterparty risk. Due to space limitation,
we only provide a rather preliminary and incomplete study. But, we address the main the-
oretical issues of dynamic hedging of CVA, nevertheless. In particular, we provide formulae
for mean-variance delta for a combined hedging of spread risk and jump-to-default risk, as
well as a formula for mean-variance delta for hedging of the jump-to-default risk.

It needs to be stressed though that in this pilot study we only focus on hedging against
exposure to the specific credit risk of the counterparty. So, in essence, we are only concerned
with the credit deltas relative to the counterparty (sensitivities to counterparty spread, and
counterparty jump-to-default). Credit deltas relative to the reference name, as well as the
market deltas (specifically, sensitivities to rates), and also the so called cross-gammas, i.e.
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the change in market sensitivities due to change in spread (cf. [14]), will be considered in
a separate study.

1.1 Outline of the Paper

Section 2 recalls the basics of a CDS with counterparty credit risk. In Section 3, we present
our Markov model. In Section 4, the main valuation results are derived. Hedging is discussed
in Section 5. In Section 6, we propose an affine intensities specification of the model, and
discuss its calibration. A variant of the model using extended CIR intensity processes is
devised in Section 7. Section 8 presents numerical results.

2 Cash Flows and Pricing in a General Set-Up

In this section, we briefly recall the basics of CDS (unilateral) counterparty risk, referring the
reader to [15] for every detail. Let us thus be given a CDS with maturity T and contractual
spread κ, as considered from the perspective of the investor, assumed by default to be buyer
of default protection on the reference firm of the CDS (case of payer CDS). In the case of
a receiver CDS all the related quantities will be denoted with a ‘bar’, like CDS. Indices 1
and 2 will refer to quantities related to the firm and to the counterpart, first of which, their
default times τ1 and τ2, and their recoveries upon default, R1 and R2. The default times
τ1 and τ2 cannot occur at fixed times, but may occur simultaneously. The recovery rates
R1 and R2 are assumed to be constant for simplicity. Finally one assumes a deterministic
discount factor β(t) = exp(−rt), for a constant short-term interest-rate function r. Given
a risk-neutral pricing model (Ω,F,P), where F = (Ft)t∈[0,T ] is a given filtration for which
the τis are stopping times, let Eθ stand for the conditional expectation under P given Fθ,
for any stopping time θ. Let ‘risky CDS’ and ‘risk-free CDS’ respectively refer to a CDS
with and without consideration of the counterparty risk.

Definition 2.1 (i) The price process of the risk-free CDS is given by Pt = Etpt, where the
discounted cumulative risk-free cash flows on (t, T ] are given by

β(t)pt = −κ
∫ τ1∧T

t
β(s)ds+ (1−R1)β(τ1)1t<τ1<T . (1)

For CDS, the risk-free cash flows are p̄t = −pt and the corresponding price process is
P̄t = Et[p̄t] = −Pt .
(ii) The price process of the risky CDS is given by Πt = Etπt, where the discounted cumu-
lative risky cash flows on (t, T ] are given by

β(t)πt = −κ
∫ τ1∧τ2∧T

t
β(s)ds+ β(τ1)(1−R1)1t<τ1<T

[
1τ1<τ2 +R21τ1=τ2

]
+β(τ2)1t<τ2<τ1∧T

[
R2P

+
τ2 − P

−
τ2

]
, (2)
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in which P+ stands for the positive part of P . The corresponding risky cumulative cash
flows and price process for CDS are given by

β(t)π̄t = κ

∫ τ1∧τ2∧T

t
β(s)ds− (1−R1)β(τ1)1t<τ1≤τ2∧T

+β(τ2)1t<τ2<τ1∧T
[
R2P

−
τ2 − P

+
τ2

]
,

and Π̄t = Et[π̄t].
(iii) The Credit Valuation Adjustments are the processes defined by, for t ∈ [0, T ],

Θt = 1{t<τ2}(Pt −Πt) , Θ̄t = 1{t<τ2}(P̄t − Π̄t) .

Note that pt = p̄t = Pt = P̄t = 0 for t ≥ τ1 ∧ T , and πt = π̄t = Πt = Π̄t = Θt = Θ̄t = 0 for
t ≥ τ1 ∧ τ2 ∧ T .

Proposition 2.1 (See [1, 15, 12]) One has, on {t < τ2},

β(t)Θt = 1{t<τ2}Et
[
β(τ2)ξ(τ2)

]
, β(t)Θ̄t = 1{t<τ2}Et

[
β(τ2)ξ̄(τ2)

]
,

for the Fτ2-measurable Potential Future Exposures (PFEs) defined by

ξ(τ2) := (1−R2)
(
1τ2<τ1∧TP

+
τ2 + 1τ2=τ1<T (1−R1)

)
,

ξ̄(τ2) := (1−R2)P−τ21τ2<τ1∧T .

Remark 2.2 A major issue in regard to counterparty credit risk is the so-called wrong
way risk, namely the risk that the value of the contract may be particularly high from the
perspective of the other party at the moment of default of the counterparty. This risk is
represented for the payer CDS by the ‘large’ term 1 − R1 in ξ(τ2) in case of joint default
of the counterparty and of the reference firm. For the receiver CDS there is no wrong way
risk, at least not of this type.

3 Model

Let H = (H1, H2) denote the pair of the default indicator processes, so H i
t = 1τi≤t. Given

a suitable factor process X = (X1, X2) to be made precise below, we shall consider a
Markovian model of the pair (X,H) relative to its own filtration F = X∨H, with generator
given by, for u = u(t, x, e) with t ∈ R+, x = (x1, x2) ∈ R2, e = (e1, e2) ∈ {0, 1}2:

Au(t, x, e) = ∂tu(t, x, e) +
∑

1≤i≤2

li(t, xi)
(
u(t, x, ei)− u(t, x, e)

)
+ l3(t) (u(t, x, 1, 1)− u(t, x, e))

+
∑

1≤i≤2

(
bi(t, xi)∂xiu(t, x, e)+

1
2
σ2
i (t, xi)∂

2
x2
i
u(t, x, e)

)
+ %σ1(t, x1)σ2(t, x2)∂2

x1,x2
u(t, x, e) ,

(3)

where, for i = 1, 2:
• ei denotes the vector obtained from e, by replacing the component i by number one,



T.R. Bielecki, S. Crépey, M. Jeanblanc and B. Zargari 5

• bi and σ2
i denote factor drift and variance functions, and li is an individual default inten-

sity function,
• % and l3(t) respectively stand for a factor correlation and a joint defaults intensity func-
tion. The choice % = 0 will thus correspond to independent factor processes X1 and X2,
whereas it is also possible to consider a common factor process X1 = X2 = X by letting
b1 = b2, σ1 = σ2, X

1
0 = X2

0 and % = 1.

The F-intensity-matrix function of H (see, e.g., Bielecki and Rutkowski [4]) is thus given by
the following 4 × 4 matrix A(t, x), where the first to fourth rows (or columns) correspond
to the four possible states (0, 0), (1, 0), (0, 1) and (1, 1) of Ht :

A(t, x) =


−l(t, x) l1(t, x1) l2(t, x2) l3(t)

0 −q2(t, x2) 0 q2(t, x2)

0 0 −q1(t, x1) q1(t, x1)

0 0 0 0

 ,

with, for every i = 1, 2,

qi(t, xi) = li(t, xi) + l3(t) (4)

and l(t, x) = l1(t, x1) + l2(t, x2) + l3(t). We assume standard regularity and growth as-
sumptions on the coefficients of A so as to ensure well-posedness of the related martingale
problem (see, e.g., Ethier and Kurtz [18]). One then has,

Proposition 3.1 (i) For every i = 1, 2, the process (Xi, H i) is an F-Markov process with
generator given by, for ui = ui(t, xi, ei), with t ∈ R+, xi ∈ R, ei ∈ {0, 1}:

Aiui(t, xi, ei) =∂tui(t, xi, ei) + bi(t, xi)∂xiui(t, xi, ei) +
1
2
σ2
i (t, xi)∂

2
x2
i
ui(t, xi, ei)

+ qi(t, xi) (ui(t, xi, 1)− ui(t, xi, ei)) .
(5)

The F-intensity matrix function of H i is thus given by

Ai(t, xi) =

[
−qi(t, xi) qi(t, xi)

0 0

]

In other words, the process M i defined by, for i = 1, 2,

M i
t = H i

t −
∫ t

0
(1−H i

s)qi(s,X
i
s)ds , (6)

is an F-martingale.
(ii) One has, for every t ≥ 0,

P(τi > t) = E exp
(
−
∫ t

0
qi(u,Xi

u)du
)

, P(τ1 ∧ τ2 > t) = E exp
(
−
∫ t

0
l(u,Xu)du

)
. (7)



6 CDS with counterparty risk

Proof. (i) Applying the operator A in (3) to u(t, x, e) := ui(t, xi, ei), one gets,

Au(t, x, e) = Aiui(t, xi, ei),

where Ai is the operator defined in (5). In view of the Markov property of (X,H), the
process Mi defined by

Mi := ui(t,Xi
t , H

i
t)−

∫ t

0
Aiui(s,Xi

s, H
i
s)ds = u(t,Xt,Ht)−

∫ t

0
Au(s,Xs,Hs)ds ,

is an F-martingale. By the martingale characterization of Markov processes, the process
(t,Xi, H i) is thus F-Markovian with generator Ai. In particular for ui(t, xi, ei) := ei, one
has Aiui(t, xi, ei) = qi(t, xi)(1− ei) and the martingale Mi coincides with M i as of (6).
(ii) Since P(τi > t) = E1Hi

t=0 and P(τ1 ∧ τ2 > t) = E1H1
t=H2

t=0, and in view of the Markov
properties of (Xi, H i) and (X,H), identities (7) can be checked by verification in the related
Kolmogorov equations. 2

In the terminology of [5], the model (X,H) is a Markovian copula model with marginals
(Xi, H i)s, or, in the common factor case X1 = X2 = X, marginals (X,H i)s.

4 Pricing

Lemma 4.1 (i) For every i = 1, 2 and function p = p(t, xi), one has, for t ∈ [0, T ],

Et
∫ T

t
β(s)(1−H i

s)p(s,X
i
s)ds = (1−H i

t)β(t)v(t,Xi
t) , (8)

for a function v = v(t, xi) solving the following pricing PDE:
v(T, xi) = 0 , xi ∈ R(
∂t + bi(t, xi)∂xi + 1

2σ
2
i (t, xi)∂

2
x2
i

)
v(t, xi)−

(
r + qi(t, xi)

)
v(t, xi) + p(t, xi) = 0 ,

t ∈ [0, T ), xi ∈ R ,

(9)

or, equivalently to (9),

v(t, xi) = E
(∫ T

t
e−

∫ s
t (r+qi(ζ,X

i
ζ))dζp(s,Xi

s)ds
∣∣∣Xi

t = xi

)
. (10)

(ii) For every function π = π(t, x), one has, for t ∈ [0, T ],

Et
∫ T

t
β(s)(1−H1

s )(1−H2
s )π(s,Xs)ds = (1−H1

t )(1−H2
t )β(t)u(t,Xt) ,

for a function u = u(t, x) solving the following pricing PDE:
u(T, x) = 0 , x ∈ R2(
∂t +

∑
1≤i≤2

(
bi(t, xi)∂xi + 1

2σ
2
i (t, xi)∂

2
x2
i

)
+ %σ1(t, x1)σ2(t, x2)∂2

x1,x2

)
u(t, x)

−
(
r + l(t, x)

)
u(t, x) + π(t, x) = 0 , t ∈ [0, T ), x ∈ R2 ,

(11)
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or, equivalently to (11),

u(t, x) = E
(∫ T

t
e−

∫ s
t (r+l(ζ,Xζ))dζπ(s,Xs)ds

∣∣∣Xt = x
)
.

Proof. (i) The Markov property of (X1, H1) stated at Proposition 3.1(i) implies (8). More-
over, in view of the form (5) of the generator of (X1, H1), the function v has to satisfy (9).
From Feynman-Kač formula, one then obtains (10).
(ii) The result follows as in point (i), using the form (3) of the generator of (X,H). 2

Remark 4.1 Validity of this result and the related proof are in fact subject to suitable
regularity and growth assumptions on the data, including the coefficient functions p and
π. The strength of these assumptions depends on the meaning in which a solution to the
pricing equations is sought for. Since these kinds of technicalities are not the main issue
of the present paper, we refer the reader to the literature in this regard (see, for instance,
Karatzas and Shreve [23] for classical solutions).

Let further H{1}, H{2} and H{1,2} stand for the indicator processes of a default of the
firm alone, of the counterpart alone, and of a simultaneous default of the firm and the
counterpart, respectively. So

H{1,2} = [H1, H2] , H{1} = H1 −H{1,2} , H{2} = H2 −H{1,2} ,

where [H1, H2]t = 1τ1=τ2≤t stands for the quadratic covariation of the default indicator
processes H1 and H2.

Lemma 4.2 The F-intensity of Hι is of the form qι(t,Xt,Ht) for a suitable function qι(t, x, e)
for every ι ∈ I = {{1}, {2}, {1, 2}}, namely,

q{1}(t, x, e) = 1e1=0 (1e2=0l1(t, x1) + 1e2=1q1(t, x1))

q{2}(t, x, e) = 1e2=0 (1e1=0l2(t, x2) + 1e1=1q2(t, x2))

q{1,2}(t, x, e) = 1e=(0,0)l3(t) .

Put another way, for every ι ∈ I, the process M ι defined by,

M ι
t = Hι

t −
∫ t

0
qι(s,Xs,Hs)ds ,

is an F-martingale, where the intensity processes qι(t,Xt, Ht)s are given by

q{1}(t,Xt,Ht) = (1−H1
t )
(
(1−H2

t )l1(t,X1
t ) +H2

t q1(t,X1
t )
)

q{2}(t,Xt,Ht) = (1−H2
t )
(
(1−H1

t )l2(t,X2
t ) +H1

t q2(t,X2
t )
)

q{1,2}(t,Xt,Ht) = (1−H1
t )(1−H2

t )l3(t) .
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Proof. An application of the F-local martingale characterization of the F-Markov process
(X,H) with generator A in (3) yields the F-intensity γ of process H1H2:

γt = (1−H1
t )H2

t l1(t,X1
t ) + (1−H2

t )H1
t l2(t,X2

t ) + (1−H1
tH

2
t )l3(t).

Using Proposition 3.1(i), one deduces the desired expression for the F-intensity process of

H{1,2} = [H1, H2] = −
∫ ·

0
H1
t−dH

2
t −

∫ ·
0
H2
t−dH

1
t +H1H2 ,

and then the F-intensity processes of H{i} is obtained using H{i} = H i−H{1,2}, for i = 1, 2 .
2

We are now in a position to derive the risk-free and risky CDS pricing equations.

Proposition 4.3 (i) The price of the risk-free CDS admits the representation:

Pt = (1−H1
t )v(t,X1

t ) ,

for a pre-default pricing function v = v(t, x1) as of Lemma 4.1(i), with i = 1 and

p(t, x1) = (1−R1)q1(t, x1)− κ . (12)

(ii) The price of the risky CDS admits the representation:

Πt = (1−H1
t )(1−H2

t )u(t,Xt) ,

for a pre-default pricing function u = u(t, x) as of Lemma 4.1(ii) with

π(t, x) = (1−R1)
[
l1(t, x1) +R2l3(t)

]
+ l2(t, x2)

[
R2v

+(t, x1)− v−(t, x1)
]
− κ . (13)

(iii) The price of the risky CDS admits the representation:

Π̄t = (1−H1
t )(1−H2

t )ū(t,Xt) ,

for a pre-default pricing function ū = ū(t, x) as of Lemma 4.1(ii) with

π̄(t, x) = κ− (1−R1)q1(t, x1) + l2(t, x2)
[
R2v

−(t, x1)− v+(t, x1)
]
. (14)

Proof. (i) One has Pt = Et(pt), with

β(t)pt = −κ
∫ T

t
β(s)(1−H1

s )ds+ (1−R1)
∫ T

t
β(s)dH1

s

=
∫ T

t
β(s)(1−H1

s )p(s,X1
s )ds+ (1−R1)

∫ T

t
β(s)dM1

s ,

with p defined by (12). Since Et(
∫ T
t β(s)dM1

s ) = 0, the result follows by an application of
Lemma 4.1(i).
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(ii) One has Πt = Et(πt), with πt defined in (2). As in part (i), we write πt in terms of
integrals with respect to Hιs:

β(t)πt = −κ
∫ T

t
β(s)(1−H1

s )(1−H2
s )ds+ (1−R1)

∫ T

t
β(s)(1−H2

s−)dH{1}s

+R2(1−R1)
∫ T

t
β(s)dH{1,2}s +

∫ T

t
β(s)

[
R2v

+(s,X1
s )− v−(s,X1

s )
]
(1−H1

s−)dH{2}s ,

where (i) was used in the last term. But in view of Lemma 4.2, this expression coincides,
up to a martingale term, with∫ T

t
β(s)(1−H1

s )(1−H2
s )π(s,Xs)ds ,

where π is given by (13). The result then follows by an application of Lemma 4.1(ii).
(iii) can be proved similarly to (ii). 2

Note finally that in the case of time-deterministic intensities, the valuation PDEs reduce
to ODEs, and semi-explicit formulas in the form of integrals with respect to time can be
obtained for most quantities of interest, including the CVAs (see [15]).

5 Hedging of Counterparty Exposure

In order to discuss hedging of counterparty exposure we introduce now the cumulative CVA
process. We first focus on the payer CDS, the main results for CDS being then given in
Proposition 5.6.

Definition 5.1 The cumulative CVA process Θ̂ is given as, for t ∈ [0, T ],

β(t)Θ̂t = β(t ∧ τ2)
(
P̂t∧τ2 − Π̂t∧τ2

)
,

where P̂ (resp. Π̂) denotes the cumulative risk-free (resp. risky) CDS price process such
that β(t)P̂t = Etp0 (resp. β(t)Π̂t = Etπ0).

Here, we shall focus on the cumulative CVA as it is this process that enjoys the martingale
properties (after discounting) which are important for the hedging endeavor. One has by
application of Proposition 2.1:

β(t)Θ̂t = Et
[
β(τ2)ξ(τ2)

]
.

Note that on the set {τ2 ≤ T}, the random variable ξ(τ2) can be represented as the value at
time t = τ2 of the process ξ defined by, for t ∈ [0, T ],

ξt = (1−R2)
(
P+
t + (H1

t −H1
t−)(1−R1)

)
= (1−R2)

(
(1−H1

t )v+(t,X1
t ) + (H1

t −H1
t−)(1−R1)

)
, (15)

where the second equality follows from Proposition 4.3.

In this section, we set henceforth β = 1 (null interest rate) for notational sim-
plicity.
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5.1 Dynamics of Cumulative CVA

The first step consists in deriving dynamics of the cumulative CVA. We start with the
following elementary result,

Lemma 5.1 For any t ∈ (0, T ], we have

dΘ̂t = (1−H2
t−)(dP̂t − dΠ̂t)

= (1−H2
t )(dPt − dΠt) + (∆P̂τ2 −∆Π̂τ2)dH2

t

= (1−H2
t )(dPt − dΠt) + (ξτ2 − Θ̂τ2−)dH2

t

= (1−H2
t )(dPt − dΠt) + (ξt − Θ̂t−)dH2

t

= (1−H2
t )(dPt − dΠt) + (ξt −Θt−)dH2

t . (16)

Proof. The first line holds by definition of Θ̂ and by application of Itô’s formula. The
second one follows from the fact that p0− pt = π0− πt for any t < τ2. The remaining three
equalities follow easily. 2

Equation (16) is the key to hedging of counterparty risk. The dynamics of Θ̂ splits into the
“pre-counter-party-default” part (1 − H2

t )(dPt − dΠt), and the “at-counter-party-default”
part (ξt − Θ̂t−)dH2

t .

Specification of the above dynamics, that is specification of all martingale terms, is not easy
in general. We now provide exact formulae for these coefficients, in our stylized Markovian
copula model.

5.1.1 Markovian Case

We are in position now to particularize dynamics of the cumulative CVA for the model of
Section 3.

Proposition 5.2 For any t ∈ [0, T ], we have:

d Θ̂t = −(1−H2
t−)(v − u)dM1

t

+
{

(1−R2)(1−H1
t−)v+ − (1−H1

t−)(v − (1−H2
t−)u

}
dM2

t

+(v − u+ (1−R2)(1−R1)− (1−R2)v+)dM{1,2}t

+(1−H1
t )(1−H2

t )((∂x1v − ∂x1u)σ1dW
1
t − (∂x2u)σ2dW

2
t ) .

where u and v stand for u(t,Xt) and v(t,X1
t ).

Proof. Recall (16). Using Proposition 4.3 we obtain, for 0 ≤ t ≤ T ,

(1−H2
t )dPt = (1−H2

t )d
(
(1−H1

t )v(t,X1
t )
)

= (1−H1
t )(1−H2

t )(∂x1v)σ1dW
1
t − (1−H2

t−)vdM1
t

+(H2
t −H2

t−)vdH1
t − (1−H1

t )(1−H2
t )((1−R1)q1 − κ)dt ,
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where the term (1−H2
t−)vdM1

t defines a martingale. In the same way,

(1−H2
t )dΠt = (1−H2

t )d
(
(1−H1

t )(1−H2
t )u(t,X1

t , X
2
t )
)

= −(1−H2
t−)udM1

t + (H2
t −H2

t−)udH1
t

+ (1−H1
t )(1−H2

t )(l2u− (1−R1)(l1 +R2l3)− l2(R2v
+ − v−) + κ)dt

+ (1−H1
t )(1−H2

t )((∂x1u)σ1dW
1
t + (∂x2u)σ2dW

2
t ),

and

(ξt − Θ̂t−)dH2
t =

{
(1−R2)

(
(1−H1

t )v+ + (H1
t −H1

t−)(1−R1)
)

− (1−H1
t−)v + (1−H1

t−)(1−H2
t−)u

}
dH2

t .

This, combined with Lemma 5.1, leads to

d Θ̂t = −(1−H2
t−)(v − u)dM1

t + (H2
t −H2

t−)(v − u)dH1
t

+(1−H1
t )(1−H2

t )((∂x1v − ∂x1u)σ1dW
1
t − (∂x2u)σ2dW

2
t )

−(1−H1
t )(1−H2

t )
(

((1−R1)q1 − κ) + (l2u− (1−R1)(l1 +R2l3)− l2(R2v
+ − v−) + κ)

)
dt

+
{

(1−R2)
(
(1−H1

t )v+ + (H1
t −H1

t−)(1−R1)
)
− (1−H1

t−)v + (1−H1
t−)(1−H2

t−)u
}
dH2

t .

We now observe that

(H2
t −H2

t−)(v−u)dH1
t = (v−u)dH{1,2}t , (1−H1

t )v+dH1
t = (1−H1

t−)v+dH1
t −v+dH

{1,2}
t .

Consequently,

dΘ̂t = −(1−H2
t−)(v − u)dM1

t + (1−H1
t )(1−H2

t )
(

(∂x1v − ∂x1u)σ1dW
1
t − (∂x2u)σ2dW

2
t

)
+
(
v − u+ (1−R1)(1−R2)− (1−R2)v+

)
dH
{1,2}
t

−(1−H1
t )(1−H2

t )
(

(1−R1)
(
q1 − l1 −R2l3

)
− l2

(
v − u+ (R2 − 1)v+

))
dt

+
{

(1−R2)(1−H1
t−)v+ − (1−H1

t−)(v − (1−H2
t−)u)

}
dH2

t .

Now, using

dH
{1,2}
t = dM

{1,2}
t + l3(1−H1

t )(1−H2
t )dt , dH2 = dM2

t + q2(1−H2
t )dt ,

the last expression can be rewritten as

dΘ̂t = −(1−H2
t−)(v − u)dM1

t + (1−H1
t )(1−H2

t )
(

(∂x1v − ∂x1u)σ1dW
1
t − (∂x2u)σ2dW

2
t

)
+
(
v − u+ (1−R1)(1−R2)− (1−R2)v+

)
dM

{1,2}
t

+
{

(1−R2)(1−H1
t−)v+ − (1−H1

t−)(v − (1−H2
t−)u

}
dM2

t

+(1−H1
t )(1−H2

t )
{(
v − u+ (1−R1)(1−R2)− (1−R2)v+

)
l3

−(1−R1)
(
q1 − l1 −R2l3

)
+ l2(v − u+ (R2 − 1)v+)

+
(
(1−R2)v+ − v + u

)
q2

}
dt ,
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where the dt-coefficient simplifies to zero, which proves the result. 2

As a corollary, we obtain the following representation for the dynamics of CVA, which will
be used in Section 5.2,

Corollary 5.3 For any t ∈ [0, T ] we have

d Θ̂t = −(1−H1
t−)(1−H2

t−)(v − u)dM{1}t

+(1−H1
t−)(1−H2

t−)
(

(1−R2)v+ − (v − u)
)
dM

{2}
t

+(1−H1
t−)(1−H2

t−)
(

(1−R1)(1−R2)− (v − u)
)
dM

{1,2}
t

+(1−H1
t )(1−H2

t )((∂x1v − ∂x1u)σ1dW
1
t − (∂x2u)σ2dW

2
t )

=: η̃
{1}
t dM

{1}
t + η̃

{2}
t dM

{2}
t + η̃

{1,2}
t dM

{1,2}
t + γ̃1

t dW
1
t + γ̃2

t dW
2
t . (17)

Recall that if R2 = 1 then v = u so that in this case η̃{1} = η̃{2} = η̃{1,2} = γ̃1 = γ̃2 = 0. In
particular, Θt = Θ̂t = 0 for all t. Now, using the convention that 0

0 = 1 we can write

d Θ̂t =: (1−R2)
(
η
{1}
t dM

{1}
t + η

{2}
t dM

{2}
t + η

{1,2}
t dM

{1,2}
t + γ1

t dW
1
t + γ2

t dW
2
t

)
,(18)

where η{1} = η̃{1}

1−R2
, and accordingly for the remaining coefficients.

5.2 Hedging of CVA

We shall apply the above results to the problem of dynamically hedging the CDS counter-
party risk in our Markovian copula model.

As it is seen from Corollary 5.3 there are five martingale terms to hedge in the dynamics
for Θ̂. Three of them, namely those in dM

{1,2}
t , dM

{2}
t and dW 2

t , induce the risk directly
related to the counterparty. In this paper we shall only concern ourselves with hedging of
these three terms in the mean variance sense, using a single hedging instrument taken as a
rolling CDS contract written on the counterparty. Of course we also implicitly trade in the
savings account (which is worth a constant, in the present nil interest rates set-up) for the
purpose of making the strategy self-financed.

5.2.1 Rolling CDS

For the purpose of dynamically hedging the CVA on the CDS on name one, we shall now
consider a rolling CDS referencing the counterparty, that is corresponding to the default
time τ2. The concept of the rolling CDS contract was formally introduced and studied in
[6]. A rolling CDS is an ‘abstract’ contract which at any time t has similar features as the
T -maturity CDS issued at this date t, in particular, its ex-dividend price is equal to zero at
every t. Intuitively, one can think of the rolling CDS of a constant maturity T as a stream of
CDSs of constant maturities equal to T that are continuously entered into and immediately
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unwound. Thus, a rolling CDS contract is equivalent to a self-financing trading strategy
that at any given time t enters into a CDS contract of maturity T and then unwinds the
contract at time t+ dt.

Remark 5.2 We shall use here a simplifying assumption that the recovery R2 is generic,
that is, it is the same for all CDS contracts referencing the same default τ2 and with the
same maturity T . Otherwise, for every fixed maturity date T , we would need to consider
the whole class of protection payment processes, indexed by the initiation date.

The main result regarding the dynamics of the mark-to-market value of a rolling CDS
contract is the following

Lemma 5.4 ([6]) The cumulative value process, say Q̂, of a rolling CDS referencing the
counterparty, is an F-martingale, and its dynamics are given as

dQ̂t = (1−H2
t )
(
(1−R2)∂xg(t,X2

t )− κ(t,X2
t )∂xf(t,X2

t )
)
σ2(t,X2

t )dW 2
t + (1−R2)dM2

t

=: (1−R2)
(

(1−H2
t )ψtdW 2

t + dM
{2}
t + dM

{1,2}
t

) (19)

where g and f denote the pre-default pricing functions of the unit protection and fee legs of
the ordinary CDS contract initiated at time t, so

f(t,X2
t ) = E

(∫ T

t
e−

∫ u
t q2(v,X2

v )dvdu |X2
t

)
,

g(t,X2
t ) = E

(∫ T

t
e−

∫ u
t q2(v,X2

v )dvq2(u,X2
u)du |X2

t

)
,

and κ = (1−R2)g/f is the corresponding CDS fair spread function.

5.2.2 Mean-variance Hedging

In principle, given that one has at one’s disposal sufficiently many liquid traded instruments,
one can dynamically replicate all risk sources that show up in the CVA in (17), namely M{1},
M{2}, M{1,2}, W 1 and W 2.

In this paper we shall not discuss this dynamic replication though, but rather we shall
focus on mean-variance hedging of CVA, using the rolling CDS on the counterparty (along
with the savings account) as hedging instrument. Let thus ζ be a real-valued process,
representing the number of units of rolling CDS which are held in a self-financing hedging
strategy of CVA. Invoking (17) and (19) we conclude that the tracking error process et of
the hedged portfolio e2 = 0 and, for t ∈ [0, T ],

det = dΘ̂t − (1−H1
t−)ζtdQ̂t

det
1−R2

= η
{1}
t dM

{1}
t + (η{1,2}t − ζt)dM{1,2}t + (η{2}t − (1−H1

t−)ζt)dM
{2}
t

+γ1
t dW

1
t + (γ2

t − ζtψ2
t )dW

2
t .

where the η and γ’s were defined in (17) and ψ in (19). We thus obtain the following result,
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Proposition 5.5 For a payer CDS: (i) the self-financing strategy that minimizes the risk-
neutral variance of the tracking error is given, on the set {t ≤ τ1 ∧ τ2}, as

ζvat =
η
{2}
t d〈M{2}〉t + η

{1,2}
t d〈M{1,2}〉t + (%γ1

t + γ2
t )ψtdt

d〈M{2}〉t + d〈M{1,2}〉t + ψ2
t dt

=
l2(t,X2

t )η{2}t + l3(t)η{1,2}t + (%γ1
t + γ2

t )ψt
l2(t,X2

t ) + l3(t) + ψ2
t

;

(ii) The self-financing strategy that minimizes the risk-neutral variance of the jump–to–
counterparty–default risk is given, on the set {t ≤ τ1 ∧ τ2}, as

ζjdt =
l2(t,X2

t )η{2}t + l3(t)η{1,2}t

l2(t,X2
t ) + l3(t)

=
(
P+
t −

Θt−
1−R2

)
l2(t,X2

t )
l2(t,X2

t ) + l3(t)
+
(

(1−R1)− Θt−
1−R2

)
l3(t)

l2(t,X2
t ) + l3(t)

=
1

1−R2

(
E(ξ | Fτ2−) |τ2=t −Θt−

)
.

The ζjd hedging strategy thus changes the counterparty jump-to-default exposure from ξ to
E(ξ | Fτ2−) |τ2=t , the ‘best guess’ of ξ available right before τ2.

Remark 5.3 Since τ2 is an F-stopping time, the Fτ2−-measurable random variable E (ξ|Fτ2−)
can be represented as Yτ2 , for some F-predictable process Y (see Dellacherie and Meyer [16],
Thm 67.b). In the above proposition, we denote E (ξ|Fτ2−) |τ2=t = Yt. A similar remark
applies to the notation E

(
ξ̄|Fτ2−

)
|τ2=t = Ȳt in Proposition 5.6 below.

In the case of the receiver CDS, let

η̄
{1}
t = (1−H1

t−)(1−H2
t−)(v + ū)

η̄
{2}
t = (1−H1

t−)(1−H2
t−)
(

(1−R2)v− + (v + ū)
)

η̄
{1,2}
t = (1−H1

t−)(1−H2
t−)(v + ū)

γ̄1
t = −(1−H1

t )(1−H2
t )σ1(∂x1v + ∂x1 ū)

γ̄2
t = −(1−H1

t )(1−H2
t )σ2∂x2 ū ,

Proposition 5.6 For a receiver CDS: (i) The self-financing strategy that minimizes the
risk-neutral variance of the tracking error is given, on the set {t ≤ τ1 ∧ τ2}, as

ζ̄vat =
η̄
{2}
t d〈M{2}〉t + η̄

{1,2}
t d〈M{1,2}〉t + (%γ1

t + γ2
t )ψ̄tdt

d〈M{2}〉t + d〈M{1,2}〉t + ψ̄2
t dt

=
l2(t,X2

t )η̄{2}t + l3(t)η̄{1,2}t + (%γ1
t + γ2

t )ψ̄t
l2(t,X2

t ) + l3(t) + ψ̄2
t

;
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(ii) The self-financing strategy that minimizes the risk-neutral variance of the jump–to–
counterparty–default risk is given, on the set {t ≤ τ1 ∧ τ2}, as

ζ̄jdt =
l2(t,X2

t )η̄{2}t + l3(t)η̄{1,2}t

l2(t,X2
t ) + l3(t)

=
(
P−t −

Θ̄t−
1−R2

)
l2(t,X2

t )
l2(t,X2

t ) + l3(t)

=
1

1−R2

(
E(ξ̄ | Fτ2−) |τ2=t − Θ̄t−

)
.

The ζ̄jd hedging strategy thus changes the counterparty jump-to-default exposure from ξ̄ to
E(ξ̄ | Fτ2−) |τ2=t , the ‘best guess’ of ξ̄ available right before τ2.

6 Model Implementation

In view of the model generator (3), the model primitives are the factor coefficients b and
σ and the intensity functions lis for i = 1 to 3, or, equivalently to the latter via (4), the
marginal intensity functions q1 = q1(t, x1) and q2 = q2(t, x2) and the joint defaults intensity
function l3 = l3(t). In this section, following the lines of Brigo et al. [10, 11], we shall
specify the factors in the form of CIR++ processes. Let thus the Xis be affine processes of
the form

dXi
t = η(µi −Xi

t)dt+ ν
√
Xi
tdW

i
t ,

for non-negative coefficients η, µi and ν. One then sets

qi(t, xi) = fi(t) + δxi , (20)

for functions fi(t) such that fi(t) ≥ l3(t) and δ ∈ {0, 1}.

Remark 6.1 (ii) As in Brigo et al. [10, 11], we shall not restrict ourselves to the inac-
cessible origin case 2ηµi > ν2, in order not to limit the range of the model CDS implied
volatility.1

(ii) The restriction fi(t) ≥ l3(t) is imposed to guarantee that, consistently with (4), qi(t,Xi
t)

defined by (20) is never smaller than l3(t).

In the sequel, by (2F), we mean the parametrization (20) with δ = 1 and independent
affine factors X1 and X2, that is two independent CIR++ factors. Also, we denote by
(0F), the parametrization (20) with δ = 0, that is without stochastic factors (case of time-
deterministic, piecewise constant intensities).

6.1 Marginals

Under the model specification (20), one can derive a more explicit formula for the pricing
function v = v(t, x1). Let F1(t) =

∫ t
0 f1(s)ds.

1Indeed in our numerical tests the calibrated parameters do not always satisfy 2ηµi > ν2.
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Proposition 6.1 Assuming (20), one has

β(t)v(t, x1) =
∫ T

t
β(s)

(
(1−R1)Dδ(s, t, x1)− κ

)
Eδ(s, t, x1)ds ,

where we set, for s ≥ t,

Eδ(s, t, x1) = exp
(
−
(
F1(s)− F1(t) + δφ(s− t, 0)x1 + δξ(s− t, 0)µ1

))
,

Dδ(s, t, x1) = f1(s) + δηµ1φ(s− t, 0) + δ
(
− ηφ(s− t, 0)− 1

2
ν2(φ(s− t, 0))2 + 1

)
x1 ,

in which the functions φ and ξ are those of Lemma A.1.

Proof. Recall from Proposition 4.3 that

β(t)v(t, x1) =
∫ T
t β(s)E

(
e−

∫ s
t q1(ζ,X1

ζ )dζp(s,X1
s )|X1

t = x1

)
ds

with
p(s,X1

s ) = (1−R1)q1(s,X1
s )− κ , q1(t,X1

t ) = f1(t) + δX1
t .

For δ = 0, the result follows immediately and for δ = 1, it is obtained by an application of
Lemma A.1. 2

In particular the model break-even spread at time 0 of a risk-free CDS of maturity T on
the firm, is given by

κ0(T ) = (1−R1)

∫ T
0 β(s)Dδ(s, 0, X1

0 )Eδ(s, 0, X1
0 )ds∫ T

0 β(s)Eδ(s, 0, X1
0 )ds

.

We denote by p1 the cumulative distribution function (c.d.f. hereafter) of τ1, namely,

p1(t) := P(τ1 ≤ t) = 1− Eδ(t, 0, X1
0 ) . (21)

In the same way, one can obtain semi-explicit formulae for the forward spread and CDS
option price. As we will see in Section 8, such formulae are useful while computing the
associated implied volatility.

For 0 ≤ Ta < Tb, the forward spread (at time 0) of a CDS issued at time Ta with maturity
Tb is given by

κ0(Ta, Tb) = (1−R1)

∫ Tb
Ta
e−rsDδ(s, 0, X1

0 )Eδ(s, 0, X1
0 )ds∫ Tb

Ta
e−rsEδ(s, 0, X1

0 )ds
. (22)

Now we consider a payer (resp. receiver) CDS option which gives the right to enter at time
Ta a payer (resp. receiver) CDS with maturity Tb and the contractual spread κ.2 Then the
price at time 0 of these CDS options are given by

e−rTaE
[
(1−H1

Ta)v(Ta, X1
Ta)+

]
for a payer CDS option , (23)

e−rTaE
[
(1−H1

Ta)v(Ta, X1
Ta)−

]
for a receiver CDS option , (24)

where v(t, x1) is the CDS price function as in Proposition 6.1.

Of course analogous formulae hold for a risk-free CDS and CDS options on the counterpart.
2To avoid ambiguity, we call this contractual spread ,“the strike”.
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6.2 Joint Defaults

In case market prices of instrument sensitive to the dependence structure of default times
are available (basket credit instrument on the firm and the counterpart), these can be used
to calibrate l3. Admittedly however, this situation is an exception rather than the rule. It
is thus important to devise a practical way of calibrating l3 in case such market data are
not available.

Note that under parameterizations (0F) and (2F), one has

P(τ1 > t, τ2 > t) = P(τ1 > t)P(τ2 > t)eL3(t), (25)

for L3(t) =
∫ t
0 l3(s)ds. A possible procedure thus consists in ‘calibrating’ l3 to target values

for the model probabilities p1,2(t) = P(τ1 < t, τ2 < t) of default of both name up to various
time horizons t. More precisely, given a target for the function p1,2(t), one plugs it, together
with the functions p1(t) and p2(t), into (25), to deduce L3(t).

Remark 6.2 Regarding the derivation of a target for p1,2(t), note the following relation
between p1,2(t) and a standard static Gaussian copula asset correlation ρ at the horizon t:

p1,2(t) = N ρ
2

(
N−1

1 (p1(t)),N−1
1 (p2(t))

)
, (26)

where N1 denotes the standard Gaussian c.d.f., and N ρ
2 denotes a bivariate centered Gaus-

sian c.d.f. with one-factor Gaussian copula correlation matrix of parameter ρ. A target
value for p1,2(t) can thus be obtained by plugging values extracted from the market for ρ,
p1(t) and p2(t) into the RHS of (26). In particular a ‘market’ static Gaussian asset corre-
lation ρ can be retrieved from the Basel II correlations per asset class (cf. [3, pages 63 to
66]).

6.3 Calibration

We aim at calibrating the model to marginal CDS curves and to an asset correlation ρ (see
Remark 6.2). We assume that the functions f1 , f2 and l3 are piecewise constant functions
of time.

We denote by (T1, ..., Tm) the term structure of the maturities of the market CDS between
the counterpart and the reference entity, and we set ∆j = Tj − Tj−1, with the convention
T0 = 0. One then proceeds in four steps as follows:
• One bootstraps the CDS curve for both names i into a piecewise constant c.d.f. pi(·), for
i = 1, 2, yielding

pi(t) = pi(Tj) on Tj−1 ≤ t < Tj ,

• Next, given p1(t), p2(t) and ρ, one computes p1,2(t) = P(τ1 < t, τ2 < t) via (26).
• The relation (25) yields a system of m linear equations in the m unknowns l3,1, ..., l3,m. ∆1l3,1 + · · ·+ ∆jl3,j = − ln P(τ1>Tj ,τ2>Tj)

P(τ1>Tj)P(τ2>Tj)

subject to l3,j ≥ 0 , j = 1, ...,m
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• At last, formula (21) results in two systems of m linear equations in the m+ 2 unknowns
Xi

0, µi, fi,1, ..., fi,m. That is, for i = 1, 2,
δφ(Tj)Xi

0 + δξ(Tj)µi + ∆1fi,1 + · · ·+ ∆jfi,j = − ln P(τi > Tj)

subject to Xi
0 ≥ 0 , µi ≥ 0 , fi,j ≥ l3,j , j = 1, ...,m.

In practice these equations are solved in the sense of mean-square minimization under
constraints.

7 A Variant of the Model with Extended CIR Intensities

In this section we propose a variant of the general model of section 3, defined in terms of
extended CIR factor processes. By comparison with (3), one thus chooses a specific, affine
form of the factors, but one also lets the joint defaults intensity l3 be stochastic, via a ‘new’
factor X3. In particular one models the factors Xis as affine processes of the form

dXi
t = η(µi(t)−Xi

t)dt+ ν
√
Xi
tdW

i
t ,

with W1 and W2 correlated at the level % and W3 independent from W1 and W2. Note
in this regard that the factors Xis have the same coefficients but for µi(t), to the effect
that X̃i := Xi + X3, for i = 1, 2, is again an extended CIR process, with parameters η,
µ̃i(t) = µi(t) + µ3(t) and ν.

Let as before H = (H1, H2) and let now X = (X1, X2, X3).

One thus considers a Markovian model of the pair (X,H) relative to its natural filtration F,
with generator of (X,H) given by, for u = u(t, x, e) with t ∈ R+, x = (x1, x2, x3) ∈ R3, e =
(e1, e2) ∈ {0, 1}2:

Au(t, x, e) = ∂u(t, x, e) +
∑

1≤i≤2

li(t, xi)
(
u(t, x, ei)− u(t, x, e)

)
+ l3(t, x3) (u(t, x, 1, 1)− u(t, x, e))

+
∑

1≤i≤3

(
η(µi(t)− xi)∂xiu(t, x, e) +

1
2
ν2xi∂

2
x2
i
u(t, x, e)

)
+ %ν2√x1x2∂

2
x1,x2

u(t, x, e) ,

where, for i = 1 to 3:
• the default intensity function li is of the form

li(t, xi) = xi + gi(t) , (27)

• the coefficients η, ν are non-negative constants and µi(·)s are non-negative functions of
time.

The F – intensity matrix-function of H is now given by

A(t, x) =


−l(t, x) l1(t, x1) l2(t, x2) l3(t, x3)

0 −q2(t, x̃2) 0 q2(t, x̃2)

0 0 −q1(t, x̃1) q1(t, x̃1)

0 0 0 0

 ,
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with, for every i = 1, 2,

x̃i = xi + x3 , qi(t, x̃i) = li(t, xi) + l3(t, x3) = x̃i + gi(t) + g3(t)

and l = l1 + l2 + l3. Under standard regularity and growth assumptions on the coefficients
of A, one then has the following variant of Proposition 3.1,

Proposition 7.1 (i) For every i = 1, 2, the process (X̃i, H i) is an F-Markov process, with
generator of (X̃i, H i) given by, for ui = ui(t, x̃i, ei), with t ∈ R+, x̃i ∈ R, ei ∈ {0, 1}:

Aiui(t, x̃i, ei) =∂tui(t, x̃i, ei) + η(µ̃i(t)− x̃i)∂x̃iui(t, x̃i, ei) +
1
2
ν2xi∂

2
x̃2
i
ui(t, x̃i, ei)

+ qi(t, x̃i) (ui(t, x̃i, 1)− ui(t, x̃i, ei)) .
(28)

The F – intensity matrix function of H i is thus given by

Ai(t, x̃i) =

[
−qi(t, x̃i) qi(t, x̃i)

0 0

]
In other words, the process M i defined by, for i = 1, 2,

M i
t = H i

t −
∫ t

0
(1−H i

s)qi(s, X̃
i
s)ds ,

is an F-martingale.
(ii) One has, for every t ≥ 0,

P(τi > t) = E exp
(
−
∫ t

0
qi(u, X̃i

u)du
)

, P(τ1 ∧ τ2 > t) = E exp
(
−
∫ t

0
l(u,Xu)du

)
(29)

One thus gets in the terminology of [5] a Markovian copula model (X,H) with marginals
(X̃i, H i), for i = 1, 2 — or, in the ‘common factor case’ X1 = X2 = X, with marginals
(X̃,H i), where we set X̃ = X +X3.

Let, for x̃1 ∈ R+,
p(t, x̃1) = (1−R1)q1(t, x̃1)− κ .

One then has much like in Proposition 4.3(i) (analogs of Propositions 4.3(ii) and (iii) could
be derived as well if wished),

Proposition 7.2 The price of the risk-free CDS admits the representation:

Pt = (1−H1
t )v(t, X̃1

t ) ,

for a pre-default pricing function v = v(t, x̃1) solving the following pricing PDE:
v(T, x̃1) = 0 , x̃1 ∈ R(
∂t + η(µ̃1(t)− x̃1)∂x̃1

+ 1
2ν

2x̃1∂
2
x̃2
1

)
v(t, x̃1)−

(
r + q1(t, x̃1)

)
v(t, x̃1) + p(t, x̃1) = 0 ,

t ∈ [0, T ), x̃1 ∈ R ;

Hedging could also be discussed analogously as in Section 5 for (2F).
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7.1 Implementation

Let us consider the parametrization stated in (27), with gi = 0, therein. We assume that
the µi(·)s are piecewise constant functions,

µi(t) = µi,j , for t ∈ [Tj−1, Tj).

The marginal intensity processes qi(t, X̃i
t)s are then extended CIR processes (cf. (28)) with

the following piecewise constant ‘long-term mean’ function µ̃i(·),

µ̃i(t) = µi,j + µ3,j , for t ∈ [Tj−1, Tj) .

We will refer to this model parametrization as (3F). Under this specification, one has the
following proposition for the pricing function of a risk-free CDS on the firm. Let the
functions D̃1 and Ẽ1 be defined as in Proposition A.2, with µ(·) = µ̃1(·) therein.

Proposition 7.3 Assuming (3F), one has,

β(t)v(t, x̃1) =
∫ T

t
β(s)

(
(1−R1)D̃(s, t, x̃1)− κ

)
Ẽ(s, t, x̃1, 0)ds.

Proof. Recall from Proposition 7.2(i) that

v(t, x̃1) = E
(∫ T

t
e−

∫ s
t (r+q1(ζ,X̃1

ζ ))dζp(s, X̃1
s )ds

∣∣∣ X̃1
t = x̃1

)
,

with
p(s, X̃1

s ) = (1−R1)X̃1
s − κ.

The result thus follows by an application of Proposition A.2. 2

Also, the spread at time 0 of a risk-free CDS of maturity T on the firm, is given by

κ0(T ) = (1−R1)

∫ T
0 β(s)D̃1(s, 0, X1

0 )Ẽ1(s, 0, X1
0 , 0)ds∫ T

0 β(s)Ẽ1(s, 0, X1
0 , 0)ds

.

As for the forward spread, the counterpart of formulae (22) for this variant of the model, is

κ0(Ta, Tb) = (1−R1)

∫ Tb
Ta
e−rsD̃δ(s, 0, X1

0 )Ẽδ(s, 0, X1
0 )ds∫ Tb

Ta
e−rsẼδ(s, 0, X1

0 )ds
. (30)

Also, the price at time 0 of CDS options with strike κ are given by

e−rTaE
[
(1−H1

Ta)v(Ta, X̃1
Ta)+

]
for a payer CDS option , (31)

e−rTaE
[
(1−H1

Ta)v(Ta, X̃1
Ta)−

]
for a receiver CDS option , (32)

where v(t, x̃1) is the price function given by Proposition 7.3.
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As in the previous case, the input to the calibration is an asset correlation ρ and the
piecewise constant marginal cumulative default probabilities obtained by bootstrapping
from the related CDS curves. For simplicity of calibration, the volatility parameter ν and
the mean-reversion η are assumed to be given (as opposed to calibrated), whereas for each
factor Xi the initial value Xi

0 and µi,1, ..., µi,m are calibrated.

Using identities (29) and Corollary A.3, the following expressions follows for the marginal
and joint survival probabilities:

P(τi > Tj) = E
(

exp
(
−
∫ Tj

0
X̃i
sds
))

= exp
(
− aj,0X̃i

0 −
j∑

k=1

µ̃i,kξ(∆k, aj,k)
)

and

P(τ1 > Tj , τ2 > Tj) = E
(

exp
(
−
∫ Tj

0
(X1

s +X2
s +X3

s )ds
))

= P(τ1 > Tj)P(τ2 > Tj) exp
(
aj,0X

3
0 +

j∑
k=1

µ3,kξ(∆k, aj,k)
)
.

where the coefficients aj,k are given in (38).

One can then follow the same lines as in Section 6.3, to obtain the following three systems of
linear equations with constraints. Each system consists of m equations in m+ 1 unknowns:
For j = 1, ...,m,

aj,0X
3
0 +

∑j
k=1 ξ(∆k, aj,k)µ3,k = ln P(τ1>Tj ,τ2>Tj)

P(τ1>Tj) P(τ2>Tj)

subject to X3
0 ≥ 0 , µ3,k ≥ 0 , k = 1, ...,m.

For i = 1, 2, 
aj,0X̃

i
0 +

∑j
k=1 ξ(∆k, aj,k)µ̃i,k = − ln P(τi > Tj)

subject to X̃i
0 ≥ X3

0 , µ̃i,k ≥ µ3,k , k = 1, ...,m.

In practice these equations are solved in the sense of mean-square minimization under
constraints.

8 Numerical Results

Our aim is to assess by means of numerical experiments the impact on the counterparty
risk exposure of:
• ρ, a constant asset correlation between the firm and the counterpart,
• p2, the cumulative distribution function of the default time τ2 of the counterpart,
• ν, the volatility of the factors.

The numerical tests below have been done using the following model parameterizations:
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(0F) No stochastic factor, as in (20) with δ = 0,

(2F) Two independent CIR++ factors, as in (20) with δ = 1,

(3F) Three independent extended CIR factors as of subsection 7.1 with % = 0.

The mean-reversion parameter η is fixed to 10%. The recovery rates are set to 40% and the
risk-free rate r is taken equal to 5%.

8.1 Calibration to Market Data

In the following example, we consider four CDSs written on the reference name UBS AG,
with different counterparts: Gaz de France, Carrefour, AXA and Telecom Italia SpA, re-
ferred to in the sequel as CP1, CP2, CP3 and CP4. For each counterpart we consider six
CDSs with maturities of one, two, three, five, seven and ten years, corresponding to data of
March 30, 2008. Table 1 includes market CDS spreads on the five names in consideration
and for the six different maturities. The bootstrapped piecewise constant c.d.f. of the five
names are represented in Table 2. The counterparts are ordered form the less risky one,
CP1, to the most risky one, CP4.

1 year 2 years 3 years 5 years 7 years 10 years
Ref UBS AG 90 109 129 147 148 146
CP1 Gaz de France 27 35 42 53 57 61
CP2 Carrefour 34 42 53 67 71 76
CP3 AXA 72 83 105 128 129 128
CP4 Telecom Italia SpA 99 157 210 243 255 262

Table 1: Market spreads in bps for different time horizons on March 30, 2008.

1 year 2 years 3 years 5 years 7 years 10 years
Ref .0146 .0355 .0631 .1185 .1612 .2193
CP1 .0044 .0116 .0212 .0445 .0664 .1005
CP2 .0056 .0138 .0264 .0558 .0822 .1246
CP3 .0118 .0269 .0517 .1042 .1434 .1964
CP4 .0155 .0504 .1026 .1903 .2662 .3670

Table 2: Default probabilities for different maturities.

Tables 3 and 4 represent the calibration error in basis points of (2F) and (3F), respectively.
Precisely, in each table, we consider

eri(t) = 104 × |pi(t)− p̂i(t)|
pi(t)

, er1,2(t) = 104 × |p1,2(t)− p̂1,2(t)|
p1,2(t)

where p̂1, p̂2, p̂1,2 are obtained from equations (7) and (29) using the calibrated parameters.
The corresponding errors in the case of (0F) are 0.0000 bp. The difference between market
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Maturities
1 year 2 years 3 years 5 years 7 years 10 years mean max

CP1
er1 0.2500 0.9630 0.8560 1.1390 2.1600 1.7600 1.1880 2.1600
er2 0.0191 0.0112 0.3790 0.0612 0.4027 0.0198 0.1488 0.4027

er1,2 0.1790 0.7700 0.5350 1.2040 1.1120 0.7610 0.7600 1.2040

CP2
er1 1.9240 1.8000 1.0500 1.3020 0.2590 2.1340 1.4110 2.1340
er2 0.3817 0.0726 0.0714 0.7904 0.3275 0.3992 0.3404 0.7904

er1,2 0.2471 0.1127 0.0644 0.0442 0.0990 0.0213 0.0981 0.2471

CP3
er1 0.4150 1.2380 0.4110 0.3430 1.3280 0.3410 0.6790 1.3280
er2 0.4730 0.8080 0.5390 0.6290 3.9800 0.8040 1.2050 3.9800

er1,2 0.0494 0.0437 0.0065 0.0011 0.0116 0.0029 0.0192 0.0494

CP4
er1 0.0364 0.1808 0.2382 0.1823 0.0988 0.3502 0.1811 0.3502
er2 0.0586 0.0167 0.0095 0.0376 0.0206 0.0285 0.0286 0.0586

er1,2 0.2097 0.3922 0.2680 0.0917 0.0815 0.1537 0.1994 0.3922

Table 3: Relative error in bps of the cumulative probabilities p1, p2 and p1,2 in the case
(2F) with ρ = 40%.

spreads and calibrated model spreads are represented in Tables 5, 6 and 7, respectively.

8.2 CVA Stylized Features

Figure 1 shows the Credit Valuation Adjustment at time 0 of a risky CDS on the reference
name UBS AG, as a function of the volatility parameter ν of the CIR factors Xis.

The graphs on the left of this figure show the results obtained from the parametrization
(2F) while the graphs on the right correspond to the case of (3F). On each graph the asset
correlation ρ is fixed, with from top to down ρ = 5%, 10%, 40% and 70%. The four curves
on each graph of Figure 1 correspond to Θ0 calculated for a risky CDS of maturity T = 10
years between Ref and CP1, CP2, CP3, CP4, respectively.

On this data set we observe that Θ0 is:
• increasing in the default risk of the counterpart,
• increasing in the asset correlation ρ,
• slowly increasing in the volatility ν of the common factor.

In Table 8, one can see the values of Θ0 calculated within the parametrization (0F), that
is with no stochastic factor. Note that for a CDS written on Ref, the risk-free value of the
default leg is equal to DL0 = 0.1031.

For the receiver case, Θ̄0 on the reference name UBS AG is shown in Figure 2 as a function
of the volatility parameter ν, for both parameterizations (2F) and (3F). Note that Θ̄0 is
much smaller (for a common unit nominal), and more dependent on ν, than Θ0. This is
mostly due to the absence of the common jump term in the CVA (see Remark 2.2). Also,
Θ̄0 is decreasing in the asset correlation ρ.

To give an idea about the execution times of the three model parameterizations, it is
worth mentioning that, in these experiments:
• a calibration takes about 0.01, 0.30 and 0.35 seconds for the case of (0F), (2F) and (3F),
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Maturities
1 year 2 years 3 years 5 years 7 years 10 years mean max

CP1
er1 5.0422 14.190 2.1420 15.050 15.920 0.4151 8.7940 15.920
er2 0.7888 1.6940 2.4450 0.0024 2.7510 1.0728 1.4591 2.7515

er1,2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CP2
er1 0.5700 2.1950 2.6910 1.4200 0.4247 0.0426 1.2240 2.6910
er2 0.3025 0.1581 0.4489 0.4358 0.0444 0.4780 0.3113 0.4780

er1,2 0.0000 0.0000 0.0000 0.0006 0.0006 0.0002 0.0002 0.0006

CP3
er1 0.0434 0.3486 0.4462 0.1976 0.1464 0.0282 0.2018 0.4462
er2 25.809 82.406 87.861 34.909 68.141 0.0325 49.860 87.861

er1,2 0.0001 0.0012 0.0020 0.0036 0.0063 0.0054 0.0032 0.0063

CP4
er1 1.5396 5.3363 24.188 59.728 40.733 0.9771 22.084 59.728
er2 0.0652 3.8962 4.6377 4.6433 3.8499 0.9716 3.0106 4.6432

er1,2 0.0002 0.0030 0.0102 0.0176 0.0263 0.0081 0.0109 0.0263

Table 4: Relative error in bps of the cumulative probabilities p1, p2 and p1,2 in the case
(3F) with ρ = 40%.

1 year 2 years 3 years 5 years 7 years 10 years mean max
Ref 0.2920 0.1622 0.3957 0.3296 0.2537 0.1964 0.2716 0.3957
CP1 0.1285 0.0693 0.1556 0.1080 0.0829 0.0639 0.1014 0.1556
CP2 0.1067 0.0576 0.1897 0.1370 0.1054 0.0819 0.1130 0.1897
CP3 0.0096 0.0052 0.3108 0.2665 0.2052 0.1586 0.1593 0.3108
CP4 0.0098 0.0060 0.4711 0.5125 0.4097 0.3310 0.2900 0.5125

Table 5: bp-Differences between market spreads and calibrated spreads in the case of (0F)
with ρ = 40%.

1 year 2 years 3 years 5 years 7 years 10 years mean max
Ref 0.3343 0.2167 0.4315 0.3980 0.3120 0.3489 0.3402 0.4315
CP1 0.0719 0.0781 0.0131 0.0150 0.0305 0.1040 0.0521 0.1040
CP2 0.0345 0.0028 0.1352 0.0852 0.0598 0.0833 0.0668 0.1352
CP3 0.0203 0.0088 0.2876 0.2426 0.1461 0.1855 0.1485 0.2876
CP4 0.0698 0.0537 0.5219 0.5614 0.4584 0.3976 0.3438 0.5614

Table 6: bp-Differences between market spreads and calibrated spreads in the case of (2F)
with ρ = 40%.
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Figure 1: Θ0 versus ν for the payer CDS on Ref. The graphs on the left column correspond
to the case (2F) and those of the right column correspond to (3F). In each graph ρ is fixed.
From top to down ρ = 5%, ρ = 10%, ρ = 40% and ρ = 70%.
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Figure 2: Θ̄0 versus ν for the receiver CDS on Ref. The graphs on the left column correspond
to the case (2F) and those of the right column correspond to (3F). In each graph ρ is fixed.
From top to down ρ = 5%, ρ = 10%, ρ = 40% and ρ = 70%.



T.R. Bielecki, S. Crépey, M. Jeanblanc and B. Zargari 27

1 year 2 years 3 years 5 years 7 years 10 years mean max
Ref 1.8110 1.6440 0.6820 0.8820 0.4950 0.4790 0.9988 1.8110
CP1 0.7730 0.6560 0.4300 0.2370 0.2130 0.0750 0.3973 0.7730
CP2 0.7400 0.8190 0.4300 0.2030 0.2140 0.1250 0.4218 0.8190
CP3 1.1690 0.9320 1.4230 0.5160 0.6940 0.4710 0.8675 1.4230
CP4 5.6840 3.5300 1.7190 0.6740 0.5720 0.4910 2.1117 5.6840

Table 7: bp-Differences between market spreads and calibrated spreads in the case of (3F)
with ρ = 40%.

ρ = 5% ρ = 10% ρ = 40% ρ = 70%
CP1 .0009 .0018 .0080 .0163
CP2 .0011 .0021 .0093 .0190
CP3 .0016 .0030 .0129 .0262
CP4 .0025 .0047 .0186 .0358

Table 8: Θ0 for CDSs written on Ref in the case (0F).

respectively;
• a computation of CVA takes about 0.015, 5.0 and 12 seconds for the cases of (0F), (2F)
and (3F), respectively.

8.3 Case of a Low-Risk Reference Entity

In the previous example, except in the low ρ cases, the dependency of Θ0 on ν was rather
limited (see Figure 1). For a low-risk reference entity, however, ν is expected to have more
impact on Θ0, including for larger ρ’s. To assess this numerically we thus now consider a
low-risk obligor, referred to as Ref’, whose piecewise constant c.d.f. is given in Table 9.
For a CDS written on Ref’, the risk-free value of the default leg is equal to DL′0 = 0.0240.
On each graph of Figure 3, the asset correlation is fixed to ρ = 5%, 10%, 40% or 70%.

1 year 2 years 3 years 5 years 7 years 10 years
.0100 .01500 .0200 .0300 .0400 .0500

Table 9: Default probabilities of Ref’

One can see that Θ0 is significantly sensitive to ν, and even extremely so in the case of
low correlations ρ. For comparison Table 10 shows the values of Θ0 calculated within the
parametrization (0F).
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ρ = 5% ρ = 10% ρ = 40% ρ = 70%
CP1 .0002 .0006 .0031 .0073
CP2 .0003 .0007 .0035 .0080
CP3 .0004 .0009 .0046 .0096
CP4 .0007 .0014 .0061 .0108

Table 10: Θ0 for CDSs written on Ref’ in the case (0F).

8.4 Spread Options Implied Volatilities

The goal of this subsection is to assess the level of spreads volatility implied by the alterna-
tive model parameterizations. To this end we will compute the implied volatility of payer
and receiver CDS options written on individual names.

The explicit Black formula for the price of a CDS option can be found in Brigo [9] (see for
example Eq. (28) therein). The Markov copula model prices are given by formulae (23)
and (24) for the case of (0F) and (2F) and by formulae (31) and (32) for the case of (3F).

For numerical tests we consider CDSs of 7 year maturity on credit names CP1, Ref and
CP4 (cf. Table 1). Also, we consider payer and receiver CDS options with maturity of 3
years on these three names and with strike K = 65, 150 and 250 bp, respectively. So, with
notation introduced for forward spread, Ta = 3 and Tb = 10.

Figure 4 shows the implied volatility versus ν of receiver CDS options written on the three
names and for the parameterizations (2F) and (3F), the case of (0F) corresponding essen-
tially to ν tending to 0 in (2F) or (3F) (in particular the implied volatility of all the three
receiver CDS options is then equal to zero).

The curves in the case (2F) are represented on the left column and those of (3F) are on
the right column. The graphs on the top, middle and bottom of this figure correspond,
respectively, to receiver CDS option written on names CP1, Ref and CP4. On Figure 5 the
same graphs for payer CDS options are represented.

One observes that for the same level of ν, implied volatility in the case of (3F) is typically
higher than that of (2F), which was expected since the joint defaults intensity l3 is deter-
ministic in (2F), whereas intensities are ‘fully stochastic’ in (3F). Also, for a fixed level of
ν, the implied volatility is decreasing in riskiness of the credit name. In other words, to
achieve a given implied volatility, the riskier the credit name, the lower the implied ν.

For the parametrization (3F), the implied volatility curves are non-decreasing in ν, in both
payer and receiver cases. As is observed, this is not the case for the parametrization (2F).

9 Conclusions

One develops in this paper a Markovian model of counterparty credit risk on a CDS. The
issue of ‘wrong way risk’, which is particularly important in the case of a payer CDS, is
represented in the model by the possibility of simultaneous defaults of the counterparty and
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Figure 3: Θ0 versus ν for a CDS written on Ref’ in the case (2F). In each graph ρ is fixed.

of the reference firm of the CDS. Since this is a dynamic model of counterparty credit risk,
prices and CVAs can be connected to dynamic hedging arguments, as illustrated by our
study of mean-variance hedging the CVA of the CDS on the firm by a rolling CDS on the
counterparty.

Moreover we devise, implement and discuss three model specifications.

Our numeric results show that in the case of a payer CDS on a ‘risky enough’ reference entity
and for a sufficient level of correlation between the counterpart and the reference entity, a
time-deterministic specification of intensities does a good and quick job in estimating the
CVA.

In case of a receiver CDS, or of a payer CDS with low risk reference entity or low level of
correlation between the counterpart and the reference entity, the time-deterministic specifi-
cation of intensities ‘misses’ a non-negligible component of CVA, due to spreads’ volatility.
In this case, a stochastic specification of the intensities is preferred (cf. Figures 2, 3 and
1), like a CIR++ specification of the intensities with marginal default intensities given as
sums of affine processes and deterministic functions of time.

In this specification the joint defaults intensity of the counterpart and the reference firm
is time-deterministic, so that one might wonder whether a fully stochastic specification of
the intensities would lead to even higher (possibly more realistic) CVAs. This led us to
investigate a third specification of the intensities in the form of extended CIR processes
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Figure 4: Implied volatility versus ν of payer CDS option written on individual names.
The graphs on the left column correspond to the case (2F) and those of the right column
correspond to (3F). The graphs on the top, middle and bottom correspond to payer CDS
options written on names CP1, Ref and CP4 (with strike K = 65bp, 150bp and 250bp),
respectively.
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Figure 5: Implied volatility versus ν of receiver CDS option written on individual names.
The graphs on the left column correspond to the case (2F) and those of the right column
correspond to (3F). The graphs on the top, middle and bottom correspond to receiver CDS
options written on names CP1, Ref and CP4 (with strike K = 65bp, 150bp and 250bp),
respectively.
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with time-dependent parameters, and no deterministic component anymore. In case of a
payer CDS the levels of CVA happen to be quite similar to those got through the CIR++
specification, however for the receiver CDS they may be much larger (as is seen in Figure
2).

A Appendix

Let X be an extended CIR process with dynamics

dXt = η(µ(t)−Xt)dt+ ν
√
XtdWt (33)

where η and ν are positive constants and µ(·) is a non-negative deterministic function.

The following lemma is a standard result in the affine processes literature (see e.g. [17]).
Notice that (35) is obtained from (34) with y = 0, by differentiating with respect to t.

Lemma A.1 Consider the process X in (33). If µ(·) is constant on [t0, t], then for every
y ≥ 0,

E
(
e
−
∫ t
t0
Xsds−yXt∣∣Xt0

)
= e−φ(t−t0,y)Xt0−ξ(t−t0,y)µ , (34)

E
(
Xte

−
∫ t
t0
Xsds

∣∣Xt0

)
=
(
φ̇(t− t0, 0)Xt0 + ξ̇(t− t0, 0)µ

)
e−φ(t−t0,0)Xt0−ξ(t−t0,0)µ , (35)

where φ and ξ satisfy the following system of ODE:{
φ̇(s, y) = −ηφ(s, y)− ν2

2 (φ(s, y))2 + 1 ; φ(0, y) = y

ξ̇(s, y) = ηφ(s, y) ; ξ(0, y) = 0 .

Explicitly,

φ(s, y) =
1 +D(y)e−A(y)s

B + C(y)e−A(y)s
,

ξ(s, y) =
η

B

{C(y)−BD(y)
A(y)C(y)

log
B + C(y)e−A(y)s

B + C(y)
+ s
}
.

where A, B, C and D are given by

B =
1
2
(
η +

√
η2 + 2ν2

)
, C(y) = (1−By)

η + ν2y −
√
η2 + 2ν2

2ηy + ν2y − 2
,

D(y) = (B + C(y))y − 1 , A(y) =
−C(y)(2B − η) +D(y)(ν2 + ηB)

BD(y)− C(y)
.

In the following proposition (see also Shirakawa [28]), we generalize Lemma A.1 to the case
of a piecewise constant function µ(·). We denote T0 = 0 and ∆j = Tj−Tj−1. The functions
φ and ξ are those of Lemma A.1.



T.R. Bielecki, S. Crépey, M. Jeanblanc and B. Zargari 33

Proposition A.2 Assume that µ(·) is a piecewise constant function: µ(t) = µk on t ∈
[Tk−1, Tk] for k = 1, ...,m. For t < s, let i ≤ j such that t ∈ [Ti−1, Ti) and s ∈ (Tj , Tj+1].
Then
(i) For any x ≥ 0 and y ≥ 0,

Ẽ(s, t, x, y) := E
(

exp(−
∫ s

t
Xudu− yXs)|Xt = x

)
=

exp
{
− µiξ(Ti − t, yi)− xφ(Ti − t, yi)−

j∑
k=i+1

µkξ(∆k, yk)− µj+1ξ(s− Tj , y)
} (36)

with

yj = yj(s) := φ(s− Tj , y) ,
yk = yk(s) := φ(∆k+1, yk+1(s)) , k < j.

(37)

(ii) One has,

E
(
Xs exp

(
−
∫ s

t
Xudu

)
|Xt

)
= D̃(s, t,Xt)E

(
exp

(
−
∫ s

t
Xudu

)
|Xt

)
where

D̃(s, t, x) = µi
∂ξ

∂y
(Ti − t, yi)

dyi
ds

+ x
∂φ

∂y
(Ti − t, yi)

dyi
ds

+
j∑

k=i+1

µk
∂ξ

∂y
(∆k, yk)

dyk
ds

+ µj+1
∂ξ

∂s
(s− Tj , 0),

and the yks are as in (37) with y = 0.

Setting t = 0 and s = Tj in the first part of the above proposition one obtains:

Corollary A.3 One has

E
(

exp
(
−
∫ Tj

0
Xudu

))
= exp

(
−aj,0X0 −

j∑
k=1

µkξ(∆k, aj,k)

)

with
aj,j = 0 , aj,k = φ(∆k+1, aj,k+1) for k < j . (38)
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