
An abstract approach to network models of

uncertainty

Jason Morton

Penn State

October 3, 2015
AMS Sectional Meeting

Includes joint work with David Spivak (operadic normal forms)

Jason Morton (Penn State) Computational categories Loyola October 3 1 / 21



Motivation (network modelers)

Goal: Abstractions and engine to quickly build performant, modular
network models of uncertainty. It should be able to:

Ingest qualitative domain knowlege expressed with graphs/flow
charts/diagrams from non-programmers

Attach multiple competing quantitative explanations (e.g.
probabilistic, differential equation, discrete dynamical) and test
them

Port algorithms, using best solution in each component (e.g.
tree decomposition)

Scale to useful size

Pay only a small abstraction cost in final assembly program.

Jason Morton (Penn State) Computational categories Loyola October 3 3 / 21



Motivation

Goal: build a practical computer algebra system for computational
(monoidal) category theory. It should be able to:

1 manipulate abstract categorical quantities such as morphism
terms in a REPL.

2 compile/lower code expressed categorically to an efficient
implementation in a particular category (e.g. numerical linear
algebra, (probabilistic) databases, quantum simulation, belief
networks).

3 scale to be useful for practical computational problems in
modeling uncertainty in data analysis, statistics, physics,
computer science.

Jason Morton (Penn State) Computational categories Loyola October 3 4 / 21



Want something like REPLs for linear or

commutative algebra

In a computer algebra systems such as Macaulay2, Singular, Maple,
Mathematica, we:

tell the computer the context, e.g. polynomial ring

R = Q[x , y ] , and

type in an expression such as x2 + 3xy + (x + y)2.

The system performs some simplification according to the
axioms of a free polynomial ring (or computes a normal form in
a quotient ring R = Q[x , y ]/I using a Gröbner basis), and

displays something like 2x2 + 5xy + y 2, element of R .

Even something this trivial requires some thought for
computational category theory!

Jason Morton (Penn State) Computational categories Loyola October 3 5 / 21



Want something like MATLAB, NumPy, R
But that:

allows a higher level of abstraction in describing algorithms,
can handle more types of “data” than matrices of floats,
probability distributions, or indeterminates and
treats morphism expressions as first class to enable rewriting,
syntax tricks

I an algebraic version of manipulating the graph in a graphical
model

For a class of modelling problems, computational category theory
could be a tool like numerical linear algebra or convex programming.

Now: reducing an applied math problem to numerical linear
algebra means you can solve it using BLAS, LAPACK primitives,
matrix decompositions, etc.
Future: reduce your uncertainty/information-processing applied
math problem to (computational) category theory, solve it using
generic engines and libraries with matching abstractions.

Jason Morton (Penn State) Computational categories Loyola October 3 6 / 21



Morphism Term: a human-readable qualitative model,
captured by a labeled generalized graph; fixes the relationships,
suggests qualitative rules and syntax of the model

Doctrine: formal categorical syntax constraining the
quantitative models of uncertainty that can be attached, rewrite
rules, available constructions

Value: a machine-processed quantitative model in which the
graph is interpreted and the data summarized, e.g. probab-
ilistically as a Bayesian network, in Hilbert space for a quantum
circuit, or with rate constants in a chemical reaction network

Representation: the interpretation assigning quantitative
meaning to the qualitative description (generalizing the
mathematical idea of a representation of a quiver or algebra)

Algorithms, categorically expressed, for processing and
analyzing data. Make quantitative predictions, choose the model
which best explains a given system (often a variant of belief
propagation).

Jason Morton (Penn State) Computational categories Loyola October 3 7 / 21



Implementation

Can be implemented in any programming language with suitable
features.

I Needed are typeclasses/traits/interfaces and, for performance, a
means for zero or low cost abstraction

I so prefer JIT and AOT languages with modern type systems
I building in Julia, exploring Scala, Rust, maybe Python (what

would you use?)

Typeclasses/Traits represent doctrines: monoidal category,
compact closed category, well-supported compact closed
category, . . . and describe the common interface available to
manipulate terms in any particular category

Types represent particular categories (e.g. sets and relations)

Values are objects and morphisms in the particular category

Jason Morton (Penn State) Computational categories Loyola October 3 8 / 21



Implementation

Everything the computer does is represented as one of five modular
components:

a doctrine typeclass (e.g. “compact closed category”)

an instance or implementation of a doctrine as a pair of types
(e.g. matrices or relations as CCC):

I a morphism term or word (e.g. f ⊗ (g ◦ δA ◦ h)) in a free
language, or

I a concrete value in an implementation (e.g.

(
1 3
4 5

)
)

a representation (an X -functor) between implementations (usu.

free → concrete, e.g. a binding f =

(
1 3
4 5

)
for each symbol)

algorithms are expressed in terms of the defining methods of the
doctrine (e.g. ⊗, δ, µ, bind, return) or operadically

Jason Morton (Penn State) Computational categories Loyola October 3 9 / 21



Want something like REPLs for commutative

algebra

In a computer algebra systems such as Macaulay2, Singular, Maple,
Mathematica, we:

tell the computer the context, e.g. polynomial ring

R = Q[x , y ] , and

type in an expression such as x2 + 3xy + (x + y)2.

The system performs some simplification according to the
axioms of a free polynomial ring (or more generally, a Gröbner
basis computation in a quotient ring R = Q[x , y ]/I ), and

displays something like 2x2 + 5xy + y 2, element of R .

Jason Morton (Penn State) Computational categories Loyola October 3 10 / 21



REPL/Computer algebra system for computational

category theory

In a computational cagtegory theory REPL, we

tell it the context, e.g. the tensor signature f : A→ A,
g : A→ B , with doctrine “compact closed category,” and

type in an expression such as evA ◦(idA∗ ⊗f ) ◦ coevA.

The system performs some simplification according to the
axioms of a free compact closed category, and

diplays tr(f ).

Even easier: write evA ◦(idA∗ ⊗f ) ◦ coevA == tr(f ) and have the
system return “True”

This easier problem is complete for the complexity class Graph
Isomorphism (GI). There is a partial solution that doesn’t require
solving graph isomorphism: pick a good representation (functor).

Jason Morton (Penn State) Computational categories Loyola October 3 11 / 21



Monoidal languages
Given object variables O = {A1, . . . ,An}, get monoid O⊗ of
words such as (A5 ⊗ A3)⊗ A1.

A tensor signature T comprises finite sets Ob(T ) of object
variables, and Mor(T ) of morphism variables, and functions
dom, cod : Mor(T )→ Ob(T )⊗.
T defines a monoidal category MX (T ),

I augmenting Ob(T ) with a monoidal unit IT and
I Mor(T ) with a finite set of parameterized structure morphisms

PSM(T ,X ) depending on the doctrine X .

I Here X =“compact closed category”, PSM are e.g. evA for any
A, etc.

The language T ⊗,◦
CCC is all valid morphism words that can be

formed from Mor(T ) ∪ PSM(T ,CCC ), so generates the free
compact closed category over T .

Q: When do two words define the same morphism? NF?

Jason Morton (Penn State) Computational categories Loyola October 3 13 / 21



Constructively

Constructively, T ⊗,◦
CCC is as follows.

Each f ∈ Mor(T ) ∪ PSM(T ,CCC ) is a word.

Given words u, u′, u ⊗ u′ is a word with domain
dom(u)⊗ dom(u′) and codomain cod(u)⊗ cod(u′).

Given words w ,w ′ with dom(w ′) = cod(w), w ◦ w ′ is a word.

Mod the relations for a compact closed category, and imposing
strictness, this gives a presentation of the free strict compact closed
category over the generating set of object variables and morphisms.

Now let’s discuss how to represent morphism terms, or more
precisely morphism expressions, in the computer.

Jason Morton (Penn State) Computational categories Loyola October 3 14 / 21



S-expression

The value of the expression

(foo bar baz)

is the result of applying function foo to arguments bar and baz

(which may themselves be expressions).

Jason Morton (Penn State) Computational categories Loyola October 3 15 / 21



Morphism expressions

A morphism term such as evA ◦(idA∗ ⊗f ) ◦ coevA in a monoidal
category can be represented as an expression tree (AST):

(◦ (ev A) (◦ (⊗ (id A) f) (coev A)))

here ev, coev, id, are unary functions, ⊗, and ◦ are 2-ary
and (⊗ g f ) means “apply function ⊗ to arguments g and f .”

Note: more than one expression tree can represent the same
term (e.g. associate from left or right), and

more than one morphism term can represent the same morphism
in the free compact closed category (e.g. (f2 ⊗ g2) ◦ (f1 ⊗ g1) vs.
(f2 ◦ f1)⊗ (g2 ◦ g1) equal mod “deeper” relations).

Can have other relations as well.

Jason Morton (Penn State) Computational categories Loyola October 3 16 / 21



Complexity

The easy part, Solving word problems such as

evA ◦(idA∗ ⊗f ) ◦ coevA
?
= tr(A) is GI-complete.

For some reasonable choices of normal form, finding the normal
form (fixing tensor signature and doctrine = compact closed
category):

I given evA ◦(idA∗ ⊗f ) ◦ coevA, output tr(f )

is NP-hard (allows optimal contractions).

This is not such bad news. The normal form for polynomials in a
quotient ring, using Gröbner bases and Buchburger’s algorithm,
is worst case doubly exponential. Yet they are still extremely
useful and practical for many computations.

If we are willing to accept an imperfect but pretty good normal
form, or can control the term complexity in various ways, we can
get a good, fast normal form giving near-optimal contractions.

Jason Morton (Penn State) Computational categories Loyola October 3 17 / 21



Computational category theory problems

term: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

representation: an X -monoidal functor “assigning values”

Questions of a term represented in a particular quantitative category:

1 compute a (possibly partial) contraction,

2 solve the word problem (are two terms equivalent, i.e. do they
have the same representation) or compute a normal form for a
term,

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms), and

4 choose morphisms in a term to best approximate a more general
term (possibly allowing the approximating term itself to vary).

Jason Morton (Penn State) Computational categories Loyola October 3 18 / 21



Computational category theory is hard

term: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

representation: an X -monoidal functor “assigning values”

Questions of a term represented in a particular category:

1 compute a (possibly partial) contraction, (#P-hard)

2 solve the word problem (are two terms equivalent, i.e. do they
have the same representation) or compute a normal form for a
term, (undecidable)

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms) (undecidable)

4 choose morphisms in a term to best approximate a more general
term (possibly allowing the approximating term itself to vary).
(NP-hard)

Jason Morton (Penn State) Computational categories Loyola October 3 19 / 21



Recap

Every doctrine has a free language that can be used to express
morphism terms.

This is how the machine represents domain-expert diagrams
(e.g. gene interactions, high-school science test).

A morphism term can be rewritten and simplified efficiently
indpendently of interpretation/value.

The normal form problem for morphism term subsumes query
planning, finding an efficient way to contract a network, etc.

Part of this problem can be solved “internally” by applying a
suitable functor to a value category that removes distinctions
between equal morphism terms.

Sometimes it makes sense to think in terms of operad algebras
rather than monoidal functors to exploit this.

Jason Morton (Penn State) Computational categories Loyola October 3 20 / 21



Core algorithms

Some necessary component algorithms:
I Determining equality for morphism terms [M- Spivak 2015, An

Operadic approach to normal forms in compact closed
categories],

I Related aspects of normal forms and rewriting (such as finding
tree decompositions), and

I Categorically-formulated belief propagation, a common
generalization of algorithms used for many types of models [M-
2104, Belief propagation in monoidal categories].

Status of Cateno: pre-alpha software, looking for “customers”
and collaborators

Now, a demo.

Jason Morton (Penn State) Computational categories Loyola October 3 21 / 21


	Motivation and design
	Formalizing morphism terms

