Motivation

Just as definite integrals can be solved using antiderivatives by the Fundamental Theorem of Calculus, we also want a method of solving finite summations of the form $\sum_{i=1}^{n} f(i)$. The summations appear frequently in mathematics: in finite difference methods used to solve differential equations numerically on a computer, in combinatorial identities that count discrete objects by grouping them according to type, and in countless theorems for which a closed form of a summation is useful.

Finite Difference Formula

In calculus we have the familiar derivative formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

For discrete applications, we may not be able to let h go to 0 . For example, f might be defined only for integer x, or perhaps we are implementing a numerical procedure which samples f only at values of x with spacing like the integers. In this case we may alternatively set $h=1$ and define the finite (forward) difference

$$
\Delta f(x)=f(x+1)-f(x)
$$

If we take, for integer m, the definition of the falling power of x to be

$$
x^{\underline{m}}= \begin{cases}x(x-1) \cdots(x-m+1) & \text { if } m>0 \\ 1 & \text { if } m=0 \\ \frac{1}{(x+1) \cdots(x+(-m))} & \text { if } m<0\end{cases}
$$

then it is a straightforward exercise in algebra to derive the following finite difference analogy to the power rule $(d / d x) x^{m}=m x^{m-1}$:

$$
\Delta x^{\underline{m}}= \begin{cases}m x x^{\underline{m-1}} & \text { if } m \neq 0 \tag{1}\\ 0 & \text { if } m=0\end{cases}
$$

A Word on Summation Notation

We will be using two forms of summation notation in what follows. First, is the notation we are accustomed to, namely

$$
\sum_{k=1}^{n} g(k)=g(1)+g(2)+\cdots+g(n-1)+g(n)
$$

Here the index k ranges from 1 up to n, hitting every integer value in between and both endpoints 1 and n.
The second notation is a formal notation for defining the analogy to a definite integral, namely the definite sum

$$
\sum_{a}^{b} g(x) \delta x
$$

We don't know this now before reading the rest of these notes, but the relationship between these two sums is

$$
\sum_{1}^{n} g(x) \delta x=\sum_{x=1}^{n-1} g(x)=g(1)+g(2)+\cdots+g(n-1)
$$

In other words, the top index n is missing when we transfer from the second formal notation to the usual summation notation we already know about.

Antiderivatives and Antidifferences

In calculus we define antiderivatives by

$$
g(x)=f^{\prime}(x) \quad \text { if and only if } \quad \int g(x) d x=f(x)+C
$$

where C is any constant. In other words, $f(x)+C$ is the class of functions whose derivatives are all $g(x)$. By analogy, we formally define the indefinite sum $\sum g(x) \delta x$ by

$$
g(x)=\Delta f(x) \quad \text { if and only if } \quad \sum g(x) \delta x=f(x)+C
$$

where C could be a constant, or since the finite difference is defined with $h=1$ spacing, C could be any periodic function with $C(x)=C(x+1)$ for all $x \in \mathbb{R}$, such as $\sin 2 \pi x$. The formal sum $\sum g(x) \delta x$ is still vague, but we can make it more concrete by making an analogy with definite integrals.

Definite Integrals and Definite Sums

In calculus we define definite integrals by

$$
\int_{a}^{b} g(x) d x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

whenever $f(x)$ is an antiderivative of $g(x)$. Now suppose $f(x)$ is an antidifference of $g(x)$, and let us consider what we might get for finite calculus. First we need notation. Let us decide by fiat that the notation we want is $\sum_{a}^{b} g(x) \delta x$, and we want to define this sum so that, analogous to definite integrals,

$$
\sum_{a}^{b} g(x) \delta x=f(b)-f(a)
$$

When $b=a$, we would like to get $\sum_{a}^{a} g(x) \delta x=f(a)-f(a)=0$, analogously to $\int_{a}^{a} g(x) d x=0$. When $b=a+1$, we would like to get $\sum_{a}^{a+1} g(x) \delta x=f(a+1)-f(a)$, which by the definition of $g(x)=\Delta f(x)$, gives

$$
\sum_{a}^{a+1} g(x) \delta x=f(a+1)-f(a)=g(a)
$$

Now say that $b=a+k$, where m is some positive integer. Then we have

$$
\begin{aligned}
\sum_{a}^{a+m} g(x) \delta x= & f(a+m)-f(a) \\
= & {[f(a+m)-f(a+m-1)]+[f(a+m-1)-f(a+m-2)]+} \\
& \cdots+[f(a+2)-f(a+1)]+[f(a+1)-f(a)] \\
= & g(a+m-1)+g(a+m-2)+\cdots+g(a+1)+g(a) .
\end{aligned}
$$

The middle line is just a telescoping sum that we insert to make things work out. We see that this is exactly what we need to define the definite sum as a concrete object.

$$
\begin{equation*}
\sum_{a}^{b} g(x) \delta x:=\sum_{x=a}^{b-1} g(x)=g(a)+g(a+1)+\cdots+g(b-1) \tag{2}
\end{equation*}
$$

Notice the sum goes to $b-1$ instead of to b; this is required to make the analogy with definite integrals work.

Table of Finite Differences and Indefinite Sums

Define the harmonic number function

$$
H(x)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{x},
$$

when x is an integer. Furthermore, define the "right-shift" operator

$$
E f(x)=f(x+1)
$$

We have the following table of differences and sums, like an integral table.

Table of finite differences and indefinite sums

f	$\Delta f=g$	f	$\Delta f=g$
$x^{\underline{0}}=1$	0	2^{x}	2^{x}
$x^{\underline{1}}=x$	1	c^{x}	$(c-1) c^{x}$
$x^{\underline{m}}$	$m x \underline{\underline{m-1}}$	$c \cdot f$	$c \Delta f$
$x^{\underline{m+1}} /(m+1)$	$x^{\underline{m}}$	$f+g$	$\Delta f+\Delta g$
$H(x)$	$x \underline{\underline{-1}}$	$f g$	$f \Delta g+E g \Delta f$

Recognizable in the right-hand column are the constant, sum, and product rules of finite difference, analogous to differentiation. Also, recall that reversing the product rule gives us a sum by parts (cf. integration by parts) formula:

$$
\begin{equation*}
\sum u \Delta v=u v-\sum E v \Delta u \tag{3}
\end{equation*}
$$

which can be made into a definite sum formula:

$$
\begin{equation*}
\sum_{a}^{b} u \Delta v=u(b-1) v(b-1)-u(a) v(a)-\sum_{a}^{b} E v \Delta u \tag{4}
\end{equation*}
$$

Binomial Coefficients

Finally, recall that the binomial coefficients are defined for integer n and k as

$$
\binom{n}{k}= \begin{cases}\frac{n!}{(n-k)!} k! & \text { if } 0 \leq k \leq n \\ 0 & \text { if } n<k\end{cases}
$$

We have the following simple binomial identity:

$$
\begin{equation*}
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} \tag{5}
\end{equation*}
$$

Project Exercises

1. Prove the finite difference power rule in (1).
2. Prove the sum rule $\Delta(f+g)=\Delta f+\Delta g$ of the table.
3. Verify the identity $x^{2}=x^{\underline{2}}+x^{\underline{1}}$, and use it to compute the sum $\sum_{k=0}^{n-1} k$ using finite calculus facts.
4. Prove $\Delta H(x)=x-\frac{1}{-}$ (you may assume x is a positive integer).
5. Prove the two exponential rules in the table, i.e., $\Delta 2^{x}=2^{x}$ and $\Delta c^{x}=(c-1) c^{x}$. Explain two connections (analogies or differences) with the usual calculus or formulas you are familiar with.
6. Use the definite sum by parts formula in (4) to evaluate $\sum_{k=1}^{n-1} k 2^{k}$.
7. Compute $\Delta\binom{n}{k}$, and use (5) to compute $\sum_{x=0}^{n-1}\binom{x}{k}$.
8. Suppose that instead of defining the finite difference as $\Delta f(x)=f(x+1)-f(x)$, that we define $\nabla f(x)=f(x)-f(x-1)$. Can we define finite difference and indefinite sum formulas analogously to the table?
9. Suppose that instead of defining the finite difference as $\Delta f(x)=f(x+1)-f(x)$, we define it as the "middle difference" $\Delta f(x)=f(x+1 / 2)-f(x-1 / 2)$. What is the second finite difference $\Delta^{2} f(x)$ of $f(x)$ (analogous to the second derivative)? Can we find any nice formulas for second derivatives under this assumption?

References

[1] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA, 1989.

