PRINT Last name:	First name:

Signature:_

Student ID:___

Math 230 Exam 2, Spring 2009 (Use this page and back page for extra workspace.)

- I. Short answer 1-12. Do not give proofs (3pts each).
 - 1. Compute the following:

 $28 \text{ div } 3 = _ ____ 28 \text{ mod } 3 = _ _ ____$ $-17 \text{ div } 6 = _ _ ____ 6 = _ _ ____$

- 2. What condition on positive integers a and b must hold for them to be relatively prime?
- 3. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is one-to-one but not onto.

5. The first and second terms of an arithmetic progression are $a_1 = 5.5$ and $a_2 = 8$. What is a_4 ? $a_4 = _$ _____

- 6. Assume for two positive integers a and b that $a \cdot b = 2^4 \cdot 3^3 \cdot 5 \cdot 7^2$ and $gcd(a, b) = 2^2 \cdot 3 \cdot 7$. What is lcm(a, b)?
- 7. Compute the following:

 $gcd(0,4) = ____ gcd(-12,-50) = ____$

- 8. Order the following expressions in terms of **increasing** growth rate: n^2 , n!, $n \log_2 n$, 2^n , $\log_2 n$
- 9. In the best big-oh notation, how many multiplications are needed for Horner's method to evaluate a polynomial of degree n at a constant c?

Horner's method procedure $Horner(c, a_0, a_1, \dots, a_n : \text{real numbers})$ $y := a_n$ for i := 1 to n $y := y * c + a_{n-i}$

- 10. Name an algorithm we studied for which the best-case time complexity is different than the worst-case time complexity (in terms of the representative operation we discussed).
- 11. Circle the prime numbers and only the prime numbers in this list:

73, 92, 93, 109, 127, 133

12. A 2 cent and a 5 cent stamp are available (without limit) to make postage. What is the smallest amount of postage N in cents such that every $N, N + 1, N + 2, N + 3, \ldots$ can be composed of 2 cent and 5 cent stamps?

N = _____

II. Computation Problems 13-16 (10pts each). For full credit, show work to clearly justifying your answer.

13. Use the Euclidean Algorithm to express gcd(222, 180) as $r \cdot 222 + s \cdot 180$ for some $r, s \in \mathbb{Z}$.

14. Compute the sum $\sum_{i=0}^{10} (2 \cdot 3^{i+2} - 4 \cdot i)$ (an unsimplified answer is acceptable but must not contain ellipses (\cdots) or i).

15. Compute $(60032 \cdot 24005 + 90511 \cdot 3030) \mod 3$. Shortcuts are recommended, but must be clear from your work.

16. Let $f(x) = 5x^2 + 10 \log_2 x$. Compute witnesses C and k that show f(x) is $O(x^2)$. (Hint: $x > k \to |f(x)| \le C|x^2|$.)

III. Proofs 17-18 (12pts each). Partial credit for good proof structure.

17. Prove the following. Let m, n be positive integers greater than 1, and let a, b be integers. If $n \mid m$ and $a \equiv b \pmod{m}$, then $a \equiv b \pmod{n}$.

18. Prove by a careful induction argument that every positive integer can be written in the form $2^r \cdot m$, where r is an integer and m is an odd integer.

[WORKSPACE]