Second Integral Estimation of Series Method

Here is a summary of the formula we derived for estimating a series derived from a continuous, nonnegative, decreasing function. The corresponding section in the book is in the Series chapter, Integral Test section.

Suppose the following:

- $f(x)$ is a continuous, positive, decreasing function,
- the series $\sum_{i=1}^{\infty} a_{i}$ is defined by $a_{i}=f(i)$ for all i,
- we define $s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+\cdots+a_{n}$ to be the nth partial sum, and
- both $\sum_{i=1}^{\infty} a_{i}$ and $\int_{0}^{\infty} f(x) d x$ converge, so that $\sum_{i=1}^{\infty} a_{i}=s$.

Then the quantity

$$
s_{n}+\frac{\int_{n}^{\infty} f(x) d x+\int_{n+1}^{\infty} f(x) d x}{2}
$$

is guaranteed to be within $\frac{a_{n}}{2}$ of $s .{ }^{1}$

How to use this method.

- Given a tolerance t (for example, $t=.0005$), solve the inequality $a_{n} / 2 \leq t$ for n.
- Remember to round up the answer to the nearest integer. For example, $n \geq 4.781 \ldots$ means $n \geq 5$.
- Plug in the value of n into the estimate. For example, if $n \geq 5$ was found in the previous step, the following estimate is within .0005 of the actual series sum s :

$$
\begin{aligned}
s_{5} & +\frac{\int_{n}^{\infty} f(x) d x+\int_{n+1}^{\infty} f(x) d x}{2} \\
=a_{1}+a_{2}+a_{3}+a_{4}+a_{5} & +\frac{\int_{n}^{\infty} f(x) d x+\int_{n+1}^{\infty} f(x) d x}{2}
\end{aligned}
$$

- Work out the integrals. Typically on an exam, you don't have to actually add up the first n terms, but unless otherwise instructed you should work out the integrals. Note that you only have to compute the antiderivative once.

[^0]
[^0]: ${ }^{1}$ In our derivation, we actually guaranteed that it would be within

 $$
 \frac{\int_{n}^{\infty} f(x) d x-\int_{n+1}^{\infty} f(x) d x}{2}=\frac{\int_{n}^{n+1} f(x) d x}{2}
 $$

