Two-batch liar games on a general bounded channel

Robert B. Ellis ${ }^{1} \quad$ Kathryn L. Nyman²

${ }^{1}$ Illinois Institute of Technology
${ }^{2}$ Loyola University, Chicago

AMS/PTM Joint Meeting, Warsaw

Outline

(1) Background

- The basic liar game
- Motivating the general bounded channel
(2) The liar game on a general bounded channel
- Definitions and game play

3 New Results

- Examples
- A general sphere bound
- A winning condition for Carole
- A winning condition for Paul
- Proof of Paul's bound

Basic liar game setting

Two-person game:
(1) Carole picks a number $x \in[n]:=\{1, \ldots, n\}$
(2) Paul asks q questions to determine x :
given $[n]=A_{1} \dot{\cup} A_{2} \dot{\cup} \cdots \dot{\cup} A_{t}$, for what i is $x \in A_{i}$?

Playing optimally, Carole answers with an adversarial strategy; it's a perfect information game.

Catch: Carole is allowed to lie at most k times.

Example ternary game

$t=3$ (Ternary coding).

- Paul partitions $[n]=A_{1} \cup A_{2} \dot{\cup} A_{3}$ and asks "for what i is $x \in A_{i}$?"
- Carole answers 1, 2, or 3

Example. $n=6, q=4, t=3, k=1$

Paul					Lies					
Rnd	\boldsymbol{A}_{1}	$\boldsymbol{A}_{\mathbf{2}}$	\boldsymbol{A}_{3}	Carole	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	$\{1,2\}$	$\{3,4\}$	$\{5,6\}$	2	\checkmark	\checkmark			\checkmark	\checkmark
2	$\{3\}$	$\{4\}$	$\{1,2,5,6\}$	3			\checkmark	\checkmark		
3	$\{1,2\}$	$\{3,4\}$	$\{5,6\}$	3	\checkmark	\checkmark	\checkmark	\checkmark		
4	$\{5\}$	$\{6\}$	\emptyset	1						\checkmark

Therefore $x=5$.

Binary symmetric case

- $t=2$ binary case \leftrightarrow "is $x \in A_{1}$?"
- symmetric lies: Carole may
- lie with Yes when truth is No
- lie with No when truth is Yes

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x ?

- $k=0$, binary search, $n=2^{q}$

Binary symmetric case

- $t=2$ binary case \leftrightarrow "is $x \in A_{1}$?"
- symmetric lies: Carole may
- lie with Yes when truth is No
- lie with No when truth is Yes

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x ?

- $k=0$, binary search, $n=2^{q}$
- $k=1$, Pelc (1987)
- $k<\infty$, Spencer (1992) (up to bounded additive error)

Binary symmetric case

- $t=2$ binary case \leftrightarrow "is $x \in A_{1}$?"
- symmetric lies: Carole may
- lie with Yes when truth is No
- lie with No when truth is Yes

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x ?

- $k=0$, binary search, $n=2^{q}$
- $k=1$, Pelc (1987)
- $k<\infty$, Spencer (1992) (up to bounded additive error)
- $k / q \rightarrow f \in(0,1 / 2)$, Berlekamp (1962+); Alshwede, Deppe, Lebedev (2005) (still partially open)

Binary symmetric case, $k=1$

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x ?

- Let $k=1, y \in[n]$
- $q+1$ ways for y to be the distinguished element:

	Game response string $w \in[2]^{q}$					
0 lies	w_{1}	w_{2}	w_{3}	\cdots	w_{q-1}	w_{q}
1 lie	\bar{w}_{1}	$*$	$*$	\cdots	$*$	$*$
	w_{1}	w_{2}	$*$	\cdots	$*$	$*$
		\vdots			\vdots	
	w_{1}	w_{2}	w_{3}	\cdots	w_{q-1}	\bar{w}_{q}

Sphere Bound y, y^{\prime} can't both be $x \Longrightarrow n \leq 2^{q} /\binom{q}{\underline{1}}$

Binary symmetric case, $k<\infty$

$X_{i}:=$ elements of $[n]$ with i accumulated lies

Paul balances $A_{1} \cup \dot{U} A_{2}$ by solving each round

$$
\left|A_{1} \cap X_{i}\right| \doteq \frac{\left|X_{i}\right|}{2}, \quad \text { for } 0 \leq i \leq k
$$

Sphere Bound $\binom{q}{\leq k}$ ways for $y \in[n]$ to be the distinguished element
$\Longrightarrow n \leq 2^{q} /\binom{q}{\leq k}$

Asymmetric lying

- asymmetric lies: Carole may
- lie with Yes (1) when truth is No (2)
- But not vice versa!

Called the Z-channel

- $k<\infty$, Dumitriu \& Spencer (2004)
- $k<\infty$ w/improved asymptotics, Spencer \& Yan (2003)

Asymmetric strategy: still based on balancing.

A motivating question

In 2005 Ioana Dumitriu was giving a talk on liar games,

and Nathan Linial asked:

What if Paul knows that Carole is lying according to one of the Z-channels, but not which one?

A motivating question

Meanwhile, an equivalent question: What is the liar game version of packing/covering with unidirectional Hamming balls?

symmetric

asymmetric

unidirectional

Our answer: Generalize the "channel" constraining Carole's lies as much as possible.

A closer look: game lie strings

	Paul				Carole	6's lie string	
Rnd	A_{1}	A_{2}	A_{3}	w	a	b	
1	$\{1,2\}$	$\{3,4\}$	$\{5,6\}$	2	3	2	
2	$\{3\}$	$\{4\}$	$\{1,2,5,6\}$	3			
3	$\{1,2\}$	$\{3,4\}$	$\{5,6\}$	3			
4	$\{5\}$	$\{6\}$	\emptyset	1	2	1	

Truthful string for $y=6$	$w^{\prime}=$	3	3	3	2
Lie string for $y=6$	$u=$3 2 1 Response string $w=$ 3 3	1			

Write $u=(3,2)(2,1)$;
we say $w^{\prime} \xrightarrow{u} w$

The general bounded t-ary channel

- Lies: $L(t):=\{(a, b) \in[t] \times[t]: a \neq b\}$ (truth = a, Carole: b)
- Lie strings: $L(t)^{j}:=\left\{\left(a_{1}, b_{1}\right) \cdots\left(a_{j}, b_{j}\right):\left(a_{i}, b_{i}\right) \in L(t)\right\}$
- Empty string: $L(t)^{0}:=\{\epsilon\}$

Definition (General bounded channel)

Fix $k \geq 0$. A channel C of order k is an arbitrary subset

$$
C \subseteq \bigcup_{j=0}^{k} L(t)^{j}
$$

such that $C \cap L(t)^{k} \neq \emptyset$.

Element survival and winning for Paul

Definition

An element $y \in[n]$ survives the game iff its lie string is in C.

Definition

Paul wins the original liar game iff at most one element survives after q rounds.
Paul wins the pathological liar game iff at least one element survives after q rounds.

$$
\left.\begin{array}{l}
\left.\begin{array}{r}
A_{C}(q)
\end{array}\right):=\max n \\
A_{C}^{*}(q) \\
\text { game with } n \text { elements. }
\end{array}\right\} \text { such that Paul can win the }
$$

$$
\left.\begin{array}{c}
\text { original } \\
\text { pathological }
\end{array}\right\} \quad \text { liar }
$$

Example channels

- Binary, symmetric, two lies. $(t=2, k=2)$

$$
\begin{aligned}
C=\{\epsilon & (1,2),(2,1) \\
& (1,2)(1,2),(1,2)(2,1),(2,1)(2,1),(2,1)(1,2)\}
\end{aligned}
$$

$$
\frac{2^{q}}{\binom{q}{\leq 2}}-O(1)=A_{C}(q) \leq A_{C}^{*}(q)=\frac{2^{q}}{\binom{q}{\leq 2}}+O(1)
$$

Guzicki ('90); E., Ponomarenko, Yan (‘05)

- Binary, Z-channel, two lies. $(t=2, k=2)$

$$
C=\{\epsilon,(2,1),(2,1)(2,1)\}
$$

$A_{C}(q), A_{C}^{*}(q) \sim \frac{2^{q+2}}{\binom{q}{\leq 2}}, \quad$ Spencer, Yan ('03); here

Example channels (con’t)

- Binary, unidirectional, two lies. $(t=2, k=2)$

$$
\begin{aligned}
C & =\{\epsilon,(1,2),(2,1),(1,2)(1,2),(2,1)(2,1)\} \\
A_{C}(q), A_{C}^{*}(q) & \sim \frac{2^{q+1}}{\binom{q}{\leq 2}}, \text { here }
\end{aligned}
$$

- Selective lies.
- Pick arbitrary $L^{\prime} \subseteq L(t)$.
- Let $C=\bigcup_{j=0}^{k}\left(L^{\prime}\right)^{j}$.
$A_{C}(q), A_{C}^{*}(q) \sim \frac{t^{q+k}}{\left|L^{\prime}\right|^{k}\binom{q}{\leq k}}$
Dumitriu, Spencer ('05); here

The proposed sphere bound

- Select Paul's strategy tree to be entirely random partitions $[n]=A_{1} \dot{\cup} \cdots \dot{\cup} A_{t}$
- The expected number of response strings for which y survives is:

$$
\sum_{u \in C}\binom{q}{|u|} t^{-|u|} \sim\left|C \cap L(t)^{k}\right|\binom{q}{k} t^{-k}
$$

Truthful string for y	$w^{\prime}=$	w_{1}^{\prime}	\cdots	$w_{i_{1}}^{\prime}$	\cdots	$w_{i \ell}^{\prime}$	\cdots	$w_{i_{j}}^{\prime}$	\cdots	w_{q}^{\prime}
Lie string for y	$u=$			a_{1}		a_{ℓ}		a_{j}		
Response string	$w=$	w_{1}	\cdots	b_{1}		w_{ℓ}		b_{j}	b_{j}	

Compatibility: $\operatorname{Pr}\left(w_{i_{\ell}}^{\prime}=a_{\ell}\right)=t^{-1}$

The proposed sphere bound

- Select Paul's strategy tree to be entirely random partitions $[n]=A_{1} \dot{\cup} \cdots \dot{\cup} A_{t}$
- The expected number of response strings for which y survives is:

$$
\sum_{u \in C}\binom{q}{|u|} t^{-|u|} \sim\left|C \cap L(t)^{k}\right|\binom{q}{k} t^{-k}
$$

Definition (Asymptotic Sphere Bound)

For q rounds, base t, and an order k channel C, the sphere bound is

$$
\operatorname{SB}_{C}(q):=\frac{t^{q+k}}{\left|C \cap L(t)^{k}\right|\binom{q}{k}}
$$

Carole's bound

Theorem (Carole's bound)

$$
\begin{aligned}
& A_{C}(q) \leq \mathrm{SB}_{C}(q)(1+o(1)), \\
& A_{C}^{*}(q) \geq \mathrm{SB}_{C}(q)(1-o(1)) .
\end{aligned}
$$

Proof idea.

- Most strings of $[t]^{a}$ are balanced.
- The response string set for which y survives "looks random" when all its strings are balanced.
- n too large \Rightarrow response string sets collide too small \Rightarrow response string sets fail to cover $[t]^{q}$

Paul's bound

Theorem (Paul's bound)

$$
\begin{aligned}
& A_{C}(q) \geq \operatorname{SB}_{C}(q)(1-o(1)) \\
& A_{C}^{*}(q) \leq \operatorname{SB}_{C}(q)(1+o(1))
\end{aligned}
$$

Furthermore, (1) we may restrict Paul to two nonadaptive batches of questions of sizes q_{1} and q_{2}, with

$$
\begin{aligned}
& q_{1}+q_{2}=q \quad \text { and } \\
&\left(\log _{t} q\right)^{3 / 2} \ll \quad q_{2} \quad \leq \mathrm{cst} \cdot q^{k /(2 k-1)}
\end{aligned}
$$

(2) the response sets for $A_{C}(q)$ are a subset of those for $A_{C}^{*}(q)$.

Remark. Proof builds on techniques of Dumitriu\&Spencer.

(M, r)-balanced strings in $[t]^{Q}$

Lemma

Let $u=\left(a_{1}, b_{1}\right) \cdots\left(a_{j}, b_{j}\right)$, and $w \in[t]^{Q}$ be (M, r)-balanced. Then

$$
\begin{gathered}
\binom{M}{j}\left(\frac{1}{t}\left[\frac{Q}{M}\right\rceil-r(t-1)-\Theta(1)\right)^{j} \leq\left|\left\{w^{\prime}: w^{\prime} \xrightarrow{u} w\right\}\right| \leq\binom{ M+j-1}{j}\left(\frac{1}{t}\left[\frac{Q}{M}\right\rceil+r\right)^{j}, \\
\binom{Q}{j} t^{-j}(1-o(1)) \leq\left|\left\{w^{\prime}: w^{\prime} \xrightarrow{u} w\right\}\right| \leq\binom{ Q}{j} t^{-j}(1+o(1)) .
\end{gathered}
$$

First batch of q_{1} questions

(Proof illustrated with $C=\{\epsilon,(1,2),(2,1),(1,2)(1,2),(2,1)(2,1)\}$.

- Paul maps n evenly to (M, r)-balanced vertices of $[t]^{q_{1}}$
- Paul partitions $[n] q_{1}$ times based on each digit in mapping

Carole's first batch response

Suppose Carole responds with balanced $w \in[t]^{q_{1}}$. Which $y \in[n]$ survive?

Any y identified with w^{\prime} such that:

- $u \in C$, and
- $w^{\prime} \xrightarrow{u} w$

Paul's second batch of q_{2} questions

- y 's survive in various ways
- Fit y 's which can take more lies inside disjoint Hamming balls
- (M, r)-balance \Rightarrow control on $\left|\left\{w^{(i)}: w^{(i)} \xrightarrow{u} w\right\}\right|,\left|\left\{z: z \xrightarrow{v} z^{\prime}\right\}\right|$
- Greedily pack other y's in unoccupied space

First batch, pathological case

(Proof illustrated with $C=\{\epsilon,(1,2),(2,1),(1,2)(1,2),(2,1)(2,1)\}$.

First batch, pathological case

(Proof illustrated with $C=\{\epsilon,(1,2),(2,1),(1,2)(1,2),(2,1)(2,1)\}$.

- Paul adds negligibly many elements evenly over $[t]^{q_{1}}$

Paul's second batch, pathological case

Paul's second batch, pathological case

- Count only additional y's for which Carole may not lie again
- Greedily convert packing into covering in $[t]^{q_{2}}$

Summary

Theorem

$$
\begin{aligned}
& \mathrm{SB}_{C}(q)(1+o(1)) \geq A_{C}(q) \geq \mathrm{SB}_{C}(q)(1-o(1)) \\
& \mathrm{SB}_{C}(q)(1-o(1)) \leq A_{C}^{*}(q) \leq \mathrm{SB}_{C}(q)(1+o(1))
\end{aligned}
$$

Furthermore, (1) we may restrict Paul to two nonadaptive batches of questions of sizes q_{1} and q_{2}, with

$$
\begin{aligned}
& q_{1}+q_{2}=q \text { and } \\
& \left(\log _{t} q\right)^{3 / 2} \ll \quad q_{2} \quad \leq \text { cst } \cdot q^{k /(2 k-1)},
\end{aligned}
$$

(2) the response sets for $A_{C}(q)$ are a subset of those for $A_{C}^{*}(q)$.

Concluding remarks and open questions

Open Questions.

- Can we further reduce or eliminate completely the adaptiveness?
- Can these techniques be used to improved the asymptotic best known packings and coverings of $[t]^{q}$ with fixed-radius Hamming balls (not tight for radius ≥ 2)?
- Will these techniques work for coin-weighing, fault-testing, and related search problems?

Thank you very much.
Preprint at http://math.iit.edu/~rellis/.

