Two-batch liar games on a general bounded channel

Robert B. Ellis¹ Kathryn L. Nyman²

¹Illinois Institute of Technology

²Loyola University, Chicago

AMS/PTM Joint Meeting, Warsaw

Outline

Background

- The basic liar game
- Motivating the general bounded channel
- The liar game on a general bounded channel
 - Definitions and game play

New Results

- Examples
- A general sphere bound
- A winning condition for Carole
- A winning condition for Paul
- Proof of Paul's bound

Basic liar game setting

Two-person game:

- Carole picks a number $x \in [n] := \{1, \ldots, n\}$
- Paul asks q questions to determine x: given $[n] = A_1 \dot{\cup} A_2 \dot{\cup} \cdots \dot{\cup} A_t$, for what i is $x \in A_i$?

Playing optimally, Carole answers with an adversarial strategy; it's a perfect information game.

Catch: Carole is allowed to lie at most *k* times.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example ternary game

- t = 3 (Ternary coding).
 - Paul partitions $[n] = A_1 \dot{\cup} A_2 \dot{\cup} A_3$ and asks "for what *i* is $x \in A_i$?"
 - Carole answers 1, 2, or 3

Example. n = 6, q = 4, t = 3, k = 1

Paul					Lies					
Rnd	<i>A</i> ₁	<i>A</i> ₂	A_3	Carole	1	2	3	4	5	6
1	{1,2}	$\{3, 4\}$	{5,6}	2	\checkmark	\checkmark			\checkmark	\checkmark
2	{3 }	{4 }	$\{1, 2, 5, 6\}$	3			\checkmark	\checkmark		
3	{1,2}	{3,4}	{5,6}	3	\checkmark	\checkmark	\checkmark	\checkmark		
4	{5 }	{6 }	Ø	1						\checkmark

Therefore x = 5.

< ロト < 同ト < ヨト < ヨト

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

• k = 0, binary search, $n = 2^q$

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

- k = 0, binary search, $n = 2^q$
- *k* = 1, Pelc (1987)
- $k < \infty$, Spencer (1992) (up to bounded additive error)

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

< ロト < 同ト < ヨト < ヨト

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

- k = 0, binary search, $n = 2^q$
- *k* = 1, Pelc (1987)
- $k < \infty$, Spencer (1992) (up to bounded additive error)
- k/q → f ∈ (0, 1/2), Berlekamp (1962+); Alshwede, Deppe, Lebedev (2005) (*still partially open*)

Binary symmetric case, k = 1

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x?

- Let *k* = 1, *y* ∈ [*n*]
- q + 1 ways for y to be the distinguished element:

	Game response string $w \in [2]^q$					
0 lies	$\mathbb{P}S \mid W_1 \mid W_2 \mid W_3 \mid \cdots \mid W_{q-1}$					
	\overline{W}_1	*	*	•••	*	*
1 lie	<i>W</i> ₁	\overline{W}_2	*	• • •	*	*
T IIC		÷			÷	
	<i>W</i> ₁	<i>W</i> ₂	W ₃	•••	<i>W</i> _{q-1}	\overline{W}_q

Sphere Bound y, y' can't both be $x \implies n \le \frac{2^q}{\binom{q}{<1}}$

イロト イポト イヨト イヨト 二日

Binary symmetric case, $k < \infty$

 $X_i :=$ elements of [n] with *i* accumulated lies

Paul balances $A_1 \dot{\cup} A_2$ by solving each round

$$|A_1 \cap X_i| \doteq \frac{|X_i|}{2}$$
, for $0 \le i \le k$.

Sphere Bound $\binom{q}{\leq k}$ ways for $y \in [n]$ to be the distinguished element $\implies n \leq 2^q / \binom{q}{\leq k}$

Asymmetric lying

- asymmetric lies: Carole may
 - lie with Yes (1) when truth is No (2)
 - But not vice versa!

Called the Z-channel

- $k < \infty$, Dumitriu & Spencer (2004)
- $k < \infty$ w/improved asymptotics, Spencer & Yan (2003)

Asymmetric strategy: still based on balancing.

A motivating question

- ⊒ - ト

In 2005 Ioana Dumitriu was giving a talk on liar games,

and Nathan Linial asked:

What if Paul knows that Carole is lying according to one of the *Z*-channels, but not which one?

A motivating question

Meanwhile, an equivalent question: What is the liar game version of packing/covering with unidirectional Hamming balls?

Our answer: Generalize the "channel" constraining Carole's lies as much as possible.

(J	u	ly	3	1,	2	0	0	7	

A closer look: game lie strings

	Paul			Carole	6's lie	string
Rnd	<i>A</i> ₁	A ₂	A ₃	W	а	b
1	{1,2}	$\{3, 4\}$	{5, <mark>6</mark> }	2	3	2
2	{3 }	{4}	$\{1, 2, 5, 6\}$	3		
3	{1,2}	$\{3, 4\}$	{5, <mark>6</mark> }	3		
4	{5}	{ 6 }	Ø	1	2	1

Truthful string for y = 6w' = 3 3 3 23 2 2 Lie string for y = 6u =3 Response string W =2 3 1

Write u = (3, 2)(2, 1);

• • • • • • • • • • • •

The general bounded *t*-ary channel

- Lies: $L(t) := \{(a, b) \in [t] \times [t] : a \neq b\}$ (truth= a, Carole: b)
- Lie strings: $L(t)^j := \{(a_1, b_1) \cdots (a_j, b_j) : (a_i, b_i) \in L(t)\}$
- Empty string: $L(t)^0 := \{\epsilon\}$

Definition (General bounded channel)

Fix $k \ge 0$. A channel *C* of order *k* is an arbitrary subset

$$C\subseteq \bigcup_{j=0}^{k}L(t)^{j},$$

such that $C \cap L(t)^k \neq \emptyset$.

Element survival and winning for Paul

Definition

An element $y \in [n]$ survives the game iff its lie string is in *C*.

Definition

Paul wins the original liar game iff at most one element survives after *q* rounds.

Paul wins the pathological liar game iff at least one element survives after *q* rounds.

 $\begin{array}{c} A_{C}(q) := \max n \\ A_{C}^{*}(q) := \min n \end{array} \right\} \quad \text{such that Paul can win the} \quad \begin{array}{c} \text{original} \\ \text{pathological} \end{array} \right\} \quad \text{liar} \\ \text{game with } n \text{ elements.} \end{array}$

< ロト < 同ト < ヨト < ヨト

Example channels

• Binary, symmetric, two lies. (t = 2, k = 2)

$$C = \{\epsilon, (1,2), (2,1), (1,2)(1,2), (1,2)(2,1), (2,1)(2,1), (2,1)(1,2)\}$$
$$\frac{2^{q}}{\binom{q}{\leq 2}} - O(1) = A_{C}(q) \leq A_{C}^{*}(q) = \frac{2^{q}}{\binom{q}{\leq 2}} + O(1)$$
Guzicki ('90); E., Ponomarenko, Yan ('05)

• Binary, Z-channel, two lies. (t = 2, k = 2)

$$C = \{\epsilon, (2, 1), (2, 1)(2, 1)\}$$

 $A_C(q), A_C^*(q) \sim \frac{2^{q+2}}{\binom{q}{\leq 2}}, \quad \text{Spencer, Yan ('03); here}$

DQC

イロト 不得 トイヨト イヨト

Examples

Example channels (con't)

• Binary, unidirectional, two lies. (t = 2, k = 2)

$$C = \{\epsilon, (1, 2), (2, 1), (1, 2)(1, 2), (2, 1)(2, 1)\}$$

 $A_C(q), A_C^*(q) \sim \frac{2^{q+1}}{\binom{q}{\leq 2}}, \text{ here}$

- Selective lies.
 - Pick arbitrary $L' \subseteq L(t)$.
 - Let $C = \bigcup_{j=0}^{k} (L')^{\overline{j}}$. $A_C(q), A_C^*(q) \sim \frac{t^{q+k}}{|L'|^k {q \choose \leq k}}$

Dumitriu, Spencer ('05); here

The proposed sphere bound

- Select Paul's strategy tree to be entirely random partitions $[n] = A_1 \dot{\cup} \cdots \dot{\cup} A_t$
- The expected number of response strings for which y survives is:

$$\sum_{u\in \mathcal{C}} \binom{q}{|u|} t^{-|u|} \sim |\mathcal{C}\cap L(t)^k| \binom{q}{k} t^{-k}.$$

Truthful string for $y \mid w' = w'_1 \cdots$ $W'_{i_1} \cdots W'_{i_\ell} \cdots W'_{i_i}$ $\cdots W'_a$ a a_i a_1 Lie string for y U = b_1 b Response string W =W1 . . . W_{j_1} . . . Wie Wi . . . Wa . . .

Compatibility: $Pr(w'_{i_{\ell}} = a_{\ell}) = t^{-1}$

< ロト < 同ト < ヨト < ヨト

The proposed sphere bound

- Select Paul's strategy tree to be entirely random partitions $[n] = A_1 \dot{\cup} \cdots \dot{\cup} A_t$
- The expected number of response strings for which y survives is:

$$\sum_{u\in C} \binom{q}{|u|} t^{-|u|} \sim |C \cap L(t)^k| \binom{q}{k} t^{-k}.$$

Definition (Asymptotic Sphere Bound)

For q rounds, base t, and an order k channel C, the sphere bound is

$$\operatorname{SB}_{\boldsymbol{C}}(\boldsymbol{q}) := rac{t^{\boldsymbol{q}+k}}{|\boldsymbol{C}\cap \boldsymbol{L}(t)^k|\binom{\boldsymbol{q}}{k}}.$$

• • • • • • • • • • • •

Carole's bound

Theorem (Carole's bound)

$$egin{array}{rcl} A_C(q) &\leq & {
m SB}_C(q)(1+o(1)), \ A_C^*(q) &\geq & {
m SB}_C(q)(1-o(1)). \end{array}$$

Proof idea.

- Most strings of $[t]^q$ are balanced.
- The response string set for which *y* survives "looks random" when all its strings are balanced.
- n too large ⇒ response string sets collide too small ⇒ response string sets fail to cover [t]^q

3 > 4 3

Paul's bound

Theorem (Paul's bound)

$$egin{array}{rcl} A_C(q) &\geq & {
m SB}_C(q)(1-o(1)), \ A_C^*(q) &\leq & {
m SB}_C(q)(1+o(1)). \end{array}$$

Furthermore, (1) we may restrict Paul to two nonadaptive batches of questions of sizes q_1 and q_2 , with

$$q_1 + q_2 = q$$
 and
 $(\log_t q)^{3/2} << q_2 \leq \operatorname{cst} \cdot q^{k/(2k-1)},$

(2) the response sets for $A_C(q)$ are a subset of those for $A_C^*(q)$.

Remark. Proof builds on techniques of Dumitriu&Spencer.

(July 31, 2007)

イロト イポト イヨト イヨト

(M, r)-balanced strings in $[t]^Q$

Lemma

Let $u = (a_1, b_1) \cdots (a_j, b_j)$, and $w \in [t]^Q$ be (M, r)-balanced. Then $\binom{M}{j} \left(\frac{1}{t} \left\lceil \frac{Q}{M} \right\rceil - r(t-1) - \Theta(1)\right)^j \leq |\{w' : w' \xrightarrow{u} w\}| \leq \binom{M+j-1}{j} \left(\frac{1}{t} \left\lceil \frac{Q}{M} \right\rceil + r\right)^j,$ $\binom{Q}{j} t^{-j}(1 - o(1)) \leq |\{w' : w' \xrightarrow{u} w\}| \leq \binom{Q}{j} t^{-j}(1 + o(1)).$

イロト イポト イヨト イヨト

First batch of q_1 questions

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}.$)

- Paul maps *n* evenly to (M, r)-balanced vertices of $[t]^{q_1}$
- Paul partitions [n] q₁ times based on each digit in mapping

Carole's first batch response

Suppose Carole responds with balanced $w \in [t]^{q_1}$. Which $y \in [n]$ survive?

Any y identified with w' such that:

•
$$u \in C$$
, and
• $w' \stackrel{u}{\rightarrow} w$

Paul's second batch of q_2 questions

- y's survive in various ways
- Fit y's which can take more lies inside disjoint Hamming balls
- (M, r)-balance \Rightarrow control on $|\{w^{(i)} : w^{(i)} \xrightarrow{u} w\}|, |\{z : z \xrightarrow{v} z'\}|$
- Greedily pack other y's in unoccupied space

First batch, pathological case

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}$.)

First batch, pathological case

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}$.)

Paul adds negligibly many elements evenly over [t]^{q1}

(July 31, 2007)

Two-batch liar games

AMS/PTM 25 / 29

< 🗇 🕨 < 🖃 🕨

Paul's second batch, pathological case

Sac

ъ

<ロト <回ト < 回ト

Paul's second batch, pathological case

- Count only additional y's for which Carole may not lie again
- Greedily convert packing into covering in $[t]^{q_2}$

Summary

Theorem

$$\mathrm{SB}_C(q)(1+o(1)) \ge A_C(q) \ge \mathrm{SB}_C(q)(1-o(1)),$$

 $\mathrm{SB}_C(q)(1-o(1)) \le A_C^*(q) \le \mathrm{SB}_C(q)(1+o(1)).$

Furthermore, (1) we may restrict Paul to two nonadaptive batches of questions of sizes q_1 and q_2 , with

$$q_1 + q_2 = q$$
 and
 $(\log_t q)^{3/2} << q_2 \leq \operatorname{cst} \cdot q^{k/(2k-1)},$

(2) the response sets for $A_C(q)$ are a subset of those for $A_C^*(q)$.

イロト イポト イヨト イヨト

Concluding remarks and open questions

Open Questions.

- Can we further reduce or eliminate completely the adaptiveness?
- Can these techniques be used to improved the asymptotic best known packings and coverings of [t]^q with fixed-radius Hamming balls (not tight for radius ≥ 2)?
- Will these techniques work for coin-weighing, fault-testing, and related search problems?

Thank you very much. Preprint at http://math.iit.edu/~rellis/.

• • • • • • • • • • • •