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Abstract

In this paper we present a theoretical framework for studying coherent acceptabil-
ity indices in a dynamic setup. We study dynamic coherent acceptability indices and
dynamic coherent risk measures, and we establish a duality between them. We derive
a representation theorem for dynamic coherent risk measures in terms of so called dy-
namically consistent sequence of sets of probability measures. Based on these results, we
give a specific construction of dynamic coherent acceptability indices. We also provide
examples of dynamic coherent acceptability indices, both abstract and also some that
generalize selected classical financial measures of portfolio performance.
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1 Introduction

Individual and institutional investors are typically concerned with finding satisfactory balance
between reward and risk associated with an investment process. Various measures have been
developed to quantify this balance. Such measures are typically referred to as performance
measures or measures of performance (MOP). Recently, Cherny and Madan [13] originated
an effort to provide a mathematical framework to study these measures in a unified way. The
present paper contributes to this effort.

One of the most popular MOPs is the Sharpe Ratio (SR) introduced in [30]. SR is
expressed as a ratio of expected excess return to standard deviation, and thus in financial
applications it measures expected excess return of a portfolio in units of portfolio’s standard
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deviation. SR has been used as a classical tool to rank portfolios according to their “reward-
to-risk” characteristics.

Using standard deviation to quantify risk is considered to be the major drawback of
Sharpe Ratio. The reason of course is that positive returns also contribute to this measure
of risk. To eliminate this unwanted feature other ratio-types MOPs were proposed, such as
Sortino Ratio (SOR) [31] and Gain Loss Ratio (GLR) [6]. These MOPs focus on downside
risk only. A popular generalization of SR is provided by the Risk Adjusted Return on Capital
(RAROC), which is constructed as a ratio of mean excess return to some selected measure
of risk.

All the MOPs mentioned above share some common desirable features: they are unit-less,
they are increasing functions of reward and decreasing functions of risk; moreover, according
to these MOPs diversification of a portfolio improves its performance. This observation
prompts a natural desire to study MOPs in a unified mathematical framework.! As already
mentioned, such a study was recently originated in [13]. We shall recall the main results
of that paper in Section 2 below. The study of [13] was done in static, one-time period
setup. Cherny and Madan coined the term Acceptability Index (AI) as a mathematical
terminology for MOPs. Our goal is to elevate the mathematical framework for studying Als
to dynamical, multi-period setup, where cash flows are considered as random processes, and
one needs to assess their acceptability consistently in time. In particular, we are concerned
not just with the total cumulative terminal value of the cashflow as seen from the initial time
of the investment process, but also with all remaining cumulative cashflows between each
intermediate time and the terminal time of the investment process.

Thus, in a sense, our program is analogous to the one of those researchers (cf. [5, 7, 9, 10,
11, 14, 18, 26, 28, 25, 23, 29, 33, 17, 32]) who are studying dynamic risk measures. Moreover,
as it will be seen later in the paper, there is a duality relationship between dynamic (coherent)
acceptability indices and dynamic (coherent) risk measures in the sense of Section 4.

The paper is organized as follows:

In Section 2 we summarize the main results of [13]. This is done for the convenience of
the reader, but also in order to give the flavor of the duality between acceptability indices and
risk measures, that will be generalized to the dynamic framework in the subsequent sections.
In Section 3 we present the definition of a dynamic coherent acceptability index (DCAI). We
devote some time to discussion of the properties of DCAI from the definition, putting special
emphasis on discussion of various forms of the dynamic consistency property.

Section 4 first introduces the concept of the dynamic coherent risk measure (DCRM),
specific for our needs, and then proceeds to study the duality between families of such mea-
sures and DCALI. In the process, we discuss the dynamic consistency property of a DCRM,
and we relate our findings to the results from existing literature.

In Section 5 we provide characterization of a DCRM in terms of so called dynamically con-
sistent sequence of sets of probability measures, thereby providing an additional perspective
at DCAIs.

Section 6 is dedicated to discussion of some abstract examples of dynamic MOPs, as well
as some specific examples of dynamic MOPs derived form the classical ones, such as GLR
and RAROC. In particular, we show that dynamic version of GLR is a DCAI, whereas the
dynamic version of RAROC is not.

!There exists a vast literature that studies measures of risk in a general mathematical framework.



2 Static Acceptability Indices

In this section, we will briefly review the theory of static acceptability indices developed in
[13].

Let (2, F,P) be a probability space and denote by L>°(Q, F,P) the space of all bounded
random variables on (2, F,P). The random variable X € L® can be regarded as discounted
terminal cash flow of a zero-cost self-financed portfolio. By definition, an acceptability index is
amap a : L — [0, +00]. The value a(X) should be understood as the degree of acceptability
of a cash flow X; in a sense, it represents a measure of efficiency of the cash flow. A larger
index indicates better performance, with a(X) = 400 for X being an ‘arbitrage opportunity’;
in particular, if the cash flow is strictly positive, then a(X) = 4o0.

Acceptability index as such is a too broad concept, and it may not fulfill certain practically
desirable properties. That is why, Cherny and Madan [13] focused their attention on a more
specific concept of the coherent acceptability index.

Definition 2.1. An acceptability index is called coherent if the following properties are
satisfied:

(S1) Monotonicity. If X <Y, then a(X) < a(Y);
S2

(S2) Scale invariance. For every X € L* and A > 0, a(AX) = a(X);
(S3) Quasi-concavity. If a(X) >z, a(Y) > z, then a(AX + (1 = AN)Y) > z for all A € [0, 1];
(54)

S4) Fatou property. If |X,| <1, a(X,) > z for all n» > 1, and X,, - X, as n — oo, in
probability, then a(X) > x.

The above properties have natural financial interpretation. For example, (S1) states that
if Y dominates X — P almost surely,> then Y is acceptable at least at the same level as
X is; (S2) implies that cash flows with the same direction of trade have the same level of
acceptance. Quasi-concavity (S3) implies that a diversified portfolio performs at higher level
than its components; to see this, it is enough to take x = min{«a(X), «(Y)}. Fatou property
(S4) is a technical continuity property, which is used for constructing the duality between
coherent acceptability indices and coherent risk measures.

It can be shown that Sharpe Ratio, defined as SR(X) := ]SE"E)&)_(S’ where STD(X) is the
standard deviation of X and r is the (constant) interest rate, does not satisfy the monotonicity
property (S1), and hence it is not a coherent acceptability index. The Gain Loss Ratio,
given by GLR(X) := E(X)/E(max{—X,0}) if X > 0, and zero otherwise, is a coherent
acceptability index. Other measures of performance such as RAROC, AIT, AIW, AIMIN,
AIMAX, AIMINMAX, AIMAXMIN etc, have been also studied in [13]. Moreover, in [13] the
authors proved the following representation theorem:

Theorem 2.2. A map o : L>® — [0, +0o0], unbounded from above, is a coherent acceptability
index if and only if there exists a family (Dx)ze(0,+00] Of Sets of probability measures, such
that D, C Dy for x <y, and o admits the following representation

alX) = sup{x €10,400) : Qié%z Eq[X] > 0} , (2.1)

where inf ) = oo and sup () = 0.

2In the present paper we shall make a standing assumption that € is finite and that P is strictly positive.
Thus, our statements regarding relations between random variables will hold point-wise. In particular, Y > X
will mean that Y dominates X for every w € Q.



Thus, any Coherent Acceptability Index (CAI) can be characterized by an increasing
family of sets of probability measures. This family of probability measures can be seen as
generalized scenarios as described in [4], or set of supporting kernels as discussed in [13].
Moreover, there is a strong relationship between CAI and Coherent Risk Measures (CRM),
a concept introduced by Artzner, Delbaen, Eber, Heath [3, 4].

Definition 2.3. A function p : L*® — R is called coherent risk measure if the following
properties are satisfied:

(R1) Monotonicity. If X <Y, then p(X) > p(Y);

(R2) Positive homogeneity. p(AX) = Ap(X), for every X € L* and A > 0;
(R3) Translation property. p(X + k) = p(X) — k, for every X € L*> and k € R;
(R4) Subadditivity. p(X +Y) < p(X) + p(Y), for every X,Y € L.

Traditional Value at Risk VaR,(X) := inf{m € R | P[X +m < 0] < a}, while very
popular, it is not a coherent risk measure since it lacks the subadditivity property (R4),
which corresponds to the diversification property in finance. In contrast, the Tail Value at
Risk (also called Tail Conditional Expectation), defined as TVaR,(X) := —infgeco, Eq[X],
where a € (0,1] and Q, is the set of probability measures absolutely continuous with respect
to P such that dQ/dP < a~!, is a CRM. So is the Weighted Value at Risk, WVaR,(X) :=
i) 0.1] TVaRy(X)u(da), where p is a probability measure on (0, 1]. The following representa-
tion theorem is established in [4] for finite €2, and generalized to a general probability space
in [16, 8]:

Theorem 2.4. A function p: L — R is a coherent risk measure if and only if
p(X) = sup{Eg[-X] : Q P} (2.2)
for a certain set D of probability measures absolutely continuous with respect to P.

Note that by (2.1) and the above theorem, every CAI can be characterized in terms of an
increasing family of coherent risk measures.

The theory of static risk measures has been explored and extended by many researchers;
to mention just a few of them: Follmer and Schied [19, 20] and Frittelli and Rosazza Gianin
[22] generalized the concept of coherent risk measures to convex and monetary risk measures;
Cheridito and Li [12] studied generalized measures on Orlicz Hearts, law-invariant risk mea-
sures have been investigated by Kusuoka [27] and Frittelli and Rosazza Gianin [24]; for a
systematic discussion on static risk measures we refer reader to the monographs by Delbaen
[15] and Follmer and Schied [21, Chapter 4].

3 Dynamic Coherent Acceptability Indices

As it has been already stated, the dynamic acceptability indices are meant to assess perfor-
mance of a cash-flow accounting for newly acquired information when time progresses. Of
course, one may attempt to use for this purpose a sequence of static (one-period) acceptabil-
ity indices. However, by doing this one may end up with a sequence of measurements that are
not consistent in time, in the sense to be explained below (cf. property D7). The motivation



for developing a theory of DCAIs, as presented in this paper, was to create a systematic
mathematical framework to provide performance measurements consistently in time.

Let (2, F,P) be a finite underlying probability space, and let 7 = {0,1,2,...,T} be a
finite set of time instants. We assume that P is of full support. We endow the underlying
probability space with a filtration F = {F;}]_,. For each t € T and F; € F, there exists a
partition of 2, say {P}, Pi, ... ,P;it}7 that generates F;.

A cash flow, also called dividend process, denoted as D = {D;(w)}L_, is any real valued
random process adapted to the filtration F. We denote by D the set of all cash flows. In
addition, we denote by P the set of all probability measures that are absolutely continuous
with respect to P, and by P¢ the set of all probability measures equivalent to P. Also, ¢ will
denote a generic constant, and m will denote a generic random variable. Finally, a standing
(financial type) assumption, which we make without loss of generality, is that the interest
rates are zero.

Definition 3.1. A dynamic coherent acceptability index is a function o : TxXDxQ — [0, +00]
that satisfies the following properties:

(D1) Adaptiveness. For any t € 7 and D € D, oy(D) is Fi-measurable;

(D2) Independence of the past. For any ¢t € T and D, D’ € D, if there exists A € F;
such that 14Ds = 14D. for all s > ¢, then 1404(D) = 1404(D");

(D3) Monotonicity. For any ¢t € T and D,D’ € D, if Dy(w) > D.(w) for all s > ¢t and
w €, then ay(D,w) > (D', w) for all w € €

(D4) Scale invariance. a;(AD,w) = au(D,w) for all A >0, D €D, t € T, and w €

(D5) Quasi-concavity. If ay(D,w) > x and ay(D’,w) > z forsomet € T,w € Q, D, D’ € D,
and x € (0, 4+00], then ax(AD + (1 — A\)D’,w) > z for all X € [0, 1];

(D6) Translation invariance. a;(D+mlyy,w) = ay(D+mlgy,w) foreveryt € T, D € D,
w € Q, s >t and every JF;-measurable random variable m;

(D7) Dynamic consistency. Forany ¢ € [0,...,7—1]and D, D’ € D, if D;(w) > 0 > Dj(w)
for all w € €2, and there exists a non-negative Fi-measurable random variable m such
that ay11(D,w) > m(w) > apq1(D',w) for allw € Q, then ay(D,w) > m(w) > ax(D',w)
for all w € Q.

Property (D1) is a natural property in a dynamic setup and it assumes that a DCAI is
adapted to the same information flow {F;}+>0 as is any cash flow D € D.

(D2) postulates that in the dynamic context the current measurement of performance of a
cash flow D only accounts for future payoffs. To decide, at any given point of time, whether
one should hold on to a position generating the cash flow D, one may want to compare the
measurement of the performance of the future payoffs (provided by DCAI at this point of
time) to already known past payoffs.

Properties (D3)-(D5) are naturally inherited from the static case (cf. Section 2).

Translation invariance (D6) implies that if a known dividend m is added to D at time ¢
(today), or at any future time s > ¢, then all such adjusted cashflows are accepted today at
the same level.

Dynamic consistency (D7) is the property in the dynamic setup which relates the values
of the index between two consecutive days in a consistent manner. It can be interpreted



from financial point of view as follows: if a portfolio has a nonnegative cashflow today, then
we accept this portfolio today at least at the same level as we would accept it tomorrow;
similarly, if the today’s cashflow is nonpositive the acceptance level today can not be larger
than the level of acceptance tomorrow.

For technical reasons, which will become clear later, we assume that for every DCAI «,
and for every t € T and w € 2, there exist two portfolios D, D" € D such that ay(D,w) = +00
and oy (D', w) = 0. We shall say that DAI « is normalized.

Note that normalization will exclude the degenerate examples of acceptability indices
such as a constant index over all states, times, and portfolios. Moreover, one can show that a
normalized index gets value infinity for every strictly positive cashflow and value zero if the
cashflow is strictly negative:

ay(D9%) = 400 for ¢ >0, and ay(D®) =0 for ¢ <0, forallte T,

where, for any w € Q and s > ¢, D®(r,w) = ¢ for r = s and zero otherwise.

For normalized DCAI we have equivalent forms of Property (D7). In fact, one can show
that under normalization, the set of properties (D1)—(D7) is equivalent to either the set
(D1)—(D7-I) or the set (D1)—(D7-1I), where

(D7-1I) For a given t > 0 and D,D" € D, if Di(w) = Dj(w) = 0 for all w € Q, and
there exists a non-negative Fi-measurable random variable m such that ay41(D,w) >
m(w) > app1 (D' w) for all w € Q, then ay(D,w) > m(w) > ay(D’,w) for all w € Q.

(D7-II) For a given t > 0 and D € D, if D(w) = 0 for all w € €, then

lgmin a1 (D,w) < 1g04(D) < 14 max agq(D,w),
weA weA

for all A € F;.

Finally we want to mention that (D3) and (D7) can be equivalently replaced in the definition
of DCAI by the following two properties:

(D3-I) For D, D' € D, if there exists A € F; such that 14Ds > 14D, for all s > ¢,
then 1404(D) > 1404(D’);

(D7-III) For D,D’ € D, if there exist A € F; and a non-negative JF;-measurable
random variable m, such that 14Dy > 0> 14D} and 1 q441(D) > 1am > 1aa441(D"),
then 1404(D) > 1am > 1404(D").

4 Characterization of Dynamic CAI by a family of Dynamic
CRMs

As mentioned in Section 2, there is a strong relationship between coherent acceptability
indices and coherent risk measures. In fact, as seen from Theorem 2.2 and Theorem 2.4, any
CAI « can be represented in terms of a family of coherent risk measures p*, x > 0:

a(D) = sup{z € [0, +00) : p*(D) < 0}. (4.1)

Looking at (4.1) one might think that a natural approach to constructing a DCAI would be
to use this representation but to replace the static coherent risk measures in (4.1) by their



dynamic counterpart. The representation (4.8) that we derive below shows that this is indeed
the case. The delicate issue however is, what family of dynamic coherent risk measures should
be used. It turns out that in order to produce a DCAI satisfying a financially acceptable set
of dynamic properties, one needs to use a carefully crafted family of dynamic coherent risk
measures. In this section we introduce such a family of dynamic coherent risk measures and
we compare our definition of coherent dynamic risk measures with analogous ones that have
been already studied in the literature.

4.1 Definition of dynamic coherent risk measure

Definition 4.1. Dynamic coherent risk measure is a function p : {0,..., 7} x D x 2 — R
that satisfies the following properties:

(A1) Adaptiveness. p;(D) is Fi-measurable for all t € T and D € D;

(A2) Independence of the past. If 14Ds = 14D’ for somet € T, D,D' € D, and A € F;
and for all s > ¢, then 14p:(D) = 14p:(D");

(A3) Monotonicity. If Ds(w) > D/ (w) for some t € T and D, D’ € D, and for all s > t and
w € Q, then p(D,w) < pi (D', w) for all w €

(A4) Homogeneity. p;(AD,w) = Ap(D,w) for all A >0, D €D, t € T, and w € §;

(A5) Subadditivity. p:(D + D' ,w) < pi(D,w) + p(D',w) for all t € T, D,D" € D, and
w € Q;

(A6) Translation invariance. pi(D + mlgy)

= p(D) —m for every t € T, D € D,
Fi-measurable random variable m, and all s > ¢;

(A7) Dynamic consistency.
14(min pi1(D,w) — Dy) < 1api(D) < 1g(max piy1(D,w) — Dy),
weA weA

for every t € {0,1,...,T — 1}, D € D and A € F;.

We want to mention that our definition of DCRM differs from the definition given in previous
studies essentially only by the dynamic consistency property. For sake of completeness, we
will present here how property (A7) relates to other forms of dynamic consistency of risk
measures (for processes).

(A7-I) If D; = Dj, and pi41(D) = piy1(D’) for some ¢t € {0,1,...,7 — 1}, and
D, D' €D, then py(D) = py(D'):

(AT7-IT) py(D) = p(—pi+1(D)1gs41y) — Dy for all times t = 0,1, ..., T —1 and positions
DeD.

(A7-II1) pi(D) < pi(—pt41(D)1g41) — Dy for all D € D, t € {0,1,...,T — 1},
(A7-IV) pi(D) > pi(—pt+1(D)1g41) — Dy for all D € D, t € {0,1,...,T — 1},

(A7-V) if D, = 0, and pi41(D) < 0 for some ¢ € {0,1,...,} and D € D, then
pt(D) < 0.



Property (A7-I) is the dynamic consistency property for DCRM defined by Riedel [28].
Property (A7-1I) is the version of the dynamic programming principle (also called recursive-
ness), introduced in Cheridito, Delbaen and Kupper [11], adapted to the setup of our paper,
that is, it is stated in terms of dividend processes rather than value process as in [11]. Prop-
erties (A7-I) and (A7-II) are equivalent, and they are also sometimes called strong dynamic
consistency property. To the best of our knowledge, properties (A7-III) and (A7-IV) were
first introduced in the context of random processes in Acciaio, Féllmer and Penner [1], and
they were called acceptance and rejection consistency, respectively. In the same paper, Ac-
ciaio, Follmer and Penner introduced condition (A7-V) and they called it weakly acceptance
consistent.

For corresponding definitions in case of random variables rather than random processes
we refer to the survey paper by Acciaio and Penner [2] and references therein.

It easy to show that the dynamic consistency condition (A7) is stronger than (A7-V),
and it is weaker than (A7-I) or (A7-II). Also note that since conditions (A7-II) and (A7-III)
taken together are equivalent to (A7-1I), then, taken together they imply (A7). However, the
inverse implication is not necessarily true.

We conclude this subsection with the following result.

Proposition 4.2. If p is a dynamic coherent risk measure, then pi(cly,,w) = —c, for all
ceR, teT,weQ and s>t.

Proof. Given some fixed t € T and w € , denote by A := p;(0,w). Then, by translation
invariance (A6) of p, we deduce

pr(clygy,w) = p(0,w) —c= A —ec, (4.2)

for all ¢ € R. In particular, for ¢ = 1, we have p; (15}, w) = A—1. Hence, by (A4)-homogeneity
of p, it follows that pi(culys),w) = cupt(lisy,w) = cu(A — 1), for all ¢, > 0. Combining this
with (4.2) we get A — ¢, = ¢y A — ¢y, and consequently A(1 —¢,) = 0, for arbitrary positive ¢,.
Thus, we conclude that A = 0, and hence p;(0,w) = 0. With this, by (4.2), the proposition
follows. O

Note that, in particular, p;(0) =0, for all t € T.

4.2 Duality between DCAI and DCRM

We start this section with several definitions that will be used in the main results derived
here.

Definition 4.3. A family of dynamic coherent risk measures (p®),¢(0,1c) is called increasing

if pf(D,w) > pf(D,w), forallz >y >0,t €T, D €D andw € .

Definition 4.4. A dynamic acceptability index « is called right-continuous if lier a(D +
c—0

clyy,w) = a(D,w), forallt € T, D € D, and w € Q.

Definition 4.5. A family of dynamic coherent risk measures (p),e(0,4o00) is called left-
continuous at xo > 0, if lim pf(D,w) = p/°(D,w), for allt € T, D € D, and w € (2.

.'L’—>130



Theorem 4.6. Assume that « is a normalized dynamic coherent acceptability index. Then,
the set of functions p*,xz € R, defined by

pi(D,w) :=inf{c € R: ay(D + clyy,w) >z}, (4.3)

forallt € T, D €D andw € Q, is an increasing, left-continuous family of dynamic coherent
risk measures.

Proof. First we will show that p* defined by (4.3) is well-defined. Since « is normalized, for

allt € T, D € D, there exist two finite constants cij and cf’D such that

ar(D + CZ’Dl{t},(/J) = +o0 and oy(D + cf’Dl{t},w) =0,

for all w € Q. Hence, for every x € (0,+00), the set {c € R : ay(D + clyy,w) > z} is not
empty, and cf’D <inf{c € R: ay(D + clyy,w) > x}. From here we conclude that infimum
from (4.3) is finite, and hence p” is well-defined.

Next we will show that p*,x € (0,400), satisfies properties (A1)-(A7). By (D1)-adapt-
iveness and (D2)-independence of the past of «, property (Al) and (A2) for p*, x € R, follow
immediately.

Assume that ¢ € T and D,D’ € D are such that Ds(w) > D.(w) for all s > t and
w € Q. Then (D + clyy)s(w) > (D' + clgy)s(w) for s > ¢, w € Q, and ¢ € R, and by (D3),
monotonicity of «

(D + clyy,w) > ay(D' + clyy,w), (4.4)
for all ¢ € R and w € Q). From here, we deduce the following inclusion
{ceR:ay(D+clyy,w) >z} D{ceR:ay(D +clyy,w) >z}

Taking infimum of both sets, (A3) follows. Similarly, the homogeneity of p* follows from the
scale invariance of a.

Next we show that p® satisfies (A5). Let t € T, D, D’ € D and w € Q, and let us take
c1, ¢ € R such that

ar(D+cilyy,w) >z, a(D' +ealyy,w) > .

Then, by (D5), quasi-concavity of «, we have

1.1 1., 1

at(iD + 5011{1&} + §D + 5C21{t}7w) >z,

and therefore by (D4), scale invariance of «, we get ay(D + D' + (¢1 + 02)1{15}7 w) > x. This
implies that ¢; +c2 € {c € R: ay(D + D'+ clyyy,w) > x}. Hence,

c1+co > inf{c e R:ay(D+ D'+ clyy,w) > x}
=p{(D+D\w). (4.5)

Note that the above inequality holds true for all ¢; € {¢ € R : ay(D + clyyy,w) > z} and
c2 € {c € R:ay(D' +clyy, w) > x}. By taking infimum in (4.5), first with respect to c1, and
then with respect to co, we have, pf(D,w) + pf(D’,w) > p¥f(D + D',w), and hence (A5) is
checked.



Now we will show that p® satisfies (A6), translation invariance. Fix an w® € Q, t € T,
D € D and an Fi-measurable random variable m. Denote by P! the unique element of
partition of F; such that w® € P!. This yields that the cash-flows m1 () and m(w®)1 (1) agree
on the set P!, and for all times s > ¢. Then, for any constant ¢ € R, we have

Lpt(D +mls + cligy)s = 1pe(D + m(wo)l{t} +clyy)s, for s > t.
By (D2), independence of the past of a, we have
Lpray(D +mly + clyyy) = 1prag(D + m(wo)l{t} +cliy)-
Since m is Fi-measurable, by (D6), translation invariance of «, we have
ar(D 4+ mls + cl{t},wo) =ai(D+mly + cl{t},wo) , forall s >t
Combining the above with (4.3), we deduce

pi (D + ml{s},wo) =inf{c € R: au(D +mlyy + cl{t},wo) >z}
=inf{c € R: ay(D +mlyy + cl{t},wo) > x}
=inf{ce R: ay(D + m(wo)l{t} + cl{t},wo) >z}
= inf{m(w°) + c € R : ay(D + (m(w) + c)l{t},wo) >z} — m(wP)
= pE(D,w) — m(u).
Since w" is arbitrarily chosen in ©, we obtain pf (D +mlqy) = pf (D) —m, for all s > ¢, and
(A6) is checked.
Next we will show that p* satisfies (A7), dynamic consistency. Assume thatt e 7, D € D
and A € F; are fixed, and denote by cfr’llii’A = mig pfy1(D,w) and hPA = majipr(D,w).
we we
Then ay+1(D + col{t+1},w) < x, for all w € A and for any ¢y < cfl’fn’A. Due to the finiteness
of the probability space €2, there exists a number e4 > 0, such that ay41(D + col{Hl},w) <
x — €y, for all w € A. By (D2), independent of the past of «, we have

at11(D — Dl + colypqry,w) = app1(D + colpgny,w) <o —eq,
for all w € A. Since, 14(D — Dilyy + 001{t+1})t = 14(D; — Dy) = 0, then, by (D7)
(D — Dilgyy +colyppry,w) <o —ea, weA.
Consequently, since ¢ is a constant, by (D6)
(D + (co — Di) 1y, w) = ay(D — Dilyyy + colpy,w)
= ay(D — Dilyy + colypyry,w)
<zr—eg<uwx,

t,D,A
min

forallw € A and ¢y < ¢ . By the definition of p*, we get

pi(D,w) =inf{c € R: ay(D + clyy,w) > x} > co — Di(w),

for all w € A and ¢y < 2. Hence, pf(D,w) > DA Dy(w), or equivalently 1apf(D) >

min min

1a(mingea pf 1 (D,w) — Dy). Similarly, one can show that

Lapf (D) < 14(max pi41(D,w) — Dy),
weA
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and thus (A7) is established.
All the above imply that p* is a DCRM for every x > 0.
Monotonicity of p* with respect to x follows immediately from (4.3) and the inclusion

{ceR:u(D+clyy,w) >z} C{ceR: (D +clyy,w) >y}, >y>0.

Finally, we will show that (p® )xe(0,+oo) is left-continuous. Let xg be any positive number.
Then,

inf{c € R: (D + clyy,w) > wo} > lim inf{c € R: (D +clyy,w) > x}. (4.6)

T—=Ty
If the above inequality holds strictly, then there exists a constant ¢y such that,

inf{c € R: ay(D + clyy,w) > w0} > co > lim inf{c € R: ay(D +clypy,w) >z}, (4.7)

a:—)xo

Note that inf{c € R : ay(D + clgy,w) > z} is an non-decreasing function with respect to x.
Therefore, the second inequality in (4.7) implies that, cg > inf{c € R : ay(D + clyy,w) > z},
for all x < xg. Hence, by (D3), monotonicity of o, a¢(D + colyy,w) > x, for all x < o,
and thus a;(D + colyyy,w) > hma;—mg 2 = xg9. On the other hand, by the first inequality
in (4.7), we deduce that, a;(D + colyy,w) < xo. Contradiction. Therefore, we should have
strict equality in (4.6).

This completes the proof. O

Next Theorem shows the representation of a DCAI in terms of a family of DCRMs.

Theorem 4.7. Assume that (p”),e(0,400) 95 an increasing family of dynamic coherent risk
measures. Then the function a defined as follows,

ar(D,w) :=sup{z € (0,+00) : p{(D,w) <0}, (4.8)

fort € T, D e D andw € Q, is a normalized, right-continuous, dynamic coherent accept-
ability index. Here, we assume sup® = 0.

Proof. Note that the assumption sup () = 0 guarantees that « from (4.8) is well-defined and
takes values in [0, +00].

In the following, we will prove that « defined in (4.8) satisfies properties (D1)-(D7).

(D1) - adaptiveness, (D2) - independence of the past, (D4) - scale invariance, and (D6)
- translation invariance follow immediately from the definition of «, and from adaptiveness
(A1), independence of the past (A2), homogeneity (A4) and translation invariance (A6) of
p*, respectively.

Let t € T, D,D’ € D, and assume that Ds(w) > D.(w) for all s > ¢, and w € Q. By
(A3), monotonicity of p*, we have

p(D) < p¥(D'), forallz>0. (4.9)

Note that, for any zg € {z € (0,4+00) : pf(D’,w)
combined with (4.9) implies p;°(D,w) < p{°(D',w) <

0}, we have py°(D’,w) < 0, which

<
0, w € Q. Therefore,

{z € (0,+00) : pi(D,w) < 0} 2 {x € (0,+00) : pj (D', w) < 0}
By taking supremum of both sides, (D3) follows.
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Next we will prove that a is quasi-concave. For given t € T, and z° € (0,+o0], if
D, D' € D are such that a;(D,w) > 2°, ay(D',w) > 20, then, by definition (4.8) of «, and
monotonicity of p® in x, we conclude that for any = < 20,

H(D,w) <0, pf(Dw) <0.
By (A4), homogeneity of p%, we note that for any A € [0,1] and = < 29,
PFOD,w) = ME(D,w) <0, pF((1 = N)D',w) = (1= \pf(D',w) < 0.
From here, by (A5), subadditivity of p*, we get
PEOD + (1= \)D',w) < F(AD,w) + p((1 = ) D) <0,

for any z < 2%. Hence sup{z € (0,4+0o0) : pf(AD + (1 — \)D',w) < 0} > 2%, and thus, by
definition (4.8) of a, we have, «(AD 4 (1 — \)D',w) > xy. This yields quasi-concavity of «.

Assume that D € D, and m is an F;-measurable random variable. By (4.8) and (A6), we
get

(D +mlygy,w) =sup{x € (0,+00) : pf (D + mlgy,w) <0}
— sup{z € (0,+00) : pf(D +mlyyy,w) < 0}
= ay(D +mlyy,w),
for all s >t and w € Q. Hence, « satisfies property (A6).
Now, let us show that « satisfies dynamic consistency property (D7). Assume that D, D’ €
D, and t € T are such that Dy(w) > 0 > Dj(w) for all w € Q, and there exists a non-negative

Fi-measurable random variable m such that az1(D,w) > m(w) > a1 (D', w) for all w € Q.
By definition (4.8)

sup{a € (0,+00) : pfy1(D,w) < 0} = m(w) > supfar € (0,+00) : pfyy (D'sw) < 0},

for all w € Q. Let us fix an @ € Q, and denote by ¢ := m(@). There exists a P} such that
w € Pf. From the above inequality, we conclude that for all w € Pit

sup{z € (0, +00) : pf (D.w) < 0} > ¢ > supfa € (0, +00) : pfy (D', w) < 0}

Then, for all ¢ > ¢ and w € P!, ¢ > sup{z € (0,+00) : pf, {(D’,w) < 0}, which consequently
implies that

P (D w) > 0. (4.10)

Also note that sup{z € (0,+00) : pf,(D,w) < 0} > ¢, for any ¢ < ¢. By monotonicity of p®
with respect to @, we have pf,(D,w) <0, w € Pf. Due to the finiteness of 2, (4.10) implies
that min,,cpr pf +1(D w) > 0, for all ¢ > ¢. Using (A7), dynamic consistency of p*, we get
the followmg

1pipi (D) > 1pg(Héant P (D', w) = Dj)

—1Ptm1npt+1(D w) — 1PtD d>e.
weP}
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Equivalently,

o' (D', w) = min g,y (D', w) — Dj(w) > ~Djw) > 0, (4.11)
weP;

for all w € P}, and ¢ > ¢.
If ¢ < sup{z € (0,+00) : pf(D’,w') <0}, for some w’' € P, then there exists a constant
® such that
¢ < ¥ < sup{z € (0,+00) : pf (D', ') < 0}.

This implies that p¢ (D’,w’) < 0, that contradicts with (4.11). Therefore,
¢ > sup{z € (0,+00) : pf (D', w) <0},

and by (4.8), we have
¢>a(D\w), weP. (4.12)

By similar arguments, one can show that
¢<ayD,w), we P (4.13)
Since w was arbitrarily chosen, by (4.12) and (4.13), we finally conclude that,
ay(D,w) > m(w) > au(D',w), forall weN.

Thus (A7) is checked.
Let us show that « is right-continuous. Given t € 7,D € D and w € €2, we have

{ € (0,400) : p(D,w) < 0} C {x € (0,+50) : p}(D,w) < ¢},

for any constant ¢ > 0. Taking the supremum of both sides, and then the limit of the right
hand side as ¢ — 0+, we get

sup{z € (0,+00) : pf(D,w) <0} < lir(r)1+ sup{z € (0,+00) : pf(D,w) < c}. (4.14)
c—

If the above inequality holds strictly, then there exists z° € (0, 4-00) such that

sup{z € (0,+00) : p¥(D,w) <0} < 2° < lim+ sup{z € (0,+00) : pf(D,w) <c}. (4.15)
c—0

The second inequality implies that
2V < sup{z € (0,+00) : p¥(D,w) < ¢}, forall c>0.

By monotonicity of p*, we deduce that pfo (D,w) < c. Since the last inequality holds true for
all ¢ > 0, we have that pffo(D, w) < lim,_,o+ ¢ = 0, that contradicts with first strict inequality
in (4.15). Therefore, we have equality in (4.14). Using this equality, and (A6), translation
invariance of p*, we write

on(D,w) = sup{z € (0, +00) : pf(D,w) < 0}
= lim sup{z € (0,+00) : pi(D,w) < ¢}
c—0t
= li%l+ sup{z € (0,400) : pi (D + clyy, w) < 0}
c—>!
= lim Ozt(D + cl{t},w) ,

c—0t
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and right continuity of « is established.
Finally, we will prove that a is normalized. Given a fixed t € T, consider the following
cash-positions
Dpos = Ly, Dipeg = _1{t}-

Recall that p;(0) = 0. By (4.8) and (A6), we have

at(Dp057w) = SUP{m € (0,+00) : pf(l{tbw) < 0}
= sup{z € (0,400) : pf(0,w) —1 < 0}
= sup{z € (0,400) : =1 <0} = +00.

Similarly, one can show that a;(Dpeg,w) = 0.
The proof is complete. O

We conclude this section with the main result that provides a representation of a DCAI in
terms of a family of DCRMs, and vise versa, a representation of DCRM in terms of a DCAL

Theorem 4.8.

(i) If o is a normalized, right-continuous, dynamic coherent acceptability index, then there
exists a left-continuous and increasing family of dynamic coherent risk measures

(px)mG(O,—i-oo) , such that

ay(D,w) = sup{z € (0,+00) : p{(D,w) < 0}. (4.16)

(i) If (p")ze(0,4-00) 5 @ left-continuous and increasing family of dynamic coherent risk mea-
sures, then there exists a right-continuous and normalized dynamic coherent acceptabil-
ity index o such that,

pf (D,w) :=inf{c € R: ay(D + clyy,w) >z},
Here we assume that inf () = oo and sup () = 0.
Proof. (i) For every x € (0,+00), define p* = (p¥)L_, as follows,
pi(D,w) :=inf{c € R: ay(D + cly,w) >z}, (4.17)

forallt € T, D € Dand w € Q. By theorem 4.6, (p*),¢(0,4-00) 18 an increasing, left-continuous,
family of dynamic coherent risk measures. We will show that

a(D,w) = sup{z € (0, +00) : p(D,w) <0},

forallt € T,D € D and w € €.
For any t € T,D € D, w € Q, and y"P* > sup{z € (0,+0) : pf(D,w) < 0}, we have

By (4.17) inf{c € R : a;(D + clyyy,w) > y"P*} > 0, and hence,

at(D,w) = at(D + Ol{t},W) < yt,D,w '
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Since the above inequality holds true for all y»P* > sup{x € (0, +o0) : p¥(D,w) < 0}, we
conclude that
(D, w) < sup{ € (0, +00) : pE(D,w) < 0}

Similarly, one can show that a;(D,w) > sup{x € (0, +00) : pf¥(D,w) < 0}.
(ii) Define the function « as follows,

a(D,w) :=sup{z € (0,4+00) : pi (D,w) <0}, (4.18)

forallt € T, D € D and w € Q. By theorem (4.7), « is a right-continuous and normalized
dynamic coherent acceptability index. Finally, one can check that

pi(D,w) :=inf{c € R: ay(D + clyy,w) >z},

for all z € (0,+00),t € T,D €D and w € Q. O

5 Special Construction of DCAIs

It is known, that a dynamic coherent risk measure has a representation similar to (2.2). One
of the important discoveries done in the process of robust representation of dynamic risk
measures, similar to (2.2), was that due to dynamic consistency property (A7), the set of
probability measures D has to posses some additional features, which depend on how the
dynamic consistency property (A7) is formulated. A set of probability measures having such
additional features is referred to as a dynamically consistent set of probability measures (or,
for short, a consistent set of probability measures).

In Section 5.1 we present our version of the concept of dynamically consistent set of
probability measures, as well as some non-trivial examples of such sets. It is seen that our
concept is different from the ones previously studied in the literature. Its form and properties
have been dictated by the goal of using it in the context of robust representation of our DCAIL

In Section 5.2 we prove the representation theorem for DCRM in terms of consistent sets
of probability measures. We conclude this section with representation theorem for DCAIs in
terms of families of sequences of dynamically consistent sets of probability measures.

5.1 Dynamically consistent sequence of sets of probability measures

In this section we shall discuss the concept of dynamically consistent sequence of sets of
probability measures.

In what follows we denote by P the set of all absolutely continuous probability measures
with respect to the underlying probability P, and P¢ will stand for the set of all equivalent
probability measures with respect to P. Recall that our standing assumption is that P has full
support. Note that in this case, due to the finiteness of €2, the set P consists of all probability
measures on {2, and also P¢ coincides with the set of all probability measures on €2 of full
support.

Definition 5.1. A sequence of sets of probability measures {Qt}tT:m with @y C P, is called
dynamically consistent with respect to the filtration F, if the following inequalities hold true

1 i inf Egl|X|F <14y inf Eg|X|F] <14ma inf Egl[X|F ,
smin{ inf BolXIFl(w) | < Lo iuf BolX|7 < Lamay{ inf BolX|Fiui]iw)}
(5.1)

for every t € {0,...,T — 1}, A € F;, and every random variable X.
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Definition 5.2. A set of probability measures @ C P is called consistent with respect to
filtration I, if the following equality holds true

éfelfQEQ [X‘]:t} = érelfQEQ[]\?gQEM (X | Fiqa] |]:t} ; (5.2)

for every ¢t € {0,...,T — 1}, and every random variable X.

Proposition 5.3. If a set of probability measures Q@ C P is consistent, then {Q}]_, with
Q: =0, t €T, is dynamically consistent.

Proof. If Q@ C P is strongly consistent, then, for every A € F;, Fi;-measurable random
variable X, and ¢t € {0,...,T — 1}, we have

14 2 Bal 7] = 1 o B (X 7)1 7]

— 1, inf Ep|14 inf Ey[X|F f}
ajnf Eqg|1a inf M [ X | Fra] | Fe

<1, inf Epl1 inf Eo[X|F F
<14 inf Eg AmaX{QHGlQ ol |t+1](W)}| t]

QeQ L weA
<14 inf Eo| inf Eo[X . .
<1 gt Bomp{ g Ealxalfi]. 6o

Since max e A { énfg Eg [X].Ft+1] (w)} is a constant, then, for each Q € 9, we have,
€

Eq [glgg { Jnf Eq[X|Ft] (w)} Ift} = max { ot Eq[X|Fi] (w)} :

Therefore,

3t B max{ ot BolX1ur]) } 7] = ma { o Bo [x1Fs] .

The last equality together with (5.3) imply
14 éIelfQ Eq [X|.7:t] <1yh gleajl( { érelfQ Eq [X‘}—t_ﬂ] (w)} .
Finally note that for any set of probability measures Q@ C P, we have
Lomin { inf B[X|711)) | < L fnf EqlXI] (5.4

for every t € {0,...,T — 1}, A € F;, and every random variable X. O

The rest of the subsection is dedicated to examples of dynamically consistent sequences
of sets of probability measures.

Example 5.4. Singleton set Q = {Q}, with Q € P¢, is clearly strongly consistent. By
Proposition 5.3 the constant sequence {Q, Q, ..., Q} is dynamically consistent. For simplicity
of writing, we will denote this sequence by Q°.
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Example 5.5. It is not hard to show that
nt
1 1nf]E [D|F] 1pt min D(w), te€T, DeD.
> 1oy of EalDIF] = 3 1y iy D

This implies that the set P¢ of all equivalent probability measures with respective to P, is
consistent. Hence, the constant sequence {P€¢, P€, ..., P} is dynamically consistent.

Example 5.6. Let a > 1 be a real number. The following set of probability measures
“:={Q € P° | Ep[dQ/dP|F;] < aEp[dQ/dP|Fi_1] for all t € {1,...,T}}

is consistent.

First note that

_inf E@[XLE] > mf E@[ mf EM[X\]:tHHft]

Qegau
for every t € {0,...,T — 1} and Fi-measurable bounded random variable X. Next we will
show that the converse inequality also holds true and hence, by definition, Q% is consistent.
Towards this end, assume that ¢t € 7, X is an F;-measurable random variable, and a > 1; all
arbitrary but fixed in what follows For convenience, we denote by Pf;rl the set of partition

(PIHL ., P+ such that P} = Pf]“, i=1,...,n. Notethat ky+ko+---+kn, = ngy1.
Pick up arbitrarily ny+mn;41 probablhty measures from Q%" and denote them by (Q1, Q2,
.. v@ntle,la MLQ, e aMl,kpMZ,l’ M272, e ,MQJQ, ...... 7M’I’Lt,17Mnt,27 e ’Mnhknt)' Some

of them are allowed to be the same. We will construct a new probability measure based on
the above set of probabilities. For any i € {1,2,...,n:}, 5 € {1,2,...,k;}, and w € Pitjl we
put

Mz’,j (w) @z( t+1)

H(w) := Mi,j(Pit,j'_l) Qz(plt)

P(P}).

(]

Note that Pfjl, i€ {1,2,....,n}, j € {1,2,...,k;}, is a partition of €2, and hence H is
well-defined, and since all probability measures in Q are of full support, H(w) is finite for all
w € Q. It is also easy to show that H(2) = 1, and thus H is a probability measure.

Next we will prove that H € Q%“. On any set P!, we have

b ) QP PP
Ly Epl 5 7 —1PtZ > 5 :1sz 2. i, (ij1> @(F) ng.t;

j=1 UJEPt+1 7=l wep!tt ¢

Pt+1 (Pr " prit
PZ LRI 1Ptz Qs
S(ELT) QP B(PY) @z Py

K3 Z

Thus, Ep[%|ft] = 1, and by tower property, for all s < ¢, we also have Ep[%\?s] = 1.
Consequently, we get

dH dH

Ep[ ] < aBp[ o], forall s <t (5:5)
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On the other hand, for any Pf;-rl, we have,

dH H(w) QP PP
1 t+1]E]p>[7‘]:t+1] =1,t+1 ——— =141 Lo,
Fij dP P wg.;_H P(PH) P Qi(PY) PP
]

Since Q; € O%", we have that E]}D[d;%i|ft+1] < aEp[dcé%ﬂ]:t] and thus 1Pt+1Ep[%|]~}+1] <

QP Qi(PY) Qz(Pt-H) P(P?)
W < alPt+l (Pt) . H e, (Pt‘+1) Q (Pt) > a/’

al Pflep[%;—% [2]. This implies that 1 v
and therefore,

dH JdH
1Pit,g+'1EP[d7P|]:t+l] < 1Pit3_Lla = 1Pit,}rlaEP[dTF’|ft] .

Pt+1

Since the above holds true for any we have that

dH dH
B[ 1P < a5 1),

By similar arguments as above, inductively, one can show that

dH

EP[@

dH
5] < ale[ 5 [ 7]
for any s > t. Combining this with (5.5), we conclude that H € Q%".
Next let us evaluate Eg[D|F;]. Consider a new random variable Y, defined as follows:

k;

nt
Y = Z Z 1PZ’;1EMZ'J [D|Fii1] -

i=1 j=1

Then, for any m € {1,2,...,n;}, we can deduce that

o
1pt B, [YIF] = 1p, ZE@m[lpg]@EMm,j [D|Fe41][Fe] - (5.6)
j=1 ’

: t+1 . _ M, j (w) D(w)
For convenience, we put C; " =1 pit D e Pl m Note that

1PfrfleMm*j [D’]:t—i-l] = Cfr—l’:Jl

Hence,
km
1py Eq,, [YIF] = 1p;, ZE@m [CEHF, Z 2 Pt > @)
j=1 @EPL, m( j=1
By the definition of CZ;L ]1, we note that
t & - M, j(w)
j=1 ’ wepttl T m,g

m,J



Then,

Qun(Fy,

wePt, j=1 WEP:J;

_ km (o
Ly Bo, VIR = 3 [WZuPy;(w) Y ) D)
| N

) M u(w)
= : D(w).
Z 2. s T
From here, using the fact that H(Pz) P(P}), we conclude that
lthnEQm[Y’ft] - 1Pt EH[D‘.FA .
Since H € Q*", we have that Eg[D|F] > _inf Eg[D|%]. Consequently, the following

Q Qa u
inequality holds true

1pt g, [Y|F) > 1p;, _inf Eg[D|F].
Qegau
By (5.6), it follows that
ne ki
1py Bq,, [Y|Fi] = 1p; Eq, [; ; 1peiaBug, ; [DIFe41][ 7],

from which we continue

ne ki
1 Bg, [Y]Fi] > 1P5LE@M[§2211 . EMH[D|ft+1]|ft} > 1py, _inf EglDI7),

[ i ’

and since, this is true for all Q,, € Q@%*, we have

t 7
1pt Qmienéa’uEQm[ZZIPf;rlM it Bu,, [D|]-'t+1]|}'t] >1p; _inf Eg[D|F].

i=1 j=1 QeQau
Summing both sides of the last inequality over m € {1,2,...,n;}, we have
nt ne ki
n; Lpt, Qmiéléa,u Eqn, {; ; 1pt Mi’}gfga, M, [D|Fi41] ‘]:t} mzl Lpe, 5 Héfa EglDIA,

or equivalently,

inf E@[ mquM[D\fm]\ft} > inf E-[D|F].

QG Qa w QE Qa,u Q

This concludes the proof that Q%" is consistent.
Remark 5.7. It is easy to show that for any Q € Q%*,

d
Ep[ﬁm] <d. teT.

In particular, Q(A4) < a'P(A), for any Q € Q*“, A € F; and t € T. Different probabili-
ties in Q%" can be regarded as different opinions about the distribution of cash-flows; the
above inequality provides an upper bound of these probabilities in terms of the underlying
probability P.
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Example 5.8. By similar arguments as in previous examples, one can show that the set of
probability measures Q%! defined as follows

Q»! .= {Q € P° | Eg[dP/dQ|F;] < aEg[dP/dQ|Fj_4] for all j =1,...,T,}

is a consistent set of probability measures.

Example 5.9. In this example we construct a dynamically consistent sequence of sets prob-
ability measures that is not constant sequence of consistent sets of probability measures.

Let P, Py, ..., Pr, be a sequence of probability measures in P¢ such that IP; # P;, for i # j.
Consider the following sequence of sets of probability measures Q; = P\ Py, t =0,1,...,T.
It is easy to show that

@135 Eg[X|F] = mf Eg[X|FA], teT. (5.7)

This implies that {Q;}L, is a dynamically consistent sequence of sets of probabilities mea-
sures. Clearly it is not a constant sequence.

5.2 Representation Theorem of DCRM

In this section we will present a representation theorem for dynamic coherent risk measures in
terms of dynamically consistent set of probabilities. These results combined with the results
from Section 4.2 about duality between DCAI and DCRM will lead to a representation
theorem for dynamic coherent acceptability indices.

Theorem 5.10 (Representation Theorem for DCRM). A function p : {0,1,..., T} xDxQ —
R is a dynamic coherent risk measure if and only if there exists a dynamically consistent family
of sets of probabilities U := {Qs}_ such that,

pt(D) = — 4ol Eg Z:; Dy|F], forallteT, DeD. (5.8)

Proof. Sufficiency. It is not hard to show that p defined in (5.8) is a dynamic coherent
risk measure. (A1)-(A6) are checked similarly as in existing literature (see for instance [28]),
and for interest of saving space we will not check them here. We will show only that (A7),
dynamic consistency, is satisfied.

Since U = {Q;}]_, is dynamically consistent, we have,

T
1 D) =-1 f E D.7: >1 — inf E D | F -D
()= g B30 > {3 5l S DA -}

= 1AI1161H{Pt+1(D w) — Dt} ;

forany Ae 7, t €T, DeD,and Q; € U.
Similarly, one can show that 14p:(D) = 14 maxyeca {piy1(D,w)— D}, for every t €
T, DeD, Qi cU. Thus (A7) is satisfied.

Necessity. The set U will be constructed explicitly. Fix a time ¢ € 7. Recall that
{Pf,..., P} } denotes the partition of Q that corresponds to F;. Also, we will denote by

{Pltls . ,Plt;%} the partition of P} generated by Fj, for some future time s > ¢. Thus
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P! = U?LZSIPZJS Assume that P} is fixed for some i € {1,...,n;}, and define the following
probability space (Qt, 2% Punl) with,
= {(s, PtS cse{t,t+1,....,T}and j € {1,2,...,ms}},
and P (w) = l/card(Qﬁ) for each w € QL.
Let us denote by X () the set of all random variables on Q. There exists a one-to-one

correspondence between X (€f) and the set D} := {D1y;,11_ . 1ylpt : for all D € D}. The
map can be defined as follows: for any X € X(), put

X((s,P?)), ifs>tandwe P’
DX (w) = A = & 5.9
- () { 0, otherwise, (5.9)
and vise versa, for any D € D!, define
XP((s,P]7)) := Ds(w), (5.10)
for s >t,j€{1,2,...,ms}, and w € PfjS
Consider the following map ¢ : X(Q!) — R with,
1 X t
o(X) = mpt(D ,w), we P (5.11)

We claim that ¢ is a static coherent risk measure, i.e. satisfies the properties (R1)-(R4) of
Definition 2.3. Indeed, for any X,Y € X (), such that X <Y, we have, DX (w) < DY (w),
for all s >t and w € Q. Then, by (A3), the monotonicity of p, we get p,(D~,w) > p(DY,w),
for w € Q. Therefore, by (5.11), ¢(X) > ¢(Y), i.e. ¢ satisfies (R1).

Note that for all X € X(Qf) and XA > 0, by (5.9), we have,
D}¥(w) = AX((s, P7)) = ADJ (w),

forall s > tand w € PZ’;. From here, by (5.11) and using homogeneity of p, the homogeneity
(R2) of ¢ follows.
Next we will show that ¢ satisfies (R3). For all X € X(Q!) and k € R, by (5.9), we have,

DI w) = X ((s,P;})) + k= DI (w) + k,

for all s > t and w € Pf]s Therefore, by (5.11) and (A6), translation invariance of p, we
deduce

1
H(X + k) = mpt(DX + kg 1y,w)
1 X
= m(pt(D aw) - (T —t+ 1)k)
= QZ’(XD) - k’

for all X € X(Qf).

To show that ¢ satisfies (R4), consider an X € X(Q!). By (5.9) DXV (w) = DX (w) +
DY (w), for all s >t and w € PZ’;, and therefore, by (5.11) and (A5), subadditivity of p, we
obtain

pr(DX + DY, w) < (pe(DX,w) + pe (DY, w))

1 1
X4+Y)=-—— S
HX+Y) T—-t+1 T—-t+1

= o(X) + o(Y).
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From all the above, we conclude that ¢ is a static coherent risk measure. By Theorem 2.4,
representation of static coherent risk measures, there exists M, a set of absolutely continuous
probability measures with respect to P"™ on Qf, such that

X) = — inf Ey[X].
#(X) MlenMg M| X]
By (5.11), we have,
1
— = (DX, w)=— inf Ey[X Pt 12
T—t—l—lpt( ;W) MlenMﬁ mX], wePp (5.12)

Since there is one-to-one map between X (Q!) and DY, for any D € D!, we also can write

1
———p(D,w) = — inf Ey[XP"]. 1
D) = = inf Bulx?) (513)
Fix a time ¢© € {t,t 4+ 1,...,T}, and denote by D the process L{03. By (A6)-translation

invariance and (A2)-independence of the past of p, it follows that p;(D,w) = —1, w € P}.
Hence, by (5.13),

5 1
inf Ey[XP]= —r1. 14
il D | (5.14)
Note that Eyr[XD] = M({t°} x P!). Thus, (5.14) implies
inf M({%) x Pl = —
MeM! ! T—-t+1
Similarly, one can show that Ep[X -D ] = —=M({t°} x P!). Thus we derive that
inf Ey[X D)= inf (=M{t°} x PY)) = — sup M({t°} x P!),
il X Mew( ({t"} x By)) MGA% ({t"} x By)
and consequently
1
M({t°} x P}) = ————.
Sup ({t"} x ) T i1
This yields that
M({t°} x P}) = e {t,t+1,...,Th (5.15)

T—t+1’

For any s € {t,t +1,...,T}, define M* : Qf — R as follows

(T —t+ 1)M((r, Pf;")), when r =sand j € {1,2,...,m;}

0, otherwise.

M (r, PE)) o= {

It is straightforward to show that M? is a probability measure on Q! for every s € {t,t +
1,...,T}.
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For all D € D, we can derive,

T

T
S B[ X2 = ST (30 S M ((r, P (Ds 1) (), for some w € P

s=t s=t r=t j=1

s=t j=1

T
= Z (Z(T —t+ 1)M((s, Rﬁf))Ds(w)), for some w € PZ’;

s=t j=1
= (T —t+ 1Ey[XP].

Hence, by (5.13), we have

D,w)=—(T—t+1) inf Ey[X”]=— inf Epgs [X Pote], e P! 5.16
pi(D,w) ( )MlenME m[X ] MIEHMZ:: M [ ) w (5.16)

Since p satisfies (A6) and (A7), we deduce that
ps(Dslisy — Dolyry,w) =0, s>t DeD, we F.

Thus, (5.13) and (5.16) imply,

— inf (Eps[X P 1] — Epgr [ XPoH1]) = — 1nf E r[X (Pslisy=Dsliry)rle

:pt(Dsl{S} — Dsl{T},w) =0.
Since the above equality holds true for all D € D, it also holds true for —D. Hence, we have

inf (Eyps[X P10 — By [X ~Pe1im]) = 0. (5.17)
MeM!

On the other hand, by (5.10), one gets

inf (Epgs[X Pl ] — Bypr [X DU )) = — sup (B [XPo 10} ] — Eyyr [X Pe1m)])
MeM! MeM!
Thus,
sup (Epps [X o1} ] — Bygr [XPsHT3]) = 0 (5.18)
MeM!

y (5.17) and (5.18) we conclude that

sup (Epgs [X P19} ] — Bpgr [X P 1T ]) = 0 = inf (Epgs [XPe1)] — Byr [X Peim1])
MeMt MeM;

and hence

Epps [X Polis)] = Byyr [X Polim) ] (5.19)
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for all s > ¢, and Ml € M!. Therefore, we can rewrite (5.16) as follows,

pe(D,w) = _Mlen/\f/tt [ZEM [XDsls }]}

T Mien/f/lﬁ [EMT [Z XDSI{T}]}

— — inf Eyr [X@s tDsﬂm} (5.20)
MeM!

for all D € D, and w € P!.
To summarize, for every Pit, 1 =1,...,n, we constructed a set of probability measures
M on Q!. Having these sets, we define Q; as follows:

= {Q € P : there exists {M;}7*, such that, for all i € {1,...,n;}, j € {1,...,m%},

1 1

M; € M; and Q(w) = o N( )

M (1, P])) for all w € Pff} ,

where NV (P) stands for cardinality of the set P C (.
By direct evaluations, one can show that Q;, t € T, is a set of probability measure on €.
Next we will show that (5.8) is fulfilled. Note that, for all w € P},

- - Q)
Bo[ S D7) = X |30l

wePf s=t 4
mé, T 1
MA
=Y. ¥ | D) M P
i=1weptT - s=t ( iJ )

_Z ZD MY (T, 1))
=Eyr [XZszt Dslry]

If infgeo, Bo[ 1, Dyl Fi](w) > infyy,cpg Bygr [X o=t P47}, then there exists M; € M!

such that
T

T
Egr[X 2= PsLm)] < inf E Dy Fi] (w). 5.21
il | < o, Eo[ 3 D7 (521)
However, for @ constructed by I\E, as previously proved,
Eg [XZs ¢ Dslqmy] = ZD | F] (w) > 1nf Eg ZD |F](w), we P,
that contradicts (5.21). By the same arguments, one can show that the inequality

inf E Dy F(w) < inf Eyer[X2e=t Dsliry
Qe ¢ ; : t]() M; e M MT[ J
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can not hold true, and thus, we conclude that

T
T
inf Eq[ Y DlFi](w)=_inf Byr[X2e=Peln]  we P,
0e0; Q[S:t s’ t]( ) MyeM? MlT[ ] 7

and by (5.20),
T
D)= — inf E Dg|Fil .
pu(D) = = inf @[; 7]

To complete the proof we need to show that {Qs}sT:o is a dynamically consistent sequence
of sets of probability measures. Recall that by (A7), dynamic consistency of p,

1a(min ppy1(D,w) — Dy) < 1ap(D) < 1a(max pry1(D,w) — Dy), (5.22)
w€eA weA

for all D € D and A € F;. Using this, we get

T

T
Latai { = oJof Eal 3 DelFen] @)} = D) < 1a(- nf Eal3_ D7),

for any D € D and A € F;. Consequently, we obtain

T T
14 Iurjlgzc{QeingEQ[;Dsl}}H](w)} > 14 inf Eo[Y DiF], DeD, AcF. (523)

s=t
Similarly, by (5.22)

T

T
Latimax{ = o af Bol 2, PelFina] (@)} = Do) 2 1a( jnf Ba[3  Dil7i])

and hence

T T
14 wmenA}{Qeircg+1 EQ[;DSVH](M)} < la nf Eg[) D|F], DeD, AcF. (5.24)

s=t
Combining (5.23) and (5.24) dynamic consistency of {Q;}7_, follows.
This completes the proof. O

Remark 5.11. An interesting question is whether the sequence {QS}ST:[) appearing in the
representation (5.8) can be replaced with a constant sequence of sets of probability measures.
The question is motivated by the following observation:

First note that for any set of probability measures Q C P, the following inequality holds true

1ymin{ inf Eg[X|F, <14 inf EolX|F], 5.25
i { inf BoX|Fia)) | < L fnt Eo[X|) (5:29

for every t € {0,...,T — 1}, A € F;, and every random variable X. Thus, if the set Q
additionally satisfies the following weak consistency condition

Lymax { iut B [X|7i1](@) } > La jut B[ XI5 (5.26)
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then the constant sequence Q; = 9, t € T, is dynamically consistent. Observe that in
Example 6.2 we indeed have that

T
pi(D) = —éngE@[;Dsﬂ], teT, DeD,

where Q = P¢. Note however that P¢ satisfies consistency condition (5.2) which is stronger
than (5.26).

5.3 Representation of DCAIs

Having derived a representation theorem for dynamic coherent risk measures in terms of sets
of probability measures, and having derived the duality between DCRM and DCAI we can
present the final results of this paper: duality between DCAI and sets of probability measures.

Definition 5.12. A family of sequences of sets of probability measures
(U* == (QF)1=0)ze(0,4+00) 18 called increasing if QF D QF, forallz >y >0and t € T.

As direct consequence of Theorem 5.10 and Theorem 4.7 we have the following results:

Theorem 5.13. Assume that (U* := (Qf)?zo)x€(0,+m) is an increasing family of dynamically
consistent sequences of sets of probability measures. Then, the function o« : {0,1,...,T} X
D x Q — [0, +00] defined as follows,

T
D) = € (0,+ : inf E Dg|F:| >0}, teT, DeD, 5.27
(D) = sup{z € (0, 400) o o[> DdF] >0} (5.27)

s=t
1s a normalized and right-continuous dynamic coherent acceptability indez.

Theorem 5.14. If « is a normalized and right-continuous dynamic coherent acceptability
index, then there exists a family of dynamically consistent sequences of sets of probability
measures (U := (QF)1_g)ze(0,+00) Such that

T
D) = € (0,40): inf E Dy|F| >0}, teT, DeD.
ou(D) = supfz € (0,+0c) : jnf Ba[ > Dil7i] 2 0}

Here we adopt the usual convention that inf ) = co and sup () = 0.

Remark 5.15. We want to mention that the static Al is a particular case of the DCAI
developed in this paper and corresponds to T = 1. Same is true for the representation
theorem for static Al in terms of family of sets of probability measures.

6 Examples

Theorem 5.13, besides being a fundamental theoretical result, can serve as basis for construc-
tion of DCAIs by means of constructing increasing sequences of dynamic sets of probability
measures. Using this idea, we present here some abstract, non-trivial, examples of DCAIs.
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Example 6.1. Dynamic upper-limit ratio.
Assume that h : (0, +00) — [0, +00) is an increasing function. Define Q” as follows,

& = (Q e PE2 |7 < (1+ h(fﬂ))&»[%

P |Fj_i1] forall j=1,...,T,},

and let Y* = {Q,I}tT:O. Note that 9% = QIth@u 5 > 0, where Q%% a > 1, is defined
in Example 5.6, and thus Q% is dynamically consistent for any x > 0. Also observe that
monotonicity of A implies monotonicity of Q% with respect to . Hence, by Theorem 5.13,

T
ay(D) = sup{z € (0,+00) : inf EQ[ZDSU:t] >0}.
QeQr s=t

is a normalized and right-continuous dynamic coherent acceptability index. We call it dy-
namic upper-limit ratio.

Example 6.2. Dynamic lower-limit ratio.

Similarly, using Example 5.8, we consider Q7 := QU@L for some increasing, non-negative
function h. Then, U* = {Q“ tT:o is dynamically consistent, and by Theorem 5.13, the
function a defined by (5.27) with QF = Q%, 2 > 0, is a normalized and right-continuous
dynamic coherent acceptability index. We call it dynamic lower-limit ratio.

Example 6.3. (Continuation of Example 5.9)
In Example 5.9 we constructed a non-constant dynamically consistent sequence of sets of
probability measures. In view of (5.7) the corresponding family of risk measures satisfies

T T
pu(D) = = inf E@[;DSE] = - Jnf, EQ[;DSW] , forallteT, DeD.

The point that we are making here is that the infimum over a time dependent set Q; can be
replaced by the infimum over time independent set P¢ (see also Remark 5.11 in this regard).

Example 6.4. Dynamic Gain Loss Ratio.
Gain Loss Ratio (GLR) is a typical return-to-risk type of performance measure, very popular
among practitioners. We recall that it is defined as the ratio of expectation of positive returns
to expectation of negative returns: GLR(X) := E(X)/E(max{—X,0}), if E[X] > 0, and zero
otherwise. As shown in [13], GLR is a (static) coherent acceptability measure.

Here we present a dynamic version of GLR, denoted by dGLR, and defined as follows:

21E oy Dal it BT, D, |F]>0
dGLRy(D) := { E(ZI_, D) | A’ 2ot Dal >0, (6.1)

0, otherwise,

where (ZST:t D,)™ := max{— Zz:t D;,0} and t € T, D € D. Note that taking T'= 1, dGLR
becomes the static GLR.

We argue that dGLR is a normalized and right-continuous dynamic coherent acceptability
index. Indeed, since dGLR(17) = +oo and dGLR(—17) = 0, we have that dGLR is nor-
malized. Right-continuity follows from linearity of expectation and continuity of function
f(z) = . Adaptiveness (D1), and independence of the past (D2) of dGLR follow directly
from the definition. Monotonicity (D3), scale invariance (D4), and quasi-concavity (D5) are
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verified as in static case with expectation replaced by conditional expectation (for details see
[13]).

Since B(3°, (D+mlgg)i|Fr) = B(C L (D+mlgy)ilFr), and (X[, (D+mliy))~ | F)
E(XL (D + mlgy)i)~|Fe), for allt € T, D € D, (D6), translation invariance, follows.

Finally we will prove that dGLR satisfies (D7), dynamic consistency property. Assume
that m is an Fi-measurable random variable, and D € D such that Dy < 0 and dGLR¢4+1(D) <
m. Assume that m # 400, and ]E[ZST:H_1 D|Fiy1] > 0. By definition of dGLR, we have,
E(X 1 Dol Fipr) <m-E({X L, 1 Ds} | Fis1), and since Dy < 0, we have

T T T T
E(Y  Di|F) <EE( Y Do Fer)lF) <mE({ Y D} |F) <mE({D_ D} |F).

s=t s=t+1 s=t+1

which implies that dGLR4(D) < z. If m = 400 or E[ZZ:tH Dg|Fis1] < 0, then clearly
dGLR(D) < m.

Similarly, one can show that if D; > 0, and dGLR+1(D) > m, then dGLR:(D) > m.
Thus, we conclude that dGLR is a DCAL

Example 6.5 (Counterexample). Taking into account the general form of a dynamic ac-
ceptability index (cf. (5.27)), and the general form of a static one (cf. (2.1)), the natural
question arises: is it possible to dynamize a static coherent acceptability index by taking
the appropriate ‘conditional quantity’ of the cumulative future cash-flow? For example, to
dynamize GLR, we consider the static GLR, and replaced in it the expectation with condi-
tional expectation, and the terminal value with future cumulative cash-flow. However, this
procedure is not valid in general. The natural extension of static Risk Adjusted Return on
Capital (RAROC) to a dynamic setup has the following form:

E(XL, DalF) when E(>1_, Ds|F)
i ’ s= S t > 0
dRAROC(D) = —dngE@[ZLt Ds|F] t

0, otherwise

with convention dRAROCH(D) = +oc if inf Eg[YL_, Ds|Fi] > 0.
S

As it is seen from Figure 6, which represents a numerical example, dRAROC does not
satisfy property (D7), dynamic consistency. In this example, we consider @ = P¢. Assume
that the states are labeled from top to bottom wi,ws, ... ,ws. Note that, Di(w;) = 0.2 > 0,
i.e. positive cashflow at time ¢ = 1 and state w;, but dARAROC;(w;) = 0.31 < 0.33 =
dRAROC2(w1), as well as dRAROC(w1) = 0.31 < 0.32 = dRAROC3(w2). Thus dRAROC
does not satisfy (D7) and hence it is not a DCAL

For comparison reasons, we also present in Figure 6 the values of dGLR, which is a DCAL
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