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Abstract

We study the applicability of meshfree approximation schemes for the solution
of multi-asset American option problems. In particular, we consider a penalty
method which allows us to remove the free and moving boundary by adding a small
and continuous penalty term to the Black-Scholes equation. Time discretization
is achieved by a linearly implicit θ method. A comparison with results obtained
recently by two of the authors using a linearly implicit finite difference method is
included.

1 Introduction

We consider the Black-Scholes model for American basket options with a nonlinear
penalty source term. In the penalty approach, the free boundary is removed by adding
a small continuous penalty term to the Black-Scholes equation. The problem can then
be solved on a fixed domain. This kind of penalty method was introduced by Zvan et
al. [25] for American options with stochastic volatility by adding a source term to the
discrete equation. In [7] it was established that their penalty method applied together
with a finite volume spatial discretization leads to a quadratically convergent numerical
scheme. The authors of that paper also emphasize some of the advantages of penalty
methods, namely the same technique applies to one-dimensional and multi-dimensional
problems. Moreover, the technique can be used for any type of discretization, in any
dimension, and on structured as well as unstructured meshes. It is also possible to use
the penalty approach to handle American options together with other nonlinearities.
A small continuous source term was added to the Black-Scholes partial differential
equation by Nielsen et al. [16, 17] for both single and two-asset American options.
The authors illustrated the performance of various numerical schemes based on theta
methods for temporal integration and replacing the spatial derivatives (i.e., derivatives
with respect to the asset prices) by finite difference approximations. The multi-asset
case was also studied by two of the authors of this work [12] using centered finite
differences to approximate the spatial derivatives.

In this paper we consider a meshfree radial basis function (RBF) approach as spa-
tial approximation for the numerical solution of the American options value and its
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derivatives in the Black-Scholes equation. It is known that globally supported RBFs
are capable of providing a highly accurate spatial approximation to the solution (for
the approximation properties of RBFs in the PDE case see, e.g., [5, 8]). The RBF
approach does not require the generation of a grid as in the finite difference method.
Since many of the radial basis functions (such as Gaussians and generalized multi-
quadrics) are infinitely continuously differentiable, the higher order partial derivatives
of the option value that are used in hedging can be computed directly by using the
derivatives of the basis functions.

2 A Penalty Method for American Basket Options

A basket option is an option whose price is based on multiple underlying assets. We as-
sume there are s such assets whose price at time t is denoted by S(t) = (S1(t), . . . , Ss(t)).
The value P (S, t) of the American put option can be determined by solving a multi-
dimensional Black-Scholes equation. Since an American option permits early exercise
this problem is usually formulated as a moving boundary problem (see, e.g., [20]).

If we introduce the notation S(t) = (S1(t), . . . , Ss(t)) to represent the moving
boundary, T for the time of expiry, denote the volatility of the i-th underlying as-
set by σi, let r be the risk free interest rate (assumed to be fixed throughout the time
period of interest), Di the dividend paid by asset i, and let ρij be the correlation
between assets i and j, then we get the following linear parabolic partial differential
equation

∂P

∂t
+

1
2

s∑
i=1

s∑
j=1

ρijσiσjSiSj
∂2P

∂SiSj
+

s∑
i=1

(r −Di)Si
∂P

∂Si
− rP = 0, (1)

Si > Si(t), i = 1, . . . , s, 0 ≤ t < T,

known as the Black-Scholes equation for multi-asset problems.
The payoff function of the American put is given by

F (S) = max(E −
s∑

i=1

αiSi, 0),

where E is the exercise price of the option and αi are given constants. If we define the
domain

Ω = {(S1, . . . , Ss) : Si > 0, i = 1, . . . , s},

then we can formulate the terminal condition for (1) as

P (S, T ) = F (S), S ∈ Ω. (2)

Along the moving boundary we require

P (S(t), t) = F (S(t)), (3)
F (S(T )) = 0. (4)

Equations (3) and (4) ensure that the exercise value and the continuation value of
the option are the same along the exercise boundary. To have a smooth transition we
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also require that the gradient of the option value (with respect to the underlying asset
prices) is continuous at the boundary. This so-called smooth pasting condition is given
by

∂P

∂Si
(S, t) = −αi, i = 1, . . . , s. (5)

More details about the conditions along the exercise boundary are given in [20].
Finally, the following boundary conditions are added:

lim
Si→∞

P (S, t) = 0, S ∈ Ω, i = 1, . . . , s, (6)

P (S, t) = gi(S, t), S ∈ Ωi, i = 1, . . . , s. (7)

Here the Ωi denote the boundaries of Ω along which the price Si = 0. Since the Black-
Scholes equation assumes a lognormal distribution model for the asset price changes, it
follows that if one of the asset prices is zero at time t∗, then the asset will be worthless
for any t ≥ t∗. Thus, the functions gi specifying the boundary conditions are the
solutions of associated (s− 1)-dimensional Black-Scholes problems. Moreover, for put
options, the contract becomes worthless as the price of any of the underlying assets
tends to infinity. Therefore, the right-hand side of (6) is zero.

Since for an American option early exercise is permitted, the value of the option
must satisfy the positivity constraint

P (S, t)− F (S) ≥ 0, S ∈ Ω. (8)

Our approach to eliminating the moving boundary from the above formulation
follows [12, 16, 17]. We will add a penalty term to the Black-Scholes equation (1)
and thereby convert the problem to one on a fixed domain. This transformation was
suggested in [25] and later refined in [17] (both for the case of single asset options, see
also the references [3, 13, 23]). In [16] a penalty formulation for multi-asset options
was presented, and it was proven that the approximate option prices obtained via the
penalty approach satisfy a number of fundamental properties of the American option
problem such as the positivity constraint (8). Thus, the penalty term is chosen so
that the solution stays above the payoff function as the solution approaches expiry.
Moreover, far from the barrier q (see (10) below) the penalty term is small enough so
that the PDE still resembles the Black-Scholes equations very closely. It is easily seen
that a penalty term of the form

εC

Pε + ε− q
(9)

satisfies these requirements. Here 0 < ε � 1 is a small regularization parameter,
C ≥ rE is a positive constant, and

q(S) = E −
s∑

i=1

αiSi, (10)

is the barrier function. In [17] this choice of penalty term is very nicely motivated. The
authors of that paper also address stability and satisfaction of the positivity constraint
(8) for the case of a finite difference spatial discretization coupled with various time
stepping schemes.
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By adding the penalty term (9) to the multi-asset Black-Scholes equation (1), we
obtain a parabolic nonlinear partial differential equation

∂Pε

∂t
+

1
2

s∑
i=1

s∑
j=1

ρijσiσjSiSj
∂2Pε

∂SiSj
+

s∑
i=1

(r −Di)Si
∂Pε

∂Si
− rPε +

εC

Pε + ε− q
= 0, (11)

S ∈ Ω, 0 ≤ t ≤ T.

The terminal and boundary conditions on the fixed domain are just like before

Pε(S, T ) = F (S), S ∈ Ω, (12)
Pε(S, t) = gi(S, t), S ∈ Ωi, i = 1, . . . , s, (13)

lim
Si→∞

Pε(S, t) = 0, S ∈ Ω, i = 1, . . . , s. (14)

In a practical implementation the domain Ω is usually truncated by introducing rela-
tively large values Si,∞ indicating the price of asset i for which the option is worthless.
The use of such a far field boundary condition was analyzed in [11], and it was con-
cluded that the usual rule of thumb of taking Si,∞ to be about three or four times the
exercise price is often excessively conservative. In our numerical experiments below we
use S∞ = 2E for the single asset examples, and Si,∞ = 4E for the two-asset problems.

3 Meshfree Numerical Approximation Method

Meshfree radial basis function (RBF) approximation has recently been suggested by a
number of authors as a means of solving the Black-Scholes equations for European as
well as American options (see, e.g., [9, 10, 15] and the reference therein). However, even
though the radial basis function formulation lends itself naturally to the multi-asset
case, to our knowlegde a very small section of [15] is the only contribution in the RBF
literature dedicated to multi-asset options (in this case a two-asset European option).
We will show how radial basis functions can be used for American basket options.

The meshfree radial basis function approach to the solution of parabolic PDEs is
similar to the spectral method of lines approach, i.e., we assume that the value P
corresponding to the asset prices S = (S1, . . . , Sn) and time t can be expanded in the
form

P (S, t) =
N∑

j=1

aj(t)φ(‖S − xj‖),

where time and ”space” have been decoupled. The radial function φ(‖ · ‖) determines
the approximation space as the span of the functions φ(‖·−x1‖), . . . , φ(‖·−xN‖). Here
the centers xj form a ”discretization” of the domain 0 ≤ Si ≤ Si,∞, i = 1, . . . , s. In
the literature many different radial functions have been studied (e.g., Gaussians, mul-
tiquadrics, thin plate splines, compactly supported RBFs). While it has been known
for a long time that Gaussians and multiquadrics can yield exponential rates of conver-
gence for scattered data interpolation problems, it may be less well known that these
functions can yield similar accuracy for PDE problems (see, e.g., [8]). More recently,
in [5], radial basis functions were interpreted as a generalization of polynomial spectral
methods with the polynomial case corresponding to the use of RBFs with an infinite
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shape parameter (see below) on a regular lattice of centers. We will therefore use
Gaussians

φ(‖S − xj‖) = e−‖S−xj‖2/c2 ,

with a user-selectable shape parameter c in our numerical tests. Due to the norm inside
φ we see that the method is essentially ”dimension-blind” which makes it attractive for
basket options.

Obviously, once a certain type of radial function φ has been chosen, an approximate
solution to the PDE (11) is given as soon as the time-dependent coefficients aj have
been determined. Unlike the finite difference method, the solution is given in the entire
domain, and its derivatives (and therefore the Greeks) can be found very easily. As with
the method of lines, this approach leads to a system of ordinary differential equations
for the coefficients aj . We will describe our approach in detail below.

We point out that even though we will use a regular discretization {xj}N
j=1 for our

numerical experiments, there is no theoretical restriction on the location of the centers
(other than that they be distinct).

Since the boundary conditions require the solution of an (s− 1)-asset problem, and
our numerical experiments below are for a two-asset basket, we first describe the single
asset case.

3.1 Single Asset Case

For a single asset whose price is denoted by S the penalty formulation of the Black-
Scholes equation is

∂Pε

∂t
+

1
2
σ2S2 ∂2Pε

∂S2
+ (r −D)S

∂Pε

∂S
− rPε +

εC

Pε + ε− q(S)
= 0. (15)

Also, the boundary conditions corresponding to (13) and (14) are usually given as

Pε(0, t) = E,
lim

S→∞
Pε(S, t) = 0.

Since we use a collocation approach we not only require an expression for the value
of the option

Pε(S, t) =
N∑

j=1

aj(t)φ(‖S − xj‖), (16)

but also for the partial derivatives present in (15). Thus, by differentiating (16),

∂Pε

∂t
=

N∑
j=1

ȧj(t)φ(‖S − xj‖), (17)

∂Pε

∂S
=

N∑
j=1

aj(t)φ′(‖S − xj‖), (18)

∂2Pε

∂S2
=

N∑
j=1

aj(t)φ′′(‖S − xj‖), (19)

5



where a dot ( ˙ ) denotes a derivative with respect to t, and primes denote derivatives
with respect to S.

In the specific case of Gaussian basis functions we have

φ′(‖S − xj‖) = −2(S − xj)
c2

e−‖S−xj‖2/c2 ,

φ′′(‖S − xj‖) =
4(S − xj)2 − 2c2

c4
e−‖S−xj‖2/c2 .

Inserting the expansions (16)–(19) into (15) yields

N∑
j=1

ȧj(t)φ(‖S − xj‖) +
1
2
σ2S2

N∑
j=1

aj(t)φ′′(‖S − xj‖) + (r −D)S
N∑

j=1

aj(t)φ′(‖S − xj‖)

−r

N∑
j=1

aj(t)φ(‖S − xj‖) +
εC

N∑
j=1

aj(t)φ(‖S − xj‖) + ε− q(S)

= 0.

Now we collocate at the points xi, i = 1, . . . , N , forming a discretization of the spatial
part of the partial differential equation. This results in the system of (nonlinear) ODEs
for the coefficients aj (collected in the vector a)

Φȧ + Ra + Q(a) = 0. (20)

Here
R =

1
2
σ2Φ′′

S + (r −D)Φ′
S − rΦ,

the matrices Φ, Φ′
S and Φ′′

S are given by

Φij = φ(‖xi − xj‖), Φ′
S,ij = xiφ

′(‖xi − xj‖), Φ′′
S,ij = x2

i φ
′′(‖xi − xj‖),

and the vector Q(a) has components

Qi(a) =
εC

Φia + ε− q(xi)
, i = 1, . . . , N,

with Φi denoting the i-th row of the matrix Φ.
In order to resolve the time component, we use a θ-method, i.e.,

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran + θQ(an+1) + (1− θ)Q(an) = 0, (21)

where an = a(n∆t) with ∆t the time step chosen for the discretization of the time
interval. Since this is a nonlinear problem and would require iteration we turn this into
a linearly implicit method by replacing an in the penalty term by an+1. Such linearly
implicit methods are well studied (see, e.g., [22] and references therein). The price one
pays for this simplification is that the method is limited to first-order accuracy in time.
However, due to the implicit nature of the time-stepping procedure the methods enjoy
superior stability properties. We will make use of this fact (which has been proven in
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the context of spatial discretizations of the finite difference type) when we choose the
time step in our numerical experiments below.

The linearly implicit version of (21) is given by

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran + Q(an+1) = 0

or
[Φ− (1− θ)∆tR]an = [Φ + θ∆tR]an+1 + ∆tQ(an+1).

For the Crank-Nicolson method we get

[Φ−A]an = [Φ + A]an+1 + ∆tQ(an+1)

with
A =

1
2
∆tR,

and for the explicit Euler method (θ = 1) we have

Φan = [Φ + ∆tR]an+1 + ∆tQ(an+1).

The terminal condition for the single asset Black-Scholes model is given by

P (S, T ) = max(E − S, 0).

It serves as an initial condition for the ODE system (20). In fact,

Pε(S, T ) =
N∑

j=1

aj(T )φ(‖S − xj‖),

so that, after collocation at the points xi, i = 1, . . . , N , the coefficients aj(T ) are given
as the solution of the linear system

Φa(T ) = P ,

where Φ is as above, and P = [Pε(x1, T ), . . . , Pε(xN , T )]T .
Since our radial basis functions do not satisfy the boundary conditions automati-

cally, they are satisfied by adding specific equations to enforce them at each time step
just as in traditional spectral methods (see, e.g., [21], and step 6(e) in the algorithm
below).

An algorithm for our method is

1. Choose a time step ∆t and a value of θ.

2. Assemble the matrices Φ and R.

3. Compute the matrices R1 = Φ− (1− θ)∆tR and R2 = Φ + θ∆tR.

4. Factor the matrices Φ and R1.

5. Initialize the solution vector P via P (xi, T ) = max(E − xi, 0), i = 1, . . . , N .
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6. For each time step

(a) Update the coefficients by solving Φa = P using the factorization obtained
in step 4.

(b) Compute b = R2a and the vector Q(a).

(c) Find the next coefficients by solving the linear system R1a = b + ∆tQ(a)
using the factorization computed in step 4.

(d) Update the solution vector P via P (xi, t) = Φa, i = 2, . . . , N − 1.

(e) Enforce the boundary conditions P (x1, t) = E and P (XN , t) = 0.

Each time step involves the solution of at most two linear systems. However, the
system matrices are constant throughout and are therefore factored in step 4. Thus,
the time advancement involves only forward and backward substitutions.

From the theory of radial basis function interpolation it is well known that the
matrix Φ is invertible for any choice of (distinct) collocation points (=centers) xi. Thus,
the matrix R1 is also known to be invertible for the explicit Euler method (θ = 1). For
other choices of θ this fact is no longer known.

We have not built any mechanism into the algorithm to ensure satisfaction of the
positivity constraint (8). However, the plots resulting from our numerical experiments
indicate that this constraint is indeed satisfied for our choices of parameters (see Figures
1–3 below).

We point out that the boundary conditions in step 6(e) of the algorithm will have
to be modified for the multi-asset case (see below), and also when the single asset
algorithm is used to compute the boundary conditions for the multi-asset problem
(also below).

3.2 Multi-Asset Case

The numerical method for the multi-asset case is very similar to that for single assets.
Now

Pε(S, t) =
N∑

j=1

aj(t)φ(‖S − xj‖), (22)

and correspondingly more partial derivatives need to be computed.
In our experiments we will be using multivariate Gaussian radial basis functions

whose partial derivatives are given by

∂φ(‖S − x`‖)
∂Si

= −
2(Si − x`,i)

c2
e−‖S−x`‖2/c2 ,

∂2φ(‖S − x`‖)
∂Si∂Sj

=
4(Si − x`,i)(Sj − x`,j)

c4
e−‖S−x`‖2/c2 .

with x`,i denoting the i-th component of the center x`.
While a principal axes transformation is usually employed to remove the cross

derivative terms in (11) and therefore significantly simplify the implementation of a
finite difference scheme, the radial basis function method can be easily implemented
without such a transformation.
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The structure of the system of ODEs we obtain is the same as for single asset
options, i.e.,

Φȧ + Ra + Q(a) = 0.

However, now

R =
1
2

s∑
i=1

s∑
j=1

ρijσiσjΦ
(i,j)
S +

s∑
i=1

(r −Di)Φ
(i)
S − rΦ,

with the matrix Φ determined by Φk` = φ(‖xk − x`‖) as above, and Φ(i)
S and Φ(i,j)

S

given by

Φ(i)
S,k` = xk,i

∂φ(‖S − x`‖)
∂Si

∣∣∣∣
S=xk

, Φ(i,j)
S,k` = xk,ixk,j

∂2φ(‖S − x`‖)
∂Si∂Sj

∣∣∣∣
S=xk

,

where xk,i denotes the i-th component of the k-th center, i = 1, . . . , s, k = 1, . . . , N .
The components of the vector Q(a) are given by

Qk(a) =
εC

Φka + ε− q(xk)
, k = 1, . . . , N.

The other difference to the single asset case lies in the boundary conditions (13)
determined by the functions gi. As mentioned earlier, they are given as the solution
of an (s− 1)-dimensional penalized Black-Scholes equation. For the two-asset example
used in our numerical experiments we get for i = 1, 2, the single asset problems

∂gi

∂t
+

1
2
σ2S2

i

∂2gi

∂S2
i

+(r−Di)Si
∂gi

∂Si
−rgi+

εC

gi + ε− q(Si)
= 0, 0 ≤ Si ≤ S∞, 0 ≤ t < T,

gi(Si, T ) = max(E − αiSi, 0),

gi(0, t) =
E

αi
,

gi(S∞, t) = 0.

Here q(Si) = E − αiSi.
The algorithm for the multi-asset case is similar to the one for single assets. How-

ever, one time step for each one of the s (s− 1)-dimensional boundary problems needs
to be nested recursively inside the time-stepping loop of the s-dimensional problem.

4 Numerical Experiments

We compare the results of our RBF method to those obtained earlier by two of the
authors using finite differences [12].
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4.1 Example 1: One Asset

First we verify our single asset code which will be used to calculate the boundary
conditions for the two-asset basket option.

The effects of the penalty parameter ε were studied more extensively in [12, 17].
There it was observed that, for the finite difference method, the error introduced by
the penalty term was roughly on the order of ε. Since we are interested in comparing
the meshfree formulation with the finite difference framework we consider only the case
ε = 0.01 here. The other parameters for our single asset American put problem are:
r = 0.1, σ = 0.2, D = 0, E = 1, T = 1, t0 = 0, S0 = 0, and S∞ = 2. We used the
Crank-Nicolson method (θ = 0.5) together with a constant time step of ∆t = 0.01.

S FD 1001 FD 101 FD 21 RBF 21 RBF 41 RBF 101
0.6 0.4000037 0.4000042 0.4000189 0.4000176 0.4000012 0.4000036
0.7 0.3001161 0.3001214 0.3002337 0.3001007 0.3001120 0.3001159
0.8 0.2020397 0.2020468 0.2022428 0.2019901 0.2020191 0.2020368
0.9 0.1169591 0.1169025 0.1154870 0.1165422 0.1168706 0.1169460
1.0 0.0602833 0.0602268 0.0580392 0.0597033 0.0601659 0.0602888
1.1 0.0293272 0.0292642 0.0276737 0.0287648 0.0291898 0.0293064
1.2 0.0140864 0.0140521 0.0132332 0.0136840 0.0139888 0.0140717
1.3 0.0070408 0.0070263 0.0066974 0.0068192 0.0069832 0.0070328
1.4 0.0038609 0.0038562 0.0037534 0.0037485 0.0038313 0.0038584

RMSE 1.602e-07 1.098e-03 3.421e-04 7.794e-05 1.015e-05

Table 1: Values of American option at t = 0 for various finite difference and meshfree
approximations.

To get a feeling for the performance of the RBF method we computed a finite dif-
ference solution for this problem on a fine mesh with 1001 points, i.e., h = 0.002 as our
benchmark solution. In Table 1 we have listed the results of some of our computations.
Clearly, the method seems to converge, i.e., the error decreases as the number of points
increases. Moreover, we can see that for relatively few points the RBF method seems
to be more accurate than the finite difference solution. For N = 101 points, however,
the finite difference solution is much closer to the (finite difference) benchmark. We
take these observations as justification to perform the two-asset experiments in the
next sections with relatively few RBF centers. We have set the parameter c of the
Gaussians to c = 2h, where h = S∞−S0

N−1 . No effort was made to optimize this choice. It
is well known that the value of c has a combined effect on stability and accuracy of the
RBF approximation. In particular, as c is increased, so does the accuracy – but only
at the cost of ill-conditioning of the system matrix Φ (which in turn implies numerical
instability). This phenomenon is know as the trade-off principle in the literature (see,
e.g., [19]). In our experiments the condition number of Φ ranges from 6071 for the 21
point example to 9477 for the 101 point case.

In Figure 1 we have plotted the profiles of the finite difference and meshfree solutions
at t = 0 using a discretization of 101 points each.
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Figure 1: Profile at t = 0 for finite difference (left) and meshfree (right) solution of
Example 1 using 101 points.

4.2 Example 2: Two Assets

For two assets we use r = 0.1, σ1 = 0.2, σ2 = 0.3, α1 = 0.6, α2 = 0.4, D1 = 0.05,
D2 = 0.01, E = 1, T = 1, t0 = 0, S1,0 = S2,0 = 0, and S1,∞ = S2,∞ = 4.

In the finite difference approach, the correlation term must be treated with special
care such that it may not cause instability in solving the system of linear equations (see
[12] for more details). However, the RBF approach does not suffer from such difficulties
encountered by cross derivative terms.

Figure 2 shows the profile at t = 0 of the value of the option in the case of uncor-
related (ρ12 = 0) assets for a finite difference approximation based on 40 × 40 points,
i.e., h = 0.1, and for a meshfree approximation based on 16×16 points, i.e., h = 0.266.
The unconditionally stable implicit Euler method (θ = 0) was used together with a
constant time step of ∆t = 0.1.

Figure 2: Profile at t = 0 for uncorrelated finite difference (h = 0.1, left) and meshfree
(h = 0.266, right) solution of Example 2.

Figure 3 shows the final profile at t = 0 of the value of the option in the case of
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correlated (ρ12 = 0.5) assets. The same discretizations as in Figure 2 were employed.

Figure 3: Profile at t = 0 for correlated finite difference (h = 0.1, left) and meshfree
(h = 0.266, right) solution of Example 2.

5 Closing Remarks

One of the major drawbacks of the Gaussian meshfree method we used in this paper
is the fact that the system matrices in step 4 of the algorithm are dense matrices,
and therefore rather expensive to factor. However, it is known that Gaussians are
capable of providing spectral accuracy, and the plots in Figures 2 and 3 indicate that
it is indeed possible to get results comparable to the finite difference method with
fewer degrees of freedom. Moreover, recent advances within the RBF community have
opened the door to fast matrix-vector products (see, e.g., [1, 18]). Another possibility
for obtaining highly accurate RBF results may be given by the recent Contour-Páde
algorithm of Fornberg and Wright [6]. This algorithm makes it possible to compute
the RBF interpolant to very high accuracy by treating the shape parameter c as a
complex variable. The Contour-Padé algorithm has already been successfully applied
to the solution of elliptic PDEs by collocation [14].

The use of compactly supported RBFs leads to sparse matrices, and thus should
considerably increase the efficiency of the method. However, it is known that the rate of
convergence is not as high as that of (globally supported) Gaussians or multiquadrics.
The general framework for the meshfree space discretization remains the same for any
kind of radial basis function. The comparison of different types of radial bases is the
topic for another paper.

The meshfree radial basis function approach has several advantages over the finite
difference approach. For one thing, it is possible to obtain the value of the option
for any combination of stock prices simply by evaluating the expansion (22). With
finite differences we may need to include an extra interpolation step (which in the
multi-asset case is a challenge in itself). Moreover, finite difference approximations to
spatial derivatives are mostly second order accurate, while radial basis functions are
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able to produce highly accurate approximations to spatial derivatives. This approach
is particularly useful in computing the standard hedge sensitivities; delta, gamma, etc.
These partial derivatives of P can be computed very easily by simply differentiating
(22). Finally, in [12] much effort was invested in dealing with mixed derivatives oc-
curring in the case of correlated assets. In the RBF formulation this can be done in a
straightforward manner.

Instead of using radial basis function interpolation, it is also possible to use quasi-
interpolation (see, e.g., [9]) to solve the Black-Scholes equation. The main difference
between the two approaches lies in the treatment of the initial condition. In the case
of interpolation this requires the solution of a linear system, in the case of quasi-
interpolation it does not. We may study a quasi-interpolation scheme based on higher-
order Gauss-Laguerre functions [4] in a future paper.

In summary, the examples presented in this paper suggest that meshfree approxi-
mation methods should be considered as one possible way of solving multi-asset option
pricing problems. Further work is required to optimize the approach taken here. It is
expected that a number of challenges for the RBF method (e.g., ill-conditioning and
dense matrices) can be overcome on the one hand by the techniques for fast matrix-
vector products referred to above, and on the other hand by the application of tricks
to those used for traditional spectral methods. A challenge of a different nature is that
while the penalty approach applied in this paper generalizes in a straightforward man-
ner to any number of underlying assets, the recursive nature of the boundary conditions
(functions gi in (13)) presents a bottle-neck for both implementation and execution of
the proposed method.

Acknowledgements. We thank one of the referees for pointing out some valuable
references.
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