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Abstract: Assuming that one-step transition kernel of a discrete time, time-homogenous Markov
chain model is parameterized by a parameter θ ∈ Θ, we derive a recursive (in time)
construction of confidence regions for the unknown parameter of interest, say θ∗. The
key step in this construction is derivation of a recursive scheme for an appropriate point
estimator of θ∗. To achieve this, we start by what we call the base recursive point es-
timator, using which we design a quasi-asymptotically linear recursive point estimator
(a concept introduced in this paper). For the latter estimator we prove its weak con-
sistency and asymptotic normality. The recursive construction of confidence regions
is needed not only for the purpose of speeding up the computation of the successive
confidence regions, but, primarily, for the ability to apply the dynamic programming
principle in the context of robust adaptive stochastic control methodology.
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1 Introduction

Suppose that a set of dynamic probabilistic models is selected and that it is parameterized
in terms of a finite dimensional parameter θ taking values in the known parameter space
Θ. We postulate that all these models are possible descriptions of some reality, which is
of interest to us, and that only one of the models, say the one corresponding to θ∗ ∈ Θ,
is the adequate, or true, description of this reality.

Motivated by discrete time robust stochastic control problems subject to model uncer-
tainty (cf. [BCC+16]), we consider in the present paper discrete time, time-homogeneous
Markov chain models only. Accordingly, it is the one-step transition kernel of the Markov
chain model that is parameterized by θ. We postulate that the true parameter θ∗ is not
known, and we are interested in deriving a recursive (in time) construction of confidence
regions for θ∗. Needless to say, we are seeking a recursive construction of confidence re-
gions for θ∗ that satisfy desired properties; in particular, some asymptotic properties, as
the time series of observations increases. Robust stochastic control problems provide pri-
mary motivation for the present work, but, clearly, potential applications of the results
presented here are far reaching.
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Of course, there is a vast literature devoted to recursive computation, also known
as on-line computation, of point estimators. It is fair to say though, that, to the best
of our knowledge, this work is the first to study a recursive construction of confidence
regions. The geometric idea that underlies our recursive construction is motivated by
recursive representation of confidence intervals for the mean of one dimensional Gaussian
distribution with known variance, and by recursive representation of confidence ellipsoids
for the mean and variance of one dimensional Gaussian distribution, where in both cases
observations are generated by i.i.d. random variables. The recursive representation is
straightforward in the former case, but it is not so any more in the latter one.

The recursive construction of confidence regions is needed not only for the purpose of
speeding up the computation of the successive confidence regions, but, primarily, for the
ability to apply the dynamic programming principle in the context of robust stochastic
control methodology introduced in [BCC+16].

As it will be seen, one of the the key ingredients in our recursive construction of
confidence regions is an appropriate recursive scheme for deriving a point estimator of θ∗.

The main contributions of this paper can be summarized as follows:

• We introduce the concept of quasi-asymptotic linearity of a point estimator of θ∗.
This concept is related to the classic definition of asymptotic linearity of a point
estimator, but it requires less stringent properties, which are satisfied by the recursive
point estimation scheme that we develop in Section 4.

• Starting from what we call the base recursive point estimation scheme, we design
a quasi-asymptotically linear recursive point estimation scheme, and we prove the
weak consistency and asymptotic normality of the point estimator of generated by
this scheme.

• We provide the relevant recursive construction of confidence regions for θ∗. We
prove that these confidence regions are weakly consistent, that is, they converge in
probability (in the Hausdorff metric) to the true parameter θ∗.

The paper is organized as follows. In Section 2 we introduce the Markov chain frame-
work relevant for the present study, and we derive an important technical result (Propo-
sition 2.2), which is crucial for recursive identification of the true Markov chain model.

Section 3 is devoted to the recursive construction of what we call the base (recursive)
point estimator of θ∗. In our set-up, point-estimating of θ∗ translates to finding solution
to equation (2.10). This is an unknown equation. One of the most widely used iterative
root finding procedures for unknown equations is the celebrated stochastic approximation
method. Our base (recursive) point estimation scheme for θ∗ is an adaptation of the
stochastic approximation method. Also, here we prove the strong consistency of the base
point estimator.

The key step to the desired recursive construction of confidence regions for θ∗ is to
establish the asymptotic normality of the underlying recursive point estimator. It turns
out that the base (recursive) point estimator constructed in Section 3 may not be asymp-
totically normal. Therefore, in Section 4 we appropriately modify our base (recursive)
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point estimator, so to construct a quasi-asymptotically linear (recursive) point estimator,
for which we prove weak consistency and asymptotic normality.

The main section of this paper is Section 5, which is devoted to recursive construction
of confidence regions for θ∗, and to studying their asymptotic properties. In particular,
we show that confidence regions derived from quasi-asymptotically linear (recursive) point
estimators preserve a desired geometric structure. Such structure guarantees that we can
represent the confidence regions in a recursive way in the sense that the region produced
at step n is fully determined by the region produced at step n − 1 and by the the newly
arriving observation of the underlying reality.

Illustrating examples are provided in Section 6. Concluding remarks and open prob-
lems are gathered in Section 7, and the paper is completed with three technical Appendices.

2 Preliminaries

Let (Ω,F ) be a measurable space, and Θ ⊂ Rd be a non-empty set, which will play the
role of the parameter space throughout.1 On the space (Ω,F ) we consider a discrete time,
real valued random process Z = {Zn, n ≥ 0}.2 We postulate that this process is observed,
and we denote by F = (Fn, n ≥ 0) its natural filtration. The (true) law of Z is unknown,
and assumed to belong to a parameterized family of probability distributions on (Ω,F ),
say {Pθ, θ ∈ Θ}. It will be convenient to consider (Ω,F ) to be the canonical space for Z,
and to consider Z to be the canonical process (see Appendix A for details). Consequently,
the law of Z under Pθ is the same as Pθ. The (true) law of Z will be denoted by Pθ∗ ;
accordingly, θ∗ ∈ Θ is the (unknown) true parameter.

The set of probabilistic models that we are concerned with is {(Ω,F ,F, Z,Pθ), θ ∈ Θ}.
The model uncertainty addressed in this paper occurs if Θ 6= {θ∗}, which we assume to be
the case. Our objective is to provide a recursive construction of confidence regions for θ∗,
based on accurate observations of realizations of process Z through time, and satisfying
desirable asymptotic properties.

In what follows, all equalities and inequalities between random variables will be under-
stood in Pθ∗ almost surely sense. We denote by Eθ∗ the expectation operator corresponding
to probability Pθ∗ .

We impose the the following structural standing assumption.
Assumption M:
(i) Process Z is a time homogenous Markov process under any Pθ, θ ∈ Θ.
(ii) Process Z is an ergodic Markov process under Pθ∗ .3
(iii) The transition kernel of process Z under any Pθ, θ ∈ Θ is absolutely continuous with
respect to the Lebesgue measure on R, that is, for any Borel subset of R

Pθ(Z1 ∈ A | Z0 = x) =

∫
A
pθ(x, y)dy,

1In general, the parameter space may be infinite dimensional, consisting for example of dynamic factors,
such as deterministic functions of time or hidden Markov chains. In this study, for simplicity, we chose the
parameter space to be a subset of Rd.

2The study presented in this paper extends to the case when process Z takes values in Rd, for d > 1.
We focus here the case of d = 1 for simplicity of presentation.

3See Appendix A for the definition of ergodicity that we postulate here.
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for some positive and measurable function pθ.
4

For any θ ∈ Θ and n ≥ 1, we define πn(θ) := log pθ(Zn−1, Zn).

Remark 2.1. In view of the Remark A.6, the process Z is a stationary process under Pθ∗ .
Consequently, under Pθ∗ , for each θ ∈ Θ and for each n ≥ 0, the law of πn(θ) is the same
as the law of π1(θ).

We will need to impose several technical assumptions in what follows. We begin with
the assumption

R0. For any θ ∈ Θ, π1(θ) is integrable under Pθ∗ .

Then, we have the following result.

Proposition 2.2. Assume that M and R0 hold. Then,
(i) For any θ ∈ Θ,

lim
n→∞

1

n

n∑
i=1

πi(θ) = Eθ∗ [π1(θ)].

(ii) Moreover, for any θ ∈ Θ,

Eθ∗ [π1(θ∗)] ≥ Eθ∗ [π1(θ)].

Proof. Fix θ ∈ Θ, since Z is ergodic under Pθ∗ and Eθ∗ [π1(θ)] < ∞, then according to
Proposition A.7 we have that

lim
n→∞

1

n

n∑
i=1

πi(θ) = Eθ∗ [π1(θ)]

which proves (i).
Now we prove that (ii) holds. In fact, denote by fZ1 the density function of Z1 under

Pθ∗ , we have that

Eθ∗ [π1(θ)]− Eθ∗ [π1(θ∗)]

=Eθ∗
[
log

pθ(Z1, Z2)

pθ∗(Z1, Z2)

]
=

∫
R
Eθ∗

[
log

pθ(Z1, Z2)

pθ∗(Z1, Z2)

∣∣∣∣Z1 = z1

]
fZ1(z1)dz1

≤
∫
R

logEθ∗
[
pθ(Z1, Z2)

pθ∗(Z1, Z2)

∣∣∣∣Z1 = z1

]
fZ1(z1)dz1

=

∫
R

log

∫
R

pθ(z1, z2)

pθ∗(z1, z2)
pθ∗(z1, z2)dz2fZ1(z1)dz1

=

∫
R

log

∫
R
pθ(z1, z2)dz2fZ1(z1)dz1 = 0,

where the inequality holds due to Jensen’s inequality.

4This postulate is made solely in order to streamline the presentation. In general, our methodology
works for Markov processes for which the transition kernel is not absolutely continuous with respect to
the Lebesgue.
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In the statement of the technical assumptions R1-R8 below we use the notations

ψn(θ) = ∇πn(θ), Ψn(θ) = Hπn(θ), bn(θ) = Eθ∗ [ψn(θ)|Fn−1], (2.1)

where ∇ denotes the gradient vector and H denotes the Hessian matrix with respect to θ,
respectively.

R1. For each x, y ∈ R the function p·(x, y) : Θ→ R+ is three times differentiable, and

∇
∫
R
pθ(x, y)dy =

∫
R
∇pθ(x, y)dy, H

∫
R
pθ(x, y)dy =

∫
R
Hpθ(x, y)dy. (2.2)

R2. For any θ ∈ Θ, ψ1(θ) and Ψ1(θ) are integrable under Pθ∗ . The function Eθ∗ [π1( · )] is
twice differentiable in θ, and

∇Eθ∗ [π1(θ)] = Eθ∗ [ψ1(θ)], HEθ∗ [π1(θ)] = Eθ∗ [Ψ1(θ)].

R3. There exists a unique θ ∈ Θ such that

Eθ∗ [ψ1(θ)] = 0.

R4. There exists a constant c > 0 such that, for any n ≥ 1 and θ ∈ Θ,

Eθ∗ [‖ψn(θ)‖2 | Fn−1] ≤ c(1 + ‖θ − θ∗‖2). (2.3)

R5. There exist some positive constants Ki, i = 1, 2, 3, such that for any θ, θ1, θ2 ∈ Θ,
and n ≥ 1,5

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (2.4)

‖bn(θ1)− bn(θ2)‖ ≤ K2‖θ1 − θ2‖, (2.5)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖ | Fn−1] ≤ K3‖θ1 − θ2‖. (2.6)

R6. There exists a positive constant K4, such that for any θ ∈ Θ, and n ≥ 1,

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (2.7)

R7. For any n ≥ 1,

sup
θ∈Θ

Eθ∗‖ψn(θ)− bn(θ)‖2 <∞. (2.8)

R8. For each θ ∈ Θ the Fisher information matrix

I(θ) := Eθ[ψ1(θ)ψ
T
1 (θ)]

exists and is positive definite. Moreover, I(θ) is continuous with respect to θ.

5Superscript T will denote the transpose.
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R9.

lim
n→∞

Eθ∗
[

sup
0≤i≤n

∣∣∣∣ 1√
n
ψi(θ

∗)

∣∣∣∣] = 0. (2.9)

Remark 2.3. (i) Note that in view of the Remark 2.1 properties assumed in R2, R3, and
R8 imply that analogous properties hold with time n in place of time 1.
(ii) According to Proposition A.15, we have that if R4-R6 hold, then (2.3)-(2.7) are also
satisfied for any Fn−1-measurable random vector θ ∈ Θ.

As stated above, our aim is to provide a recursive construction of the confidence regions
for θ∗. In the sequel, we will propose a method for achieving this goal that will be derived
from a suitable recursive point estimator of θ∗. Note that due to Proposition 2.2 (ii) and
Assumption R3, we have that θ∗ is the unique solution of

Eθ∗ [ψ1(θ)] = 0. (2.10)

Therefore, point-estimating θ∗ is equivalent to point-estimating the solution of the equa-
tion (2.10). Since θ∗ is unknown, equation (2.10) is not really known to us. We will
therefore apply an appropriate version of the so called stochastic approximation method,
which is a recursive method used to point-estimate zeros of functions that can not be
directly observed. This can be done in our set-up since, thanks to Proposition 2.2 (i), we
are provided with a sequence of observed random variables 1

n

∑n
i=1 ψi(θ) that Pθ∗ almost

surely converges to Eθ∗ [ψ1(θ)] – a property, which will enable us to adopt the method of
stochastic approximation. Accordingly, in the next two sections, we will introduce two
recursive point estimators of θ∗, and we will derive properties of these estimators that are
relevant for us.

3
√
n-consistent base point estimator

In this section we consider a recursive point estimator θ̃ = {θ̃n, n ≥ 1} of θ∗, that will be
defined in (3.1). Towards this end, we fix a positive constant β such that βK1 >

1
2 , where

K1 was introduced in Assumption R6, and we define the process θ̃ recursively as follows,

θ̃n = θ̃n−1 +
β

n
ψn(θ̃n−1), n ≥ 1, (3.1)

with the initial guess θ̃0 being an element in Θ, where ψn was defined in (2.1).
Given the definition of ψn, we see that θ̃n is updated from θ̃n−1 based on new obser-

vation Zn available at time n; of course, Zn−1 is used as well. We note that the recursion
(3.1) is a version of the stochastic approximation method, which is meant to recursively
approximate roots of the unknown equations, such as equation (2.10) (see e.g. [RM51],
[KW52], [LS87], [KC78], [KY03]).

Remark 3.1. It is implicitly assumed in the recursion (3.1) that θ̃n ∈ Θ. One typical
and easy way of making sure that this happens is to choose Θ as the “largest possible
set” that θ∗ is an element of. So typically, one takes Θ = Rd. However, this is not
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always possible, in which case one needs to implement a version of constrained stochastic
approximation method (cf. e.g. [KC78] or [BK02]). We are not considering constrained
stochastic approximation in this paper. This is planned for a future work.

As mentioned above, we are interested in the study of asymptotic properties of confi-
dence regions that we will construct recursively in Section 5. These asymptotic properties
crucially depend on the asymptotic properties of our recursive (point) estimators. One of
such required properties is asymptotic normality. In this regard we stress that although
the theory of asymptotic normality for stochastic approximation estimators is quite a ma-
ture field (see e.g. [Sac58], [Fab68], [LR79]), the existing results do not apply to θ̃ as
they require ψn(θ̃n−1)− Eθ∗ [ψn(θ̃n−1)] to be a martingale difference, the property, which
is not satisfied in our setup. Thus, we need to modify the base estimator θ̃ to the effect
of producing a recursive estimator that is asymptotically normal. In the next section
we will construct such estimator, denoted there as θ̂, and we will study its asymptotic
properties in the spirit of the method proposed by Fisher [Fis25]. Motivated by finding
estimators that share the same asymptotic property as maximum likelihood estimators
(MLEs), Fisher proposed in [Fis25] that if an estimator is

√
n-consistent (see below), then

appropriate modification of the estimator has the same asymptotic normality as the MLE.
This subject was further studied by LeCam in [LeC56] and [LeC60], where a more general
class of observation than i.i.d. observations are considered.

Accordingly, we will show that θ̃ is strongly consistent, and, moreover it maintains
√
n

convergence rate, i.e.

Eθ∗‖θ̃n − θ∗‖2 = O(n−1). (3.2)

An estimator that satisfies this equality is said to be
√
n-consistent.

We begin with the following proposition, which shows that the estimator θ̃ is strongly
consistent. For convenience, throughout, we will use the notation ∆n := θ̃n − θ∗, n ≥ 1.

Proposition 3.2. Assume that (2.3), and (2.4) are satisfied, then

lim
n→∞

θ̃n = θ∗, Pθ∗ − a.s.

Proof. Let us fix n ≥ 1. Clearly, ∆n = ∆n−1 + β
nψn(θ∗ + ∆n−1), so that

‖∆n‖2 = ‖∆n−1‖2 +
2β

n
∆T
n−1ψn(θ∗ + ∆n−1) +

β2

n2
‖ψn(θ∗ + ∆n−1)‖2.

Taking conditional expectation on both sides leads to

Eθ∗ [‖∆n‖2|Fn−1] =‖∆n−1‖2 +
2β

n
∆T
n−1bn(θ∗ + ∆n−1) +

β2

n2
Eθ∗ [‖ψn(θ∗ + ∆n−1)‖2|Fn−1]

≤‖∆n−1‖2 +
2β

n
∆T
n−1bn(θ∗ + ∆n−1) +

cβ2

n2
(1 + ‖∆n−1‖2) (3.3)

≤‖∆n−1‖2 +
cβ2

n2
(1 + ‖∆n−1‖2), (3.4)
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where the first inequality comes from (2.3) and the second is implied by (2.4). Let

Ym := ‖∆m‖2
∞∏

k=m+1

(1 +
cβ2

k2
) +

∞∑
k=m+1

cβ2

k2

∞∏
j=k+1

(1 +
cβ2

j2
), m ≥ 0.

Then, (3.4) yields that
Eθ∗ [Ym+1|Fm] ≤ Ym, m ≥ 0,

and therefore process Y is a supermartingale. Noting that Y is a positive process, and
invoking the supermartingale convergence theorem, we conclude that hence the sequence
{Ym,m ≥ 0} converges Pθ∗ almost surely. This implies that the sequence {‖∆m‖,m ≥ 0}
converges, and we will show now that its limit is zero. According to (3.3), we have

Eθ∗‖∆m‖2 ≤Eθ∗‖∆m−1‖2 +
2β

m
Eθ∗

[
∆T
m−1bm(θ∗ + ∆m−1)

]
+
cβ2

m2
Eθ∗

[
1 + ‖∆m−1‖2

]
≤Eθ∗‖∆1‖2 +

m∑
k=1

2β

k
Eθ∗

[
∆T
k−1bk(θ

∗ + ∆k−1)
]

+

m∑
k=1

cβ2

k2
Eθ∗

[
1 + ‖∆k−1‖2

]
.

Hence, we get

m∑
k=1

2β

k
Eθ∗

∣∣∆T
k−1bk(θ

∗ + ∆k−1)
∣∣ ≤ Eθ∗‖∆1‖2 − Eθ∗‖∆m‖2 +

m∑
k=1

cβ2

k2
Eθ∗

[
1 + ‖∆k−1‖2

]
.

Since
lim
m→∞

‖∆m‖2 = lim
m→∞

Ym <∞,

and

lim
m→∞

m∑
k=1

cβ2

k2
Eθ∗

[
1 + ‖∆k−1‖2

]
≤
∞∑
k=1

cβEθ∗ [1 + Y1]

k2
<∞,

then, the series
m∑
k=1

1

k
Eθ∗

∣∣∆T
k−1bk(θ

∗ + ∆k−1)
∣∣ , m ≥ 1,

converges Pθ∗ almost surely, and thus

lim
k→∞

Eθ∗
∣∣∆T

k−1bk(θ
∗ + ∆k−1)

∣∣ = 0.

This implies that there exists a subsequence ∆T
mk−1bmk(θ∗+ ∆mk−1) which converges Pθ∗

almost surely to zero, as k →∞. According to (2.4), we also have that

‖∆mk−1‖
2 ≤ 1

K1
‖∆T

mk−1bmk(θ∗ + ∆mk−1)‖.

Therefore, limk→∞∆mk−1 = 0, Pθ∗ almost surely, and this concludes the proof.

Proposition 3.3. Assume that (2.3), (2.4), (2.5) and (2.8) hold. Then,

Eθ∗‖θ̃n − θ∗‖2 = O(n−1).
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Proof. Putting Vn(θ̃n−1) := ψn(θ̃n−1)− bn(θ̃n−1), from (3.1) we immediately have that

∆n = ∆n−1 +
β

n
bn(θ̃n−1) +

β

n
Vn(θ̃n−1),

that yields

Eθ∗‖∆n‖2 = Eθ∗‖∆n−1 +
β

n
bn(θ̃n−1)‖2 +

β2

n2
Eθ∗‖Vn(θ̃n−1)‖2.

From here, applying consequently (2.8), (2.5), (2.4), and note that bn(θ∗) = 0, we get

Eθ∗‖∆n‖2 = Eθ∗
∥∥∥∥∆n−1 +

β

n
bn(θ̃n−1)

∥∥∥∥2 +O(n−2)

≤ Eθ∗
[
‖∆n−1‖2 +

β2K2
2

n2
‖∆n−1‖2 +

2β

n
∆T
n−1bn(θ̃n−1)

]
+O(n−2)

≤
(

1 +
β2K2

2

n2
− 2βK1

n

)
Eθ∗‖∆n−1‖2 +D1n

−2.

Clearly, for any ε > 0, and for large enough n, we get

Eθ∗‖∆n‖2 ≤ (1− (2K1β − ε)n−1)Eθ∗‖∆n−1‖2 +D1n
−2. (3.5)

For ease of writing, we put p := 2K1β − ε and cn := Eθ∗‖∆n‖2. Take ε sufficiently small,
so that p > 1, and then chose an integer N > p. Then, for n > N we have by (3.5) that

cn ≤ cN
n∏

j=N+1

(1− p

j
) +D1

n∑
j=N+1

1

j2

n∏
k=j+1

(1− p

k
)

≤ cN
n∏

j=N+1

(1− p

j
) +D1

n∑
j=N+1

1

j2
.

Using the fact that
∑n

j=m 1/j2 ∼ 1/n and
∏n
j=m(1− p/j) ∼ 1/np, for any fixed m, p ≥ 1,

we immediately get that cn ≤ O(n−1). This concludes the proof.

4 Quasi-asymptotically linear estimator

In this section we define a new estimator denoted as {θ̂n, n ≥ 1} and given recursively by

θ̂n = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn,

Γn =
n− 1

n
Γn−1 +

1

n
(Id + βIn)ψn(θ̃n−1),

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1), n ≥ 1,

Γ0 = 0, I0 = 0,

(4.1)

where Id is the unit matrix. Since θ̃n, In, and Γn are updated from time n − 1 based on
the new observation Zn available at time n, then the estimator θ̂ indeed is recursive. This
estimator will be used in Section 6 for recursive construction of confidence regions for θ∗.
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Remark 4.1. (i) In Section 7 we propose an alternative algorithm to (4.1) that uses I+n , the
Moore–Penrose pseudoinverse matrix of In, instead of I−1(θ̃n). However, the convergence
of this alternative algorithm remains an open problem.
(ii) In the argument below we will use the following representations of Γn and In,

Γn =
n∑
j=1

(Id + βIj)ψj(θ̃j−1), In =
1

n

n∑
i=1

Ψi(θ̃i−1).

Next, we will show that θ̂ is weakly consistent and asymptotically normal. We will derive
asymptotic normality of θ̂ from the property of quasi-asymptotic linearity, which is related
to the property of asymptotic linearity (cf. [Shi84]), and which is defined as follows:

Definition 4.2. An estimator {θ̄n, n ≥ 1} of θ∗ is called a quasi-asymptotically linear
estimator if there exist a Pθ∗-convergent, adapted matrix valued process G, and adapted
vector valued processes ϑ and ε, such that

θ̄n − ϑn =
Gn
n

n∑
i=1

ψi(θ
∗) + εn, n ≥ 1, ϑn

Pθ∗−−−→
n→∞

θ∗,
√
nεn

Pθ∗−−−→
n→∞

0.

Our definition of quasi-asymptotically linear estimator is motivated by the classic
concept of asymptotically linear estimator (see e.g. [Sha10]): θ̌ is called (locally) asymp-
totically linear if there exists a matrix process {Ǧn, n ≥ 1} such that

θ̌n − θ∗ = Ǧn

n∑
i=1

ψi(θ
∗) + εn,

where Ǧ
−1/2
n εn

Pθ∗−−−→
n→∞

0. Asymptotic linearity is frequently used in the proof of asymp-

totic normality of estimators. However, in general, asymptotic linearity can not be rec-
onciled with the full recursiveness of the estimator. The latter property is the key prop-
erty involved in construction of recursive confidence regions. Moreover, the property of
asymptotic linearity requires that the matrices Ǧn are invertible, which is a very strin-
gent requirement, not easily fulfilled. These are the reasons why we propose the concept
of quasi-asymptotic linearity since, it can be reconciled with recursiveness and does not
require that matrices Gn are invertible. As it will be shown below, the fully recursive
estimator θ̂ is quasi-asymptotically linear.

In what follows, we will make use of the following representation for θ̂

θ̂n = −I−1(θ̃n)Inθ̃n +
1

n
I−1(θ̃n)

n∑
j=1

(Id + βIj)ψj(θ̃j−1). (4.2)

Theorem 4.3. Assume that R1–R8 hold, then the estimator θ̂ is Pθ∗–weakly consistent.6

Moreover, θ̂ is quasi-asymptotically linear estimator for θ∗.

6That is, θ̂n
Pθ∗−−−−→
n→∞

θ∗.



Recursive Confidence Regions 11

Proof. First, we show the generalized asymptotic linearity of θ̂. Due to Taylor’s expansion,
we have that

1

n

n∑
i=1

ψi(θ
∗)− 1

n

n∑
i=1

ψi(θ̃i−1) = − 1

n

n∑
i=1

Ψi(θ̃i−1)∆i−1 +
1

n

n∑
i=1

∆T
i−1Hψi(ηi−1)∆i−1

=: An +Bn, (4.3)

where ηi−1, 1 ≤ i ≤ n, is in a neighborhood of θ∗ such that ‖ηi−1 − θ∗‖ ≤ ‖θ̃i−1 − θ∗‖.
Note that

An =− 1

n

n∑
i=1

Ψi(θ̃i−1)
(

∆n −
n∑
j=i

β

j
ψj(θ̃j−1)

)
=− In∆n +

β

n

n∑
i=1

Iiψi(θ̃i−1),

and by (4.3), we get

In∆n =
1

n

n∑
i=1

(Id + βIi)ψi(θ̃i−1)−
1

n

n∑
i=1

ψi(θ
∗) +Bn.

Therefore, using the representation (4.2), we immediately have

θ̂n + I−1(θ̃n)Inθ
∗ =

I−1(θ̃n)

n

n∑
i=1

ψi(θ
∗)− I−1(θ̃n)Bn. (4.4)

Next we will show that

Pθ∗- lim
n→∞

In = −I(θ∗). (4.5)

First, by (2.6), we deduce that

Eθ∗
[ 1

n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖
]
≤ K3

n

n∑
i=1

Eθ∗‖∆i−1‖.

Due to Proposition 3.3, 1
n

∑n
j=1 Eθ∗‖∆i−1‖ ≤ 1

n

∑n
j=1 j

−1/2 = O(n−1/2). Hence,

1

n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖ Pθ∗−−−→

n→∞
0. (4.6)

Therefore,

Pθ∗- lim
n→∞

In = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ̃i−1) = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗). (4.7)

Next, observe that in view of Proposition A.7 we get
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lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗) = Eθ∗ [Ψ1(θ

∗)] = Eθ∗ [Hπ1(θ∗)] = Eθ∗ [H log pθ∗(Z0, Z1)].

Invoking the usual chain rule we obtain that

H log pθ∗(Z0, Z1) =
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
−∇pθ

∗(Z0, Z1)∇pθ∗(Z0, Z1)
T

p2θ∗(Z0, Z1)
=

Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
−ψ1(θ

∗)ψT1 (θ∗),

so that

Eθ∗ [H log pθ∗(Z0, Z1)] = Eθ∗ [
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
]− I(θ∗).

We will now show that Eθ∗
[
Hpθ∗ (Z0,Z1)
pθ∗ (Z0,Z1)

]
= 0. In fact, denote by fZ0 the density function

of Z0 under Pθ∗ and in view of (2.2), we have

Eθ∗
[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

]
=Eθ∗

[
Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

∣∣∣∣Z0

]]
=

∫
R
Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

∣∣∣∣Z0 = z0

]
fZ0(z0)dz0

=

∫
R

∫
R

Hpθ∗(z0, z1)

pθ∗(z0, z1)
pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

∫
R
Hpθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R
H

∫
R
pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

(H1)fZ0(z0)dz0 = 0.

Recalling (4.7) we conclude that (4.5) is satisfied.
By Assumption R8 and strong consistency of θ̃ we obtain that

lim
n→∞

I−1(θ̃n) = I−1(θ∗) Pθ∗ − a.s., (4.8)

which, combined with (4.5) implies that

−I−1(θ̃n)Inθ
∗ Pθ∗−−−→
n→∞

θ∗. (4.9)

Next, we will show that

√
nBn

Pθ∗−−−→
n→∞

0. (4.10)

Indeed, by (2.7),
√
nEθ∗‖Bn‖ ≤ K4√

n

∑n
i=1 Eθ∗‖∆i−1‖2, and consequently, in view of Propo-

sition 3.3,

lim
n→∞

√
nEθ∗‖Bn‖ ≤ lim

n→∞

K4√
n

log n = 0,
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which implies (4.10).
Now, taking ϑn = −I−1(θ̃n)Inθ

∗, Gn = I−1(θ̃n) and εn = I−1(θ̃n)Bn, we deduce
quasi-asymptotic linearity of θ̂ from (4.4), (4.8), (4.9) and (4.10).

Finally, we will show the weak consistency of θ̂. By ergodicity of Z, in view of Propo-
sition A.7, and using the fact that θ∗ is a (unique) solution of (2.10), we have that

1

n

n∑
i=1

ψi(θ
∗) = Eθ∗ [ψ1(θ

∗)] = 0, Pθ∗ − a.s.

Thus, limn→∞
I−1(θ̃n)

n

∑n
i=1 ψi(θ

∗) = 0 Pθ∗ almost surely. This, combined with (4.4), (4.9)

and (4.10) implies that θ̂n
Pθ∗−−→ θ∗, as n→∞. The proof is complete.

The next result, which will be used in analysis of asymptotic properties of the recursive
confidence region for θ∗ in Section 6, is an application of Theorem 4.3.

Proposition 4.4. Assume that R1–R9 are satisfied. Then, there exists an adapted process
ϑ such that

ϑn
Pθ∗−−−→
n→∞

θ∗, (4.11)

and √
n(θ̂n − ϑn)

d−−−→
n→∞

N (0, I−1(θ∗)). (4.12)

Proof. Let ϑn = −I−1(θ̃n)Inθ
∗, Gn = I−1(θ̃n) and I−1(θ̃n)Bn = εn. Then, property (4.11)

follows from (4.9).
In order to prove (4.12), we note that according to Theorem 4.3 we have

θ̂n − ϑn =
Gn
n

n∑
i=1

ψi(θ
∗) + εn,

√
nεn

Pθ∗−−−→
n→∞

0.

Next, Proposition A.14 implies that

1√
n

n∑
i=1

ψi(θ
∗)

d−−−→
n→∞

N(0, I(θ∗)).

Consequently, since by (4.8) Gn
Pθ∗−−→ I−1(θ∗), using Slutsky’s theorem we get

Gn√
n

n∑
i=1

ψi(θ
∗)

d−−−→
n→∞

N(0, I−1(θ∗)).

The proof is complete.

We end this section with the following technical result, which will be used in our
construction of confidence region in Section 6. Towards this end, for any θ ∈ Θ and
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n ≥ 1, we define7

Un(θ) := n(θ̂n − θ)T I(θ̃n)(θ̂n − θ) (4.13)

= n
d∑
i=1

d∑
j=1

σijn (θ̂in − θi)(θ̂jn − θi),

where (σijn )i,j=1,...,d = I(θ̃n), and, as usual, we denote by χ2
d a random variable that has

the chi-squared distribution with d degrees of freedom.

Corollary 4.5. With ϑn = −I−1(θ̃n)Inθ
∗, we have that

Un(ϑn)
d−−−→

n→∞
χ2
d.

Proof. From Assumption R8, strong consistency of θ̃ and Proposition 4.4, and employing
the Slutsky’s theorem again, we get that√

nI(θ̃n)(θ̂n − ϑn)
d−−−→

n→∞
N (0, Id).

Therefore,

Un(ϑn) = n(θ̂n − ϑn)T I(θ̃n)(θ̂n − ϑn)
d−→ ξT ξ,

where ξ ∼ N (0, Id). The proof is thus complete since ξT ξ
d
= χ2

d.

5 Recursive construction of confidence regions

This section is devoted to the construction of the recursive confidence region based on
quasi-asymptotically linear estimator θ̂ developed in Section 4. We start with introducing
the definition of the approximated confidence region.

Definition 5.1. Let Vn : Rn+1 → 2Θ be a set valued function such that Vn(z) is a
connected set8 for any z ∈ Rn+1. The set Vn(Zn0 ), with Zn0 := (Z0, . . . , Zn), is called
an approximated confidence region for θ∗, at significant level α ∈ (0, 1), if there exists a
weakly consistent estimator ϑ of θ∗, such that

lim
n→∞

Pθ∗(ϑn ∈ Vn(Zn0 )) = 1− α.

Such approximated confidence region can be constructed, as next result shows, by
using the asymptotic results obtained in Section 4. Recall the notation Un(θ) = n(θ̂n −
θ)T I(θ̃n)(θ̂n − θ), for θ ∈ Θ, n ≥ 1.

7We use superscripts here to denote components of vectors and matrices.
8A connected set is a set that cannot be represented as the union of two or more disjoint nonempty

open subsets.
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Proposition 5.2. Fix a confidence level α, and let κ ∈ R be such that Pθ∗(χ2
d < κ) = 1−α.

Then, the set
Tn := {θ ∈ Θ : Un(θ) < κ}

is an approximated confidence region for θ∗.

Proof. As in Section 4, we take ϑn = −I−1(θ̂n)Inθ
∗, which in view of Proposition 4.4

is a weakly consistent estimator of θ∗. Note that Un( · ) is a continuous function, and

thus Tn is a connected set, for any n ≥ 1. By Corollary 4.5, Un(ϑn)
d−→ χ2

d, and since
Pθ∗(ϑn ∈ Tn) = Pθ∗(Un(ϑn) < κ), we immediately have that limn→∞ Pθ∗(ϑn ∈ Tn) = 1−α.
This concludes the proof.

Next, we will show that the approximated confidence region Tn can be computed in a
recursive way, by taking into account its geometric structure. By the definition, the set
Tn is the interior of a d-dimensional ellipsoid, and hence cTn is uniquely determined by its
extreme 2d points. Thus, it is enough to establish a recursive formula for computing the
extreme points. Let us denote by

(θ1n,k, . . . , θ
d
n,k), k = 1, . . . , 2d,

the coordinates of these extreme points; that is θin,k, denotes the ith coordinate of the kth
extreme point of ellipsoid Tn.

First, note that the matrix I(θ̃n) is positive definite, and hence it admits the Cholesky
decomposition:

I(θ̃n) = LnL
T
n =


l11n 0 · · · 0
l21n l22n · · · 0
...

...
...

ld1n ld2n · · · lddn



l11n l21n · · · ld1n
0 l22n · · · ld2n
...

... · · ·
...

0 0 · · · lddn

 ,
where lijn i, j = 1, . . . , d, are given by

liin =

√√√√σiin −
i−1∑
k=1

(likn )2,

lijn =
1

liin

(
σijn −

j−1∑
k=1

likn l
jk
n

)
.

Thus, we have that Un(θ) = n(u2n,1(θ) + u2n,2(θ) + · · ·+ u2n,d(θ)), where

un,i(θ) =

d∑
j=i

ljin (θ̂jn − θj), i = 1, . . . , d,

and thus Tn = {θ :
∑d

j=1(un,j(θ))
2 < κ

n}.
By making the coordinate transformation θ 7→ ρ given by ρ = LTn (θ̂n − θ), the set Tn

in the new system of coordinates can be written as Tn = {ρ :
∑d

i=1(ρ
i)2 < κ

n}. Hence, Tn,
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in the new system of coordinates, is determined by the following 2d extreme points of the
ellipsoid:

(ρ11, . . . , ρ
d
1) = (

√
κ

n
, 0, . . . , 0),

(ρ12, . . . , ρ
d
2) = (−

√
κ

n
, 0, . . . , 0),

. . .

(ρ12d−1, . . . , ρ
d
2d−1) = (0, . . . , 0,

√
κ

n
),

(ρ12d, . . . , ρ
d
2d) = (0, . . . , 0,−

√
κ

n
).

Then, in the original system of coordinates, the extreme points (written as vectors) are
given by

(θ1n,2j−1, . . . , θ
d
n,2j−1)

T = θ̂n −
√
κ

n
(LTn )−1ej ,

(θ1n,2j , . . . , θ
d
n,2j)

T = θ̂n +

√
κ

n
(LTn )−1ej ,

j = 1, . . . , d, (5.1)

where {ej}, j = 1, . . . , d, is the standard basis in Rd.
Finally, taking into account the recursive constructions (3.1), (4.1), and the repre-

sentation (5.1), we have the following recursive scheme for computing the approximate
confidence region.
Recursive construction of the confidence region

Initial Step: Γ0 = 0, I0 = 0, θ̃0 ∈ Θ.

nth Step:

Input: θ̃n−1, In−1,Γn−1, Zn−1, Zn.

Output: θ̃n = θ̃n−1 +
β

n
ψn(θ̃n−1),

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1),

Γn =
n− 1

n
Γn−1 +

1

n
(Id + βIn)ψn(θ̃n−1),

(θ1n,2j , . . . , θ
d
n,2j)

T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn +

√
κ

n
(I−1/2n )T ej ,

(θ1n,2j−1, . . . , θ
d
n,2j−1)

T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn −
√
κ

n
(I−1/2n )T ej ,

j = 1, . . . , d.

From here, we also conclude that there exists a function τ , independent of n, such that

Tn = τ(Tn−1, Zn). (5.2)
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The above recursive relationship goes to heart of application of recursive confidence regions
in the robust adaptive control theory originated in [BCC+16], since it makes it possible
to take the full advantage of the dynamic programming principle in the context of such
control problems.

We conclude this section by proving that the confidence region converges to the sin-
gleton θ∗. Equivalently, it is enough to prove that the extreme points converge to the true
parameter θ∗.

Proposition 5.3. For any k ∈ {1, . . . , 2d}, we have that

Pθ∗- lim
n→∞

θn,k = θ∗.

Proof. By Assumption R8 and Theorem 3.2 (strong consistency of θ̃), we have that
Ln

a.s.−−−→
n→∞

I1/2(θ∗), and consequently, we also have that√
κ

n
eTj L

−1
n

a.s−−−→
n→∞

0. (5.3)

Of course, the last convergence holds true in the weak sense too. Passing to the limit in
(5.1), in Pθ∗ probability sense, and using (5.3) and weak consistency of θ̂ (Theorem 4.3),
we finish the proof.

6 Examples

In this section we will present three illustrative examples of the recursive construction of
confidence regions developed above. We start with our main example, Example 6.1, of a
Markov chain with Gaussian transitional densities where both the conditional mean and
conditional standard deviation are the parameters of interest. Example 6.2 is dedicated
to the case of i.i.d. Gaussian observations, which is a particular case of the first example.

Generally speaking, the simple case of i.i.d. observations for which the MLE exists and
asymptotic normality holds true, one can recursively represent the sequence of confidence
intervals constructed in the usual (off-line) way, and the theory developed in this paper is
not really needed. The idea is illustrated in Example 6.3 by considering again the same
experiment as in Example 6.2. In fact, as mentioned above, this idea served as the starting
point for the general methodology presented in the paper.

Example 6.1. Let us consider a Markov process {Zn} with a Gaussian transition density
function

pθ(x, y) =
1√

1− ρ2
√

2πσ
e
− (y−ρx−(1−ρ)µ)2

2σ2(1−ρ2) , n ≥ 1,

and such that Z0 ∼ N (µ, σ2).
We assume that the correlation parameter ρ ∈ (−1, 1) is known, and the unknown

parameter is θ = (µ, σ) ∈ Θ, where Θ = [a1, a2] × [b1, b2], and a1 ≤ a2, b1 ≤ b2 are some
fixed real numbers with b1 > 0.
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In the Appendix A.3 we show that the process Z satisfies the Assumption M, and the
conditions R0-A9.

Thus, all the results derived in the previous sections hold true. Moreover, for a given
confidence level α, we have the following explicit formulas for the nth step of the recurrent
construction of the confidence regions:

µ̃n = µ̃n−1 +
β(Zn − ρZn−1 − (1− ρ)µ̃n−1)

nσ̃2n−1(1 + ρ)
,

σ̃2n = σ̃2n−1 −
β

nσ̃n−1
+
β(Zn − ρZn−1 − (1− ρ)µ̃n−1)

2

n(1− ρ2)σ̃3n−1
),

In =
n− 1

n
In−1 +

1

n

 − 1−ρ
(1+ρ)σ̃2

n−1
−2(Zn−ρZn−1−(1−ρ)µ̃n−1)

(1+ρ)σ̃3
n−1

−2(Zn−ρZn−1−(1−ρ)µ̃n−1)
(1+ρ)σ̃3

n−1

1
σ̃2
n−1
− 3(Zn−ρZn−1−(1−ρ)µ̃n−1)2

(1−ρ2)σ̃4
n−1

 ,
Γn =

n− 1

n
Γn−1 +

1

n
(Id + βIn)

[
µ̃n−1
σ̃2n−1

]
,

and, for j ∈ {1, 2, 3, 4},[
µn,j
σ2n,j

]
= −

[
(1+ρ)σ̃2

n
1−ρ 0

0 σ̃2
n
2

]
In

[
µ̃n
σ̃2n

]
+

[
(1+ρ)σ̃2

n
1−ρ 0

0 σ̃2
n
2

]
Γn +$j

κ

n

[√
1+ρ
1−ρ σ̃n 0

0 σ̃n√
2

]
uj ,

where $1 = $3 = −1, $2 = $4 = 1, u1 = u2 = e1, u3 = u4 = e2, β is a constant such

that β >
b32
4b1

, β >
(1+ρ)b32
2(1−ρ)b1 , and Pθ∗(χ2

2 < κ) = 1− α.

Example 6.2. Let Zn, n ≥ 0, be a sequence of i.i.d. Gaussian random variables with an
unknown mean µ and unknown standard deviation σ. Clearly, this important case is a
particular case of Example 6.1, with ρ = 0, and the same recursive formulas for confidence
regions by taking ρ = 0 in the above formulas.

Example 6.3. We take the same setup as in the previous example - i.i.d Gaussian random
variables with unknown mean and standard deviation. We will use the fact that in this
case, the MLE estimators for µ and σ2 are computed explicitly and given by

µ̂n =
1

n+ 1

n∑
i=0

Zi, σ̂2n =
1

n+ 1

n∑
i=0

(Zi − µ̂n)2, n ≥ 1,

It is well known that (µ̂, σ̂2) are asymptotically normal, namely

√
n(µ̂n − µ∗, σ̂2n − (σ∗)2)

d−−−→
n→∞

N (0, I−1),

where

I =

[
(σ∗)2 0

0 2(σ∗)4

]
.
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First, note that (µ̂n, σ̂
2
n) satisfies the following recursion:

µ̂n =
n

n+ 1
µ̂n−1 +

1

n+ 1
Zn,

σ̂2n =
n

n+ 1
σ̂2n−1 +

n

(n+ 1)2
(µ̂n − Zn)2, n ≥ 1.

(6.1)

Second, due to asymptotic normality, we also have that, Un
d−−−→

n→∞
χ2
2, where Un :=

n
σ̂2
n

(µ̂n−µ∗)2 + n
2σ̂4
n

(σ̂2n− (σ∗)2)2. Now, for a given confidence level α, we let κ ∈ R be such

that Pθ∗(χ2
2 < κ) = 1− α, and then, the confidence region for (µ, σ2) is given by

Tn :=

{
(µ, σ2) ∈ R2 :

n

σ̂2n
(µ̂n − µ)2 +

n

2σ̂4n
(σ̂2n − σ2)2 < κ

}
.

Similar to the previous cases, we note that Tn is the interior of an ellipse (in R2), that is
uniquely determined by its extreme points

(µn,1, σ
2
n,1) =

(
µ̂n +

√
κ

n
σ̂n, σ̂

2
n

)
, (µn,2, σ

2
n,2) =

(
µ̂n −

√
κ

n
σ̂n, σ̂

2
n

)
,

(µn,3, σ
2
n,3) =

(
µ̂n,

(
1 +

√
2κ

n

)
σ̂2n

)
, (µn,4, σ

2
n,4) =

(
µ̂n,

(
1−

√
2κ

n

)
σ̂2n

)
.

Therefore, taking into account (6.1), we have a recursive formula for computing these
extreme points, and thus the desired recursive construction of the confidence regions Tn.

7 Concluding remarks and open problems

In this paper we initiated the theory of recursive confidence regions. In part, this theory
hinges on the theory of recursive identification for stochastic dynamical systems, such
as a Markov chain, which is the main model studied here. Although the results in the
existing literature on statistical inference for Markov processes are quite general, not much
work has been done on the recursive identification methods for Markov processes. Our
results provide a useful contribution in this regard, but, they are subject to assumption
of ergodicity imposed on our Markov chain. We leave the study of more general cases to
the future work.

Also, we leave for the future work the study of recursive confidence regions generated
via constrained recursive point estimation algorithms.

A Appendix

A.1 Ergodic Theory for Markov Chains

In this section, we will briefly discuss the theory of ergodicity for (time homogeneous)
Markov processes in discrete time. Note that for fixed transition kernel Q and initial
distribution µ, all the corresponding Markov processes have the same law. With this in
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mind, we will present results regarding ergodicity of Markov processes associated to the
canonical construction from Q and µ. We start with recalling the notion for ergodicity of
general dynamical systems.

Let (Ω,F ,P) be a probability space, and let T : Ω → Ω be a measure preserving
map, i.e. a map such that P(T−1(A)) = P(A) for every A ∈ F . Then, the corresponding
dynamical system is defined as the quadruple (Ω,F ,P, T ). Define G := {A ∈ F :
T−1(A) = A}, and note that Ω, ∅ ∈ G. Then, we have the following

Definition A.1. A dynamical system (Ω,F ,P, T ) is said to be ergodic if for any A ∈ G
we have P(A) = 0 or P(A) = 1.

One important result in the theory of dynamical system is the celebrated Birkhoff’s
Ergodic Theorem (See e.g. [Bir31], [vN32b], [vN32a]).

Theorem A.2 (Birkhoff’s Ergodic Theorem). Let (Ω,F ,P, T ) be an ergodic dynamical
system. If f ∈ L1(Ω,F ,P). Then,

lim
N→∞

1

N

N−1∑
n=0

f(Tnω) = EP[f ] P− a.s.

We now proceed by introducing the canonical construction of time homogeneous Markov
chains. Let (X ,X) be a measurable space. Also, let Q : X × X → [0, 1] be a transition
kernal and π be a probability measure on (X ,X) such that π(A) =

∫
X Q(x,A)π(dx), for

any A ∈ X. Such measure π is called an invariant probability measure of Q. For every
n ≥ 0, we define a probability measure PQ,nπ on (X n+1,Xn+1), where Xn+1 is the product
σ-algebra on X n+1, by

PQ,nπ (A0 × . . .×An) =

∫
A0

· · ·
∫
An

Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0),

for any A0, . . . , An ∈ X. The sequence of measures {PQ,nπ }n>0 is consistent. That is,

PQ,nπ (A0 ×A1 . . .×An) = PQ,n+mπ (A0 ×A1 × . . .×An ×Xm),

holds true for any integer m > 0, and A0, . . . , An ∈ X. Therefore, by Kolmogorov’s
extension theorem, such family of measures extends to a unique measure PQπ on (XN,XN),
such that

PQπ (A0 ×A1 . . .×An ×X∞) = PQ,nπ (A0 ×A1 . . .×An), A0, . . . , An ∈ X. (A.1)

With a slight abuse of notation, we denote by T the (one step) shift map on XN

(T (ω))k = ωk+1, ω ∈ XN.

Due to the construction of (XN,XN,PQπ ) and the fact that π is an invariant measure,
then it can be verified that T is measure preserving, and therefore (XN,XN,PQπ , T ) is a
dynamical system.
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Next, define a process X on (XN,XN,PQπ ) by

X(ω) = ω, ω ∈ XN,

so that, in particular, Xn(ω) = ω(n) for any integer n ≥ 0. A process defined in this way
is called a canonical process on (XN,XN,PQπ ) .

We now state and prove the following result,

Lemma A.3. A canonical process X on (XN,XN,PQπ ) is a time homogenous Markov chain
with transition kernel Q, and thus it is called the canonical Markov chain on (XN,XN,PQπ ).
Moreover, the initial distribution of X coincides with π, so that

PQπ (X0 ∈ A) = π(A).

Consequently, process X is a stationary process, that is, for any n ≥ 1, the law of
(Xj , Xj+1, . . . , Xj+n) under PQπ is independent of j, j ≥ 0.

Proof. For any n > 1, denote by dx0:n := dxn × · · · × dx0. According to (A.1) and the
definition of PQ,nπ , we obtain that

PQπ (dx0:n) = PQ,nπ (dx0:n) = Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0).

Next, for any A0, . . . , An ∈ X, we get that

PQπ (An × · · · ×A0) = EQπ [1An×···×A0 ]

=

∫
An−1×···×A0

EQπ [1An | Xn−1 = xn−1, . . . , X0 = x0]PQπ (dx0:n−1).

(A.2)
On the other hand, we also have that

PQπ (An × · · ·A0) = PQ,nπ (An × · · ·A0) =

∫
A0

· · ·
∫
An

Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0)

=

∫
An−1×···×A0

∫
An

Q(xn−1, dxn)PQπ (dx0:n−1).

(A.3)
(A.2) and (A.3) yield that

PQπ (Xn ∈ An | Xn−1 = xn−1, . . . ,X0 = x0) = EQπ [1An | Xn−1 = xn−1, . . . , X0 = x0]

=

∫
An

Q(xn−1, dxn) = PQπ (Xn ∈ An | Xn−1 = xn−1).

Therefore, we conclude that X is a Markov chain.
Now we prove the initial distribution of X is π. By definition of X we have

PQπ (X0 ∈ A) = PQπ (ω(0) ∈ A) = PQπ (A×X∞).

Then, according to (A.1), it is true that

PQπ (A×X∞) = PQ,0π (A) = π(A).
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Therefore,
PQπ (X0 ∈ A) = π(A),

and π is the initial distribution of X.
We finish the proof by showing the stationarity of X. That is to prove for any fixed

n ≥ 1, the probability PQπ (Xj ∈ A0, . . . , Xn+j ∈ An) is independent of j ≥ 0. Since π is

invariant measure Q, then it is clear that PQπ (Xj ∈ A0) = π(A0). Next, we have

PQπ (Xj ∈ A0, . . . , Xn+j ∈ An) = PQπ (X j ×A0 × · · · ×An ×X∞),

where the right hand side is equal to PQ,n+jπ (X j × A0 × · · · × An) by (A.1). Finally,
according to the definition of PQ,n+jπ , we have

PQ,n+jπ (X j ×A0 × . . .×An) =

∫
X

∫
A0

· · ·
∫
An

Q(xn+j−1, dxn+j)

· · ·Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0),

=

∫
A0

· · ·
∫
An

Q(xn+j−1, dxn+j) · · ·Q(xj , dxj+1)π(dxj)

= PQ,nπ (A0 × . . .×An) = PQπ (A0 × . . .×An ×X∞)

= PQπ (X0 ∈ A0, . . . , Xn ∈ An).

We now conclude that X is a stationary process.

Remark A.4. If a transition kernel Q admits an invariant measure π, then it is customary
to say that π is an invariant measure for any Markov chain corresponding to Q. In
particular, π is the invariant measure for the canonical Markov chain X on (XN,XN,PQπ ).

We proceed by defining the notion of ergodicity for a canonical Markov chain X.

Definition A.5. The canonical Markov chain X on (XN,XN,PQπ ) is said to be ergodic if
(XN,XN,PQπ , T ) is an ergodic dynamical system.

Remark A.6. Note that since an ergodic Markov chain X is, in particular, a canonical
Markov chain on (XN,XN,PQπ ), then it is a stationary process.

Through the rest of this section X denote the canonical Markov chain defined on
(XN,XN,PQπ ). The following technical result is on of the keys technical results used in this
paper. In its formulation we denote by EQπ the expectation under measure PQπ .

Proposition A.7. Let X be ergodic. Then for any g such that EQπ [g(X0, . . . , Xn)] < ∞,
we have

lim
N→∞

1

N

N−1∑
i=0

g(Xi, . . . , Xi+n) = EQπ [g(X0, . . . , Xn)] PQπ − a.s.

Proof. By definition, we have that (XN,XN,PQπ , T ) is an ergodic dynamical system.
For fixed n > 0, take f : XN → R defined as f(ω) := g(ω(0), . . . , ω(n)) for any ω ∈ XN.

Note that
ω(j) = Xj(ω), j ≥ 0,
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and
T i(ω)(j) = Xi+j(ω), i, j ≥ 0.

Then, according to Birkhoff’s ergodic theorem, we get that for almost every ω ∈ XN:

lim
N→∞

1

N

N−1∑
i=0

g(Xi(ω), . . . , Xi+n(ω)) = lim
N→∞

1

N

N−1∑
i=0

f(T i(ω)) = EQπ [f ] = EQπ [g(X0, . . . , Xn)].

We finish this section with providing a brief discussion regarding sufficient conditions
for the Markov chain X to be ergodic. Towards this end, first note that, in general, a
transition kernel Q possesses more than one invariant measures, and we quote the following
structural result regarding the set of invariant measures of Q,

Proposition A.8. [Var01] Let Q : X × X → [0, 1] be a (one step) transition kernel.
Then, the set ΠQ of all invariant probability measures of Q is convex. Also, given a

measure π ∈ Π, the system (XN,XN,PQπ , T ) is ergodic if and only if π is an extremal point
of Π. Furthermore, any two ergodic measures are either identical or mutually singular.

Proposition A.8 implies

Corollary A.9. If a transition kernel Q has a unique invariant probability measure π,
then the system (XN,XN,PQπ , T ) is ergodic.

One powerful tool for checking the uniqueness of invariant probability measure is the
notion of positive Harris chain. There are several equivalent definitions of positive Harris
Markov chain, and we will use the one from [HLL00].

Definition A.10. The Markov chain X with transition kernel Q is called a positive Harris
chain if

(a) there exists a σ-finite measure µ on X such that for any x0 ∈ X , and B ∈ X with
µ(B) > 0

P(Xn ∈ B for some n <∞|X0 = x0) = 1,

(b) there exists an invariant probability measure for Q.

Proposition A.11. If X is a positive Harris chain, then X is ergodic.

Proof. It is well known (cf. e.g. [MT93]) that a positive Harris chain admits a unique
invariant measure. Thus, the result follows form Corollary (A.9).
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A.2 CLT for Multivariate Martingales

In this section, for a matrix A with real valued entries we denote by |A| the sum of the
absolute values of its entries.

In [CP05] Proposition 3.1, the authors gave the following version of the central limit
theorem for discrete time multivariate martingales.

Proposition A.12. On a probability space (Ω,F ,P) let D = {Dn,j , 0 ≤ j ≤ kn, n ≥ 1}
be a triangular array of d-dimensional real random vectors, such that, for each n, the
finite sequence {Dn,j ,1 ≤ j ≤ kn} is a martingale difference process with respect to some
filtration {Fn,j , j ≥ 0}. Set

D∗n = sup
1≤j≤kn

|Dn,j |, Un =

kn∑
j=1

Dn,jD
T
n,j .

Also denote by U the σ-algebra generated by
⋃
j Hj where Hj := lim infn Fn,j. Suppose

that D∗n converges in L1 to zero and that Un converges in probability to a U measur-
able d-dimensional, positive semi-definite matrix U . Then, the random vector

∑kn
j=1Dn,j

converges U -stably to the Gaussian kernel N (0, U).

Remark A.13. U -stable convergence implies convergence in distribution; it is enough to
take the entire Ω in the definition of U -stable convergence. See for example [AE78] or
[HL15].

We will apply the above proposition to the process {ψn(θ∗), n ≥ 0} such that As-
sumption M, R8 and R9 are satisfied. To this end, let us define the triangular array
{Dn,j , 1 ≤ j ≤ n, n ≥ 1} as

Dn,j =
1√
n
ψj(θ

∗),

and let us take Fn,j = Fj .
First, note that Eθ∗ [ψj(θ∗)|Fj−1] = 0, so that for any n ≥ 1, {Dn,j , 1 ≤ j ≤ n} is

a martingale difference process with respect to {Fj , 0 ≤ j ≤ n}. Next, R9 implies that
D∗n := sup1≤j≤n

1√
n
|ψj(θ∗)| converges in L1 to 0. Finally, stationarity, R8 and ergodicity

guarantee that

Un :=
1

n

n∑
j=1

ψj(θ
∗)ψTj (θ∗)→ Eθ∗ [ψ1(θ

∗)ψT1 (θ∗)] Pθ∗ − a.s.

The limit I(θ∗) = Eθ∗ [ψ1(θ
∗)ψT1 (θ∗)] is positive semi-definite, and it is deterministic, so

that it is measurable with respect to any σ-algebra. Therefore, applying Proposition A.12
and Remark A.13 we obtain

Proposition A.14. Assume that Assumption M, R8, and R9 are satisfied. Then,

1√
n

n∑
j=1

ψj(θ
∗)

d−−−→
n→∞

N (0, I(θ∗)).
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A.3 Technical Supplement

Assumptions R4–R6 are stated for any deterministic vector θ ∈ Θ. In this section, we
show that if (2.3)-(2.7) hold for θ ∈ Θ, then for any random vectors θ,θ1,θ2 that are
Fn−1 measurable and take values in Θ, analogous inequalities are true.

Proposition A.15. Assume that R4-R6 are satisfied. Then, for any fixed n ≥ 1 and for
any random vectors θ,θ1,θ2 that are Fn−1 measurable and take values in Θ, we have

Eθ∗ [‖ψn(θ)‖2|Fn−1] ≤ c(1 + ‖θ − θ∗‖2), (A.4)

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (A.5)

‖bn(θ)‖ ≤ K2‖θ − θ∗‖, (A.6)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖|Fn−1] ≤ K3‖θ1 − θ2‖, (A.7)

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (A.8)

Proof. We will only show that (A.5) is true. The validity of the remaining inequalities
can be proved similarly. Also, without loss of generality, we assume that d = 1.

From (2.4), we have for any θ ∈ Θ, (θ − θ∗)Eθ∗ [ψn(θ) | Fn−1] ≤ K1|θ − θ∗|. If θ is a
simple random variable, i.e. there exists a partition {Am, 1 ≤ m ≤M} of Ω, where M is a
fixed integer, such that Am ∈ Fn−1, 1 ≤ m ≤ M , and θ =

∑M
m=1 cm1Am , where cm ∈ Θ.

Then, we have that

(θ − θ∗) bn(θ) = (
M∑
m=1

cm1Am − θ∗)Eθ∗ [ψn(θ) | Fn−1]

=
M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(θ) | Fn−1]

=
M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(cm) | Fn−1]

=

M∑
m=1

1Am(cm − θ∗)Eθ∗ [ψn(cm) | Fn−1]

≤ −
M∑
m=1

1AmK1|cm − θ∗|2 = −
M∑
m=1

K1|θ − θ∗|2.

From here, using the usual limiting argument we conclude that (A.5) holds true for any
Fn−1 measurable random variable θ.

In the rest of this section we will verify that the Assumption M and the properties
R0–R9 are satisfies in Example 6.1.

It is clear that the Markov chain {Zn, n ≥ 0}, as defined in Example 6.1, satisfies
(i) and (iii) in Assumption M. Next we will show that Z is a positive Harris chain (see
Definition A.10). For any Borel set B ∈ B(R) with strictly positive Lebesgue measure,
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and any z0 ∈ R, we have that

lim
n→∞

Pθ∗(Zn /∈ B, . . . , Z1 /∈ B | Z0 = z0)

= lim
n→∞

Pθ∗(Zn /∈ B | Zn−1 /∈ B) · · ·Pθ∗(Z2 /∈ B | Z1 /∈ B)Pθ∗(Z1 /∈ B | Z0 = z0)

= lim
n→∞

Pθ∗(Z2 /∈ B | Z1 /∈ B)n−1Pθ∗(Z1 /∈ B | Z0 = z0) = 0,

and thus Z satisfies Definition A.10.(a). Also, since the density (with respect to the
Lebesgue measure) of Z1 is

fZ1,θ∗(z1) =

∫
R
pθ∗(z0, z1)fZ0,θ∗(z0)dz0 =

1√
2πσ∗

e
− (z1−µ

∗)2

2(σ∗)2 ,

then Z1 ∼ N (µ∗, (σ∗)2), and consequently, we get that Zn ∼ N (µ∗, (σ∗)2) for any n ≥ 0.
This implies that N (µ∗, (σ∗)2) is an invariant distribution for Z. Thus, Z is a positive
Harris chain, and respectively, by Proposition A.11, Z is an ergodic process.

As far as propreties R0–R9, we fist note that

ψn(θ) = ∇ log pθ(Zn−1, Zn)

=
(Zn − ρZn−1 − (1− ρ)µ

σ2(1 + ρ)
,− 1

σ
+

(Zn − ρZn−1 − (1− ρ)µ)2

(1− ρ2)σ3
)T
,

bn(θ) = Eθ∗ [ψn(θ)|Fn−1]

=
(
− (1− ρ)(µ− µ∗)

σ2(1 + ρ)
,
σ∗,2 − σ2

σ3
+

(1− ρ)(µ− µ∗)2

(1 + ρ)σ3

)T
,

Ψn(θ) =

[
− 1−ρ

(1+ρ)σ2 −2(Zn−ρZn−1−(1−ρ)µ)
(1+ρ)σ3

−2(Zn−ρZn−1−(1−ρ)µ)
(1+ρ)σ3

1
σ2 − 3(Zn−ρZn−1−(1−ρ)µ)2

(1−ρ2)σ4

]
.

We denote by Yn := Zn − ρZn−1 − (1− ρ)µ, and we immediately deduce that that

Eθ∗ [Yn | Fn−1] = (1− ρ)(µ∗ − µ),

Eθ∗ [Y 2
n | Fn−1] = (1− ρ)2(µ− µ∗)2 + (σ∗)2(1− ρ2),

Eθ∗ [Y 4
n | Fn−1] = (1− ρ)4(µ∗ − µ)4 + 6(1 + ρ)(1− ρ)3(µ∗ − µ)2(σ∗)2

+ 3(σ∗)4(1− ρ2)2.

(A.9)

From here, and using the fact that Θ is bounded, it is straightforward, but tedious,9 to
show that R4, R5, R6, and R7 are satisfied. Also, it is clear note that R0 is true, and
using (A.9) by direct computations we get that R1 and R2 are satisfied.

Since

Eθ∗ [ψ1(θ)] =

(
(1− ρ)(µ∗ − µ)

σ2(1 + ρ)
,
(σ∗)2 − σ2

σ3
+

(1− ρ)(µ− µ∗)2

(1 + ρ)σ3

)
,

then R3 is clearly satisfied.

9The interested reader can contact the authors for details.
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Again by direct evaluations, we have that

I(θ) = Eθ[ψ1(θ)ψ1(θ)
T ] =

[
1−ρ

(1+ρ)σ2 0

0 2
σ2

]
,

which is positive definite matrix, and thus R8 is satisfied.
Finally, we will verify R9. By Jensen’s inequality and Cauchy-Schwartz inequality, we

have that

exp

(
Eθ∗ sup

0≤i≤n
|ψi(θ∗)|

)
≤ Eθ∗ exp

(
sup

0≤i≤n
|ψi(θ∗)|

)
= Eθ∗

[
sup

0≤i≤n
exp |ψi(θ∗)|

]
≤

n∑
i=1

Eθ∗ exp |ψi(θ∗)| ≤
n∑
i=1

Eθ∗ exp(
|Yi|

σ2(1 + ρ)
+

1

σ
+

Y 2
n

(1− ρ)2σ3
)

≤
n∑
i=1

(
Eθ∗ exp(

2|Yi|
σ2(1 + ρ)

)
) 1

2
(
Eθ∗ exp(

2

σ
+

2Y 2
i

(1− ρ)2σ3
)
) 1

2
.

Note that for Yi, i = 0, . . . , n is normally distributed, and therefore, there exist two con-
stants C1 and C2, that depend on θ∗ such that

Eθ∗ exp

(
2|Yi|

σ2(1 + ρ)

)
= C1, Eθ∗ exp

(
2

σ
+

2Y 2
i

(1− ρ)2σ3

)
= C2.

Hence, we have that

Eθ∗ sup
0≤i≤n

|ψi(θ∗)| ≤ log n+
1

2
logC1C2,

and, thus R9 is satisfied:

lim
n→∞

Eθ∗
[

sup
0≤i≤n

∣∣∣ 1√
n
ψi(θ

∗)
∣∣∣] ≤ lim

n→∞

(
log n√
n

+
logC1C2

2
√
n

)
= 0.
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