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1 Introduction

In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic

Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowl-

edge, this paper is the very first step towards realizing the objective of deriving Wiener-Hopf type

factorizations for (real-valued) time-inhomogeneous Lévy processes1. In order to motivate this goal,

we first provide a brief account of three forms of Wiener-Hopf factorizations for time-homogeneous

real-valued Lévy processes based on [8, Section 11.2.1], [19, Section I.29], and [21, Section 45].

So, let X := (Xt)t∈R+ be a time-homogeneous real-valued Lévy processes defined on some

probability space (Ω,F ,P) with X0 = 0 P-a.s., where R+ := [0,∞). We denote by ψ(ξ), ξ ∈ R, the

characteristic exponent of X, so that E(eiξXt) = etψ(ξ), for any t ∈ R+. For any fixed c ∈ (0,∞),

we consider an exponentially distributed random variable ec on (Ω,F ,P) with E(ec) = c−1, and

we assume that ec and X are independent under P. Denote by

Xt := inf
s∈[0,t]

Xs, Xt := sup
s∈[0,t]

Xs, t ∈ R+,

the running maximum and running minimum processes of X, respectively. It is well known (cf.

[19, Chapter I, (29.4) & (29.5)]) that

Xec and Xec −Xec are independent, (1.1)

and that

Xec and Xec −Xec have the same distribution. (1.2)

1By time-inhomogeneous Lévy process, we mean a continuous-time stochastic process that has the independent

increments property, but not the stationary increments property. This type of processes are also known as additive

processes (cf. [21, Definition 1.6]).
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The above two properties imply that

E
(
eiξXec

)
= E

(
eiξXec

)
E
(
eiξXec

)
, ξ ∈ R. (1.3)

Formula (1.3) is known as the Wiener-Hopf factorization for the real-valued Lévy process X (cf. [8,

(11.9)], [19, Chapter I. (29.2) (iii)]). It is a particular version of the so-called Pecherskii-Rogozin-

Spitzer identity (see e.g. [2]).

Next, we denote by φ+
c (ξ) (respectively, φ−c (ξ)), ξ ∈ R, the characteristic function of Xec

(respectively, Xec). Noting that

E
(
eiξXec

)
= cE

(∫ ∞
0

e−cteiξXt dt

)
= c

∫ ∞
0

e−cteψ(ξ)t dt =
c

c− ψ(ξ)
,

we obtain the following equivalent form of (1.3) (e.g. [8, (11.12)] and [21, (45.1)])2

c

c− ψ(ξ)
= φ+

c (ξ)φ−c (ξ), ξ ∈ R. (1.4)

Now we define the following operators on L∞(R)

(
Hcu

)
(x) := cE

(∫ ∞
0

e−ctu
(
x+Xt

)
dt

)
= E

(
u
(
x+Xec

))
,

(
H+
c u
)
(x) := cE

(∫ ∞
0

e−ctu
(
x+Xt

)
dt

)
= E

(
u(x+Xec

))
,

(
H−c u

)
(x) := cE

(∫ ∞
0

e−ctu
(
x+Xt

)
dt

)
= E

(
u
(
x+Xec

))
.

It can be shown that (1.1) and (1.2) also imply

Hcu = H+
c H−c u = H−c H+

c u, u ∈ L∞(R), (1.5)

(cf. [8, (11.16)]), and that (1.5) implies (1.3) (equivalently, (1.4)); see Remark 2.15 below for a

more detailed discussion. Thus we call (1.5) the operator form of the Wiener-Hopf factorization for

the real-valued Lévy process X.

We conjuncture that when X is a time-inhomogeneous real-valued Lévy process then property

(1.2) does not hold any more due to the lack of stationarity of increments. Such conjecture is

strongly supported by our numerical simulations, though at this moment we do not have a formal

proof for it. More precisely, we consider a Brownian motion with time-dependent drift, namely,

Xt =

∫ t

0
v(s) ds+Wt, t ∈ R+,

for some deterministic bounded function v on R+. For various choices of v and c = 1, we use

Monte Carlo method to compute E(Xec − Xec) − E(Xec)
3 with n = 104 sample paths and time

2There are other equivalent expressions for φ±c , e.g. [21, (45.2) & (45.3)]. Moreover, it is well-known that (φ+
c , φ

−
c )

is the unique pair of characteristic functions of infinitely divisible distributions having drift 0 supported on [0,∞)

and (−∞, 0], respectively, such that (1.4) holds (cf. [21, Theorem 45.2]). Those results are irrelevant to our later

discussions, and are therefore omitted here.
3The exact formula for E(Xec −Xec)− E(Xec

) when v is non-constant is not available (even when v is piecewise

constant with a single jump).
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step ∆t = 10−4. The simulation results, summarized in Table 1, show that when v is constant,

E(Xec −Xec) = E(Xec), which is a simple consequence of (1.2). However, when v is non-constant,

there is a significant gap between E(Xec − Xec) and E(Xec), which is a clear contradiction to

property (1.2). Therefore, there is no hope of deriving Wiener-Hopf type factorizations (in an

analogous form of (1.3), (1.4), or (1.5)) for a time-inhomogeneous real-valued Lévy process X using

properties like (1.1) and (1.2), and other methods are sought.

Function v v(s) ≡ 1 v(s) ≡ −1 v(s) = 1[0,1/2](s)− 1[1,3/2](s) v(s) = cos(s)

E(Xec −Xec)− E(Xec) −9.9× 10−5 8.1× 10−5 −0.1475 −0.0803

Table 1: Simulation results for E(Xec −Xec)− E(Xec). For each choice of function v, the expec-

tation is computed based on n = 104 sample paths with time step ∆t = 10−4.

In this paper, we derive a Wiener-Hopf factorization for a time-inhomogeneous diffusion process

ϕ(s, a) (defined as in (2.1)) with time-dependent deterministic drift and volatility coefficients. In

the context of this paper this means a specific decomposition of the quantity

E
(∫ τ

s
u(ϕt(s, a))h(t) dt

)
, (1.6)

where τ is an arbitrary stopping time, and u and h are suitable test functions. This is the main

results of our paper and it is presented in Theorem 2.11 in terms of the two passage times τ±` (s, a)

(defined as in (2.2)) of ϕ(s, a) and their functionals. In particular, when v and σ are both constants

and with a special choice of h, our factorization of (1.6) recovers the operator form of the Wiener-

Hopf factorization (1.5) for a Brownian motion with drift (see Corollary 2.14 and Remark 2.15

below). To the best of our knowledge, Theorem 2.11 is the very first result in the literature regarding

the Wiener-Hopf factorization for time-inhomogeneous Lévy processes. Our methodology employs

an in-depth analysis of the semigroups (P±` )`∈R+ associated with τ±` (s, a), and of their generators

Γ±, together with a time-homogenization technique (cf. [6, Section 3]), which does not rely on

any property of ϕ(s, a) analogous to (1.1) or (1.2). As a by product, we also obtain a property of

Γ± in Proposition 3.6 which can be regarded as an analogue of the so-called “noisy” Wiener-Hopf

factorization for time-homogeneous finite Markov chains that was studied in, for instance, [12], [14],

and [18].

We need to add that the present paper is a continuation of work towards developing Wiener-

Hopf type theory for time-inhomogeneous Markov processes. The previous work in this direction

is presented in [3] and [4].

The rest of the paper is organized as follows. In Section 2, we first introduce the basic setup

and assumptions of our model. Our main result on the Wiener-Hopf factorization of the time-

inhomogeneous arithmetic Brownian motion process ϕ(s, a) is presented in Section 2.3, followed by

a discussion of its relation with the Wiener-Hopf factorization of time-homogeneous Lévy processes

in Section 2.4. Section 3 contains some auxiliary results which are needed in the proof of the main

result, including a property of Γ± that is analogous to the “noisy” Wiener-Hopf factorization, which

is given in Section 3.3. Section 4 contains proofs of key results. In Section 5, we present a nontrivial

example of our model for which the main assumptions are shown to be satisfied. Finally, in the

appendix, we provide the proofs of some technical lemmas.
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2 Setup and the Main Result

2.1 Basic Setup

Throughout this paper, we let W := (Wt)t∈R+ be a one-dimensional standard Brownian motion

defined on a complete stochastic basis (Ω,F ,F,P), where F := (Ft)t∈R+ is a filtration satisfying

the usual conditions, and R+ := [0,∞). For any a ∈ R and s ∈ R+, we consider the following

time-inhomogeneous diffusion process ϕ(s, a) := (ϕt(s, a))t∈[s,∞), defined by

ϕt(s, a) := a+

∫ t

s
v(r) dr +

∫ t

s
σ(r) dWr, t ∈ [s,∞), (2.1)

where v : R+ → R and σ : R+ → R+ are B(R+)-measurable bounded functions.

For any s ∈ R+ and a, ` ∈ R, we define the passage times of ϕ(s, a) as

τ+
` (s, a) := inf

{
t ∈ [s,∞) : ϕt(s, a) ≥ `

}
and τ−` (s, a) := inf

{
t ∈ [s,∞) : ϕt(s, a) ≤ `

}
,(2.2)

with the convention inf ∅ =∞. Both τ+
` (s, a) and τ−` (s, a) are F-stopping times since ϕ(s, a) is F-

adapted and has continuous sample paths, and F is right-continuous (cf. [11, Chapter I, Proposition

1.28]). In view of (2.1), for any s ∈ R+ and a, ` ∈ R, we have

τ±` (s, a) = τ±`−a(s, 0), (2.3)

and τ+
` (s, a) = s (respectively, τ−` (s, a) = s) when a ≥ ` (respectively, a ≤ `). For notational

convenience, hereafter we will write ϕt(s) and τ±` (s) in place of ϕt(s, 0) and τ±` (s, 0), respectively.

We will use the following notations for various spaces of functions.

• L∞(R+) is the space of B(R+)-measurable bounded real-valued functions on R+. If need be

we extend the domain of a function f ∈ L∞(R+) to include infinity, and in such case we set

f(∞) = 0.

• C(R+) (respectively, C(R)) is the space of continuous real-valued functions on R+ (respec-

tively, R).

• Cc(R+) (respectively, Cc(R)) is the space of continuous real-valued functions on R+ (respec-

tively, R) with compact support.

• C0(R+) is the space of f ∈ C(R+) such that f vanishes at infinity.

• Ce(R+) is the space of f ∈ C0(R+) such that f decays with exponential rate, i.e., there exist

constants K,κ ∈ (0,∞), such that |f(t)| ≤ Ke−κt for all t ∈ R+.

• C1
c (R+) is the space of f ∈ C0(R+) such that f is continuously differentiable on R+ and has

a compact support.

• Cac
e,cdl(R+) is the space of f ∈ C0(R+) such that there exists a càdlàg real-valued function gf

on R+, which decays with exponential rate, and

f(t) = −
∫ ∞
t

gf (r) dr, for all t ∈ R+. (2.4)
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• Ck(R), k ∈ N, is the space of real-valued functions on R which have continuous derivatives

on R up to order k.

We conclude this subsection by introducing the following two families of operators associated

with the passage times τ±` (s), which are key ingredients in our main result. For any ` ∈ R+, we

define P+
` : L∞(R+)→ L∞(R+) and P−` : L∞(R+)→ L∞(R+) as(

P+
` f
)
(s) := E

(
f
(
τ+
` (s)

))
and

(
P−` f

)
(s) := E

(
f
(
τ−−`(s)

))
, s ∈ R+. (2.5)

We will stipulate (P±` f)(∞) = 0 whenever we need to evaluate its value at infinity. Clearly, for any

f ∈ L∞(R+), |(P±` f)(s)| ≤ ‖f‖∞ <∞ for any s ∈ R+, so that P±` f ∈ L
∞(R+).

Remark 2.1. In most of the literature on Wiener-Hopf factorization for Markov processes (cf. [1],

[14], and [22]), the passage times of additive functionals with strict inequalities are considered.

More precisely, in our setup, we might have investigated

η+
` (s, a) := inf

{
t ∈ [s,∞) : ϕt(s, a) > `

}
and η−` (s, a) := inf

{
t ∈ [s,∞) : ϕt(s, a) < `

}
,(2.6)

instead of τ±` (s, a) given as in (2.2), for any s ∈ R+ and a, ` ∈ R. Nevertheless, as shown in

Proposition 2.3 below, these two types of passage times are equal to each other P-a.s. Consequently,

if we define Q+
` : L∞(R+)→ L∞(R+) and Q−` : L∞(R+)→ L∞(R+) by(
Q+
` f
)
(s) := E

(
f
(
η+
` (s)

))
and

(
Q−` f

)
(s) := E

(
f
(
η−−`(s)

))
, s ∈ R+,

then (P±` )`∈R+ coincides with (Q±` )`∈R+ on L∞(R+). Therefore, our main factorization for (1.6),

given as in Theorem 2.11 below, holds for either type of passage times.

2.2 Assumptions and Preliminaries

In this section, we will introduce some assumptions and state some preliminary results in order to

present our main result. We begin with the following mild assumption on the coefficient functions

v and σ.

Assumption 2.2. Throughout this paper, we assume that

(i) v is bounded and càdlàg;

(ii) σ is càdlàg, and there exists 0 < σ < σ <∞ such that σ ≤ σ(t) ≤ σ, for all t ∈ R+.

Our first proposition shows that the passage times defined by (2.2) and (2.6) are the same in

the P-a.s. sense, which ensures the validity of our main result for both types of passage times (see

Remark 2.1). The proof of this result is deferred to Appendix A.1.

Proposition 2.3. Under Assumption 2.2, for any s ∈ R+ and a, ` ∈ R, P(τ±` = η±` ) = 1.

The following result, the proof of which is deferred to Appendix A.2, introduces two quantities

γ+ and γ− that are key for our main result.

Proposition 2.4. Suppose that Assumption 2.2 is valid.
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(i) For any 0 ≤ s < t, the following limit

lim
`→0+

1

`
P
(
τ±` (s) > t

)
exists and is finite.

(ii) For any s ∈ R+, define

γ±(s, t) :=

{
lim`→0+ `

−1P
(
τ±` (s) > t

)
, t ∈ (s,∞),

0, t ∈ [0, s].

Then γ±(s, ·) is non-increasing and continuous on (s,∞).

(iii) For any 0 ≤ s < t, we have
√

2√
πσ2(t− s)

exp

(
− σ2‖v‖2∞

2σ4
(t− s)

)
− 2‖v‖∞

σ2
Φ

(
− σ‖v‖∞

σ2

√
t− s

)
≤ γ±(s, t) ≤

√
2√

πσ2(t− s)
exp

(
− ‖v‖

2
∞

2σ2
(t− s)

)
+

2‖v‖∞
σ2

Φ

(
‖v‖∞
σ

√
t− s

)
.

Our second assumption is related to the continuity of γ±(s, t) with respect to s.

Assumption 2.5. The functions v and σ are such that, for every t ∈ R+, γ±(·, t) is continuous

on [0, t).

Denoting by γ := γ+ + γ−, we consider the operator Γ on Cac
e,cdl(R+) defined by(

Γf
)
(s) :=

∫ ∞
s

gf (r)γ(s, r) dr, s ∈ R+, (2.7)

where we recall (2.4) for the definition of gf . The following lemma, the proof of which is deferred

to Appendix A.3, establishes well-definedness of Γ and provides some of its basic properties.

Lemma 2.6. Under Assumption 2.2, for every f ∈ Cac
e,cdl(R+), the integral on the right-hand side

of (2.7) is finite for every s ∈ R+. Moreover, under Assumptions 2.2 and 2.5, Γf ∈ Ce(R+).

Our next assumption regards the range of λ − Γ, which is a key in identifying Γ as a strong

generator.

Assumption 2.7. The functions v and σ are such that {(λ − Γ)f : f ∈ Cac
e,cdl(R+)} is dense in

C0(R+) for some λ > 0.

An example of functions v and σ, for which Assumptions 2.2, 2.5, and 2.7 are satisfied, will be

presented in Section 5.

Before we proceed, we recall the definition of Feller semigroup (cf. [7, Definitions 1.1 & 1.2]).

Definition 2.8. A family of linear operators (Tt)t∈R+ defined on L∞(R+) is called a Feller semi-

group if it is a positive contraction semigroup on L∞(R+) which satisfies the Feller property

Ttf ∈ C0(R+), for any f ∈ C0(R+), t ∈ (0,∞),

and which is strongly continuous on C0(R+), namely,

lim
t→0

∥∥Ttf − f∥∥∞ = 0, for any f ∈ C0(R+).
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We conclude the section by presenting a proposition, which is a key step towards establishing

our main result. The proof of this proposition will be provided in Section 4.1.

Proposition 2.9. Under Assumptions 2.2, 2.5, and 2.7, we have

(i) the operator Γ on Cac
e,cdl(R+) is closable and the closure of Γ, denoted by (Γ,D(Γ)), is the

strong generator of a Feller semigroup, say, (P`)`∈R+;

(ii) for any f ∈ Ce(R+), the integral
∫ L

0 P`f d` converge in L∞(R+), as L → ∞, to the limit

denoted by
∫∞

0 P`f d`. Moreover,
∫∞

0 P`f d` ∈ D(Γ), and

Γ

∫ ∞
0
P`f d` = −f. (2.8)

Remark 2.10. According to Proposition 2.9 (i), the operator Γ is closable and its closure is the

strong generator of a Feller semigroup. In the proof of the proposition we will first consider Γ

on C1
c (R+) ⊂ Cac

e,cdl(R+), which is dense in C0(R+). However, noting that each f ∈ Cac
e,cdl(R+) is

differentiable a.e. on R+ with f ′ = gf a.e. on R+, the space Cac
e,cdl(R+) contains not only all C1

c (R+)

functions (when gf ∈ Cc(R+)), but also functions with discontinuous derivatives. In particular, it

contains functions f such that f ′(t) = 1[0,T )(t) a.e., for some T ∈ (0,∞). Those functions will turn

out to be especially helpful in the study of the regularity of the semigroup generated by Γ (see

Lemma 4.1 below), which is crucial in proving Proposition 2.9 part (ii).

2.3 Main Result

We now state the main result of this paper, Theorem 2.11, which provides a factorization for the

expectation (1.6) in terms of the operators (P`)`∈R+ and (P±` )`∈R+ . This factorization generalizes

the operator form of the Wiener-Hopf factorization (1.5) for Brownian motion with drift, and is

therefore named as the Wiener-Hopf factorization for the time-inhomogeneous arithmetic Brownian

motion process ϕ(s, a). The proof of this theorem will be presented in Section 4.2.

Theorem 2.11. Under Assumptions 2.2, 2.5, and 2.7, for any h ∈ Ce(R+) and u ∈ C(R) with

E
(∫ ∞

s

∣∣u(ϕt(s, a)
)
h(t)

∣∣ dt) <∞, (2.9)

for any (s, a) ∈ R+ × R, we have

E
(∫ τ

s
u
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= 2

∫ ∞
0
u(a+`)

(
P+
`

∫ ∞
0
Pyh dy

)
(s) d`+ 2

∫ ∞
0
u(a−`)

(
P−`
∫ ∞

0
Pyh dy

)
(s) d`

− 2E
(
1{τ<∞}

∫ ∞
0

u
(
ϕτ (s, a) + `

)(
P+
`

∫ ∞
0
Pyh dy

)
(τ) d`

)
− 2E

(
1{τ<∞}

∫ ∞
0

u
(
ϕτ (s, a)− `

)(
P−`
∫ ∞

0
Pyh dy

)
(τ) d`

)
.(2.10)

for any F-stopping time τ and (s, a) ∈ R+ × R.

In particular, by taking τ ≡ ∞, we obtain the following corollary.
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Corollary 2.12. Under the setting of Theorem 2.11, for any (s, a) ∈ R+ × R, we have

E
(∫ ∞

s
u
(
ϕt(s, a)

)
h(t)dt

)
= 2

∫ ∞
0

u(a+ `)

(
P+
`

∫ ∞
0
Pyh dy

)
(s) d`

+ 2

∫ ∞
0

u(a− `)
(
P−`
∫ ∞

0
Pyh dy

)
(s) d`. (2.11)

Moreover, as a consequence of (2.10) and (2.11), for any F-stopping time τ , we have

E
(∫ ∞

τ
u
(
ϕt(s, a)

)
h(t)dt

)
= 2E

(
1{τ<∞}

∫ ∞
0

u
(
ϕτ (s, a) + `

)(
P+
`

∫ ∞
0
Pyh dy

)
(τ) d`

)
+ 2E

(
1{τ<∞}

∫ ∞
0

u
(
ϕτ (s, a)− `

)(
P−`
∫ ∞

0
Pyh dy

)
(τ) d`

)
.

Remark 2.13. In this remark, we will present some intuition, but not the blueprint for rigorous

proof, for the formula (2.11). For simplicity, throughout this remark we fix s ∈ R+ and a = 0,4

The following discussion is mainly motivated by the downcrossing representation of the Brownian

local time at zero (cf. [16, Theorem 6.1]) as well as the occupation density formula for local time

(cf. [19, Chapter IV, (45.4)]).

(i) For any x ∈ R+ and ` ∈ (0,∞), let τ+,1
` (s, x) := τ+

x+`(s), and for j ∈ N,

τ−,j` (s, x) := inf
{
t > τ+,j

` (s, x) : ϕt(s) = x− `
}
,

τ+,j+1
` (s, x) := inf

{
t > τ−,j` (s, x) : ϕt(s) = x+ `

}
.

The stopping time τ−,j` (s, x) is called the j-th downcrossing time of [x−`, x+`] by the process

ϕ(s). From (2.5) and from the strong Markov property of ϕ(s), for any h ∈ L∞(R+) and

j ∈ N, we have

E
(
h
(
τ−,j` (s, x)

))
=
(
P+
x+`P

−
2`

(
P+

2`P
−
2`

)j−1
h
)

(s).

By imposing appropriate regularity assumption on h (so that the expressions in the equality

below are well defined), we conjecture that

E
( ∞∑
j=1

h
(
τ−,j` (s, x)

))
=

(
P+
x+`P

−
2`

∞∑
j=1

(
P+

2`P
−
2`

)j−1
h

)
(s).

Note that for f ∈ Cac
e,cdl(R+),

lim
`→0+

1

2`

(
I − P+

2`P
−
2`

)
f = lim

`→0+

1

2`

(
I − P+

2`

)
f + lim

`→0+

1

2`
P+

2`

(
I − P−2`

)
f = −

(
Γ+ + Γ−

)
f = −Γf,

where Γ+ and Γ− are the respective generators of (P+
` )`∈R+ and (P−` )`∈R+ (see Propositions

3.4 and 3.5 below), and where the last equality above follows from (2.7) and Proposition 3.5.

If I − P+
2`P
−
2` were invertible, we would have, for any h ∈ Ce(R+),

∞∑
j=1

(
P+

2`P
−
2`

)j−1
h =

(
I − P+

2`P
−
2`

)−1
h,

4Recall that for simplicity we always write ϕt(s) and τ±` (s) in place of ϕt(s, 0) and τ±` (s, 0), respectively.
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so that, in view of Proposition 2.9 (ii),

lim
`→0+

2`
∞∑
j=1

(
P+

2`P
−
2`

)j−1
h = Γ

−1
h = −

∫ ∞
0
Pyh dy.

Unfortunately, I−P+
2`P
−
2` is not invertible in general. Nevertheless, given the above discussion,

we conjecture that for any h ∈ Ce(R+),

lim
`→0+

2`E
( ∞∑
j=1

h
(
τ−,j` (s, x)

))
= −

(
P+
x

∫ ∞
0
Pyh dy

)
(s), (2.12)

(ii) Similarly, for any x ∈ (−∞, 0) and ` ∈ (0,−x), we define the downcrossing times of [x−`, x+`]

for ϕ(s) as follows. Let θ−,1` (s, x) := τ−x−`(s)
5, and for j ∈ N,

θ+,j
` (s, x) := inf

{
t > θ−,j` (s, x) : ϕt(s) = x+ `

}
,

θ−,j+1
` (s, x) := inf

{
t > θ+,j

` (s, x) : ϕt(s) = x− `
}
.

For any h ∈ Ce(R+), we conjecture that

lim
`→0+

2`E
( ∞∑
j=1

h
(
θ−,j` (s, x)

))
= −

(
P−−x

∫ ∞
0
Pyh dy

)
(s). (2.13)

(iii) Next, let (Ls,xt )t∈[s,∞) be the local time of ϕ(s) = (ϕt(s))t∈[s,∞) at level x ∈ R. By [16,

Theorem 6.1], when v(t) ≡ 06 and for any T ∈ (0,∞), we have

lim
`→0+

4`
∞∑
j=1

1{τ−,j` (s,0)≤T} = Ls,0T , P− a.s. (2.14)

When v is a function on R+ more general then an indicator function, then, assuming suitable

conditions (such as Assumptions 2.2, 2.5, and 2.7), we conjecture that, for h ∈ C0(R+)

satisfying certain additional regularity conditions,

lim
`→0+

4`E
( ∞∑
j=1

h
(
τ−,j` (s, x)

))
= E

(∫ ∞
s

h(t) dLs,xt

)
, x ∈ R+, (2.15)

lim
`→0+

4`E
( ∞∑
j=1

h
(
θ−,j` (s, x)

))
= E

(∫ ∞
s

h(t) dLs,xt

)
, x ∈ (−∞, 0). (2.16)

Both (2.15) and (2.16) reduce to (2.14) in case of v being an indicator function. By comparing

(2.12) and (2.13) with (2.15) and (2.16), respectively, we deduce that, for any h ∈ Ce(R+)

(with possibly additional regularity conditions),

E
(∫ ∞

s
h(t) dLs,xt

)
=


−2

(
P+
x

∫ ∞
0
Pyh dy

)
(s), x ∈ R+

−2

(
P−−x

∫ ∞
0
Pyh dy

)
(s), x ∈ (−∞, 0)

. (2.17)

5When [x,−`, x+ `] ⊂ (−∞, 0), the first down crossing time of [x− `, x+ `] for ϕ(s) is simply the its hitting time

at level x− `.
6In this case ϕt(s) = Wt −Ws, t ∈ [s,∞), which has the same law as a standard Brownian motion.
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(iv) Finally, we recall the well-known occupation density formula (cf. [19, Chapter IV, (45.4)])

which states that, for any positive Borel-measurable functions u (on R) and h (on R+) (and

eventually for any Borel-measurable functions u and h such that
∫∞
s u

(
ϕt(s, 0)

)
h(t) dt < ∞

P-a.s.), we have∫ ∞
s

u
(
ϕt(s)

)
h(t)σ2(t) dt =

∫ ∞
−∞

u(x)

(∫ ∞
s

h(t) dLs,xt

)
dx, P− a.s. (2.18)

Combining (2.17) with (2.18), we obtain (2.11) with suitable choices of u and h.

(v) Conversely, once we establish (2.11), then (2.17) is expected to be shown as a consequence of

(2.11) and (2.18). In addition, we conjecture that (2.17) remains valid when h(t) = 1[0,T ](t),

for any T ∈ (0,∞). In this case, (2.17) provides a formula for the expected local time of ϕ(s)

at level x up to any finite terminal T .

2.4 Connection to Classical Wiener-Hopf Factorization for Lévy Processes

In this section we will establish a connection between our main result and the classical Wiener-

Hopf factorization for real-valued Lévy processes. More precisely, in the following corollary, we

recover from (2.11) the operator form of the Wiener-Hopf factorization (1.5) in the setup of a

time-homogenous Brownian motion with drift. The proof of the corollary is deferred to Section 4.3.

Corollary 2.14. Suppose that v(t) ≡ v ∈ R and σ(t) ≡ σ ∈ (0,∞), for all t ∈ R+. For any

c ∈ (0,∞) and u ∈ C(R) with

E
(∫ ∞

0
e−ct

∣∣u(ϕt(0, a)
)∣∣ dt) <∞, for any a ∈ R, (2.19)

we define, for any a ∈ R, (
Ecu
)
(a) := cE

(∫ ∞
0

e−ctu
(
ϕt(0, a)

)
dt

)
,

(
E+
c u
)
(a) := cE

(∫ ∞
0

e−ctu
(
ϕt(0, a)

)
dt

)
,

(
E−c u

)
(a) := cE

(∫ ∞
0

e−ctu
(
ϕ
t
(0, a)

)
dt

)
,

where for any t ∈ R+, ϕt(0, a) := supr∈[0,t] ϕr(0, a) and ϕ
t
(0, a) := infr∈[0,t] ϕr(0, a). Then, we have

Ecu = E+
c E−c u = E−c E+

c u. (2.20)

Remark 2.15. In this remark, we will show that formula (2.20) is a special case of (1.5). Towards

this end, we first show that (1.1) and (1.2) imply (1.5). For any a ∈ R and u ∈ L∞(R) we have(
Hcu

)
(a) = E

(
u
(
a+Xec

))
= E

(
u
(
a+Xec +Xec −Xec

))
= E

(
E
(
u
(
a+Xec +Xec −Xec

) ∣∣∣Xec

))
= E

((
H−c u

)(
a+Xec

))
=
(
H+
c H−c u

)
(a),

where we have used (1.1) and (1.2) in the last second equality above. The second equality in (1.5)

can be proved in a similar manner. Clearly, for u ∈ Cb(R), (2.20) is a special case of (1.5).
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We will now demonstrate that (1.5) implies (1.3) (equivalently, (1.4)). Indeed, by (1.5), we have(
Hc sin(ξ ·)

)
(a) =

(
H+
c

(
H−c sin(ξ ·)

))
(a),

(
Hc cos(ξ ·)

)
(a) =

(
H+
c

(
H−c cos(ξ ·)

))
(a), a, ξ ∈ R.

Thus, by the Euler formula, as well as the linearity of Hc and H±c , we see that (1.5) holds true for

u(x) = eiξx, x ∈ R. It follows immediately that for all ξ ∈ R,

E
(
eiξXec

)
=
(
Hc eiξ ·

)
(0) =

(
H+
c H−c eiξ ·

)
(0) =

(
H+
c

(
cE
(∫ ∞

0
e−cteiξ(·+Xt) dt

)))
(0)

=
(
H+
c e

iξ ·)(0) · cE
(∫ ∞

0
e−cteiξXt dt

)
= cE

(∫ ∞
0

e−cteiξXt dt

)
· cE

(∫ ∞
0

e−cteiξXt dt

)
= E

(
eiξXec

)
E
(
eiξXec

)
.

In particular, when X is an arithmetic Brownian motion, (2.20) implies (1.3) (equivalently, (1.4)).

Remark 2.16. In case when v(·) ≡ v ∈ R and σ(·) ≡ σ ∈ (0,∞), Assumption 2.2 holds trivially.

Moreover, the validity of Assumptions 2.5 and 2.7 in this case follows from a straightforward

adaptation of the proof in Section 5, where those two assumptions are verified when both v and σ

are piecewise constant.

3 Auxiliaries

In this section, we will present some auxiliary results needed for the proof of our main result.

3.1 An Auxiliary Time-Homogeneous Markov Family

Here we will introduce a time-homogeneous Markov family M̃ by applying standard time homoge-

nization techniques to the time-inhomogeneous Markov family M̂ to be defined below and associ-

ated with {ϕ(s, a), (s, a) ∈ R+ × R}. Similar construction was done in [4, Section 4.1]. Hereafter,

we denote by Z := R+ × R, Z := Z ∪ {(∞,∞)}, R+ := [0,∞], and R := R ∪ {∞}.
Let Ω̂ = C(R+) which is the space of real-valued continuous functions on R+. We stipulate

ω̂(∞) =∞ for every ω̂ ∈ Ω̂. One can construct a standard canonical7 time-inhomogeneous Markov

family (cf. [10, Section I.6, Definition 6])

M̂ :=
{(

Ω̂, F̂ , F̂s,
(
ϕ̂t
)
t∈[s,∞]

, P̂s,a
)
, (s, a) ∈ Z

}
with transition function P̂ given by8

P̂ (s, a, t, A) := P
(
ϕt(s, a) ∈ A

)
, t ∈ [s,∞], (s, a) ∈ Z , A ∈ B(R). (3.1)

A routine check verifies that P̂ is a Feller transition function.9 This allows us to apply [10, Section

I.6, Theorem 3] in order to prove existence of such Markov family M̂.10 In particular, it holds that,

7By canonical, we mean ϕ̂t(ω̂) = ω̂(t) for all t ∈ R+.
8We stipulate ϕ∞(s, a) ≡ ∞, for any (s, a) ∈ Z .
9We refer to [10, Section I.6, Page 78] for the definition of the Feller transition function.

10The details of construction of the family M̂ and its properties take much space, and therefore are not given here.

They can be obtained from the authors upon request.
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for 0 ≤ t ≤ t′ and A ∈ B(R),

P̂ (t, y, t′, A) = P̂t,y
(
ϕ̂t′ ∈ A

)
. (3.2)

Moreover, by investigating the finite dimensional distributions of ϕ̂ := (ϕ̂t)t∈[s,∞] under P̂s,a, and

since ϕ̂ admits continuous sample paths, it can be shown that, for any (s, a) ∈ Z ,

the law of ϕ̂ under P̂s,a = the law of ϕ(s, a) under P. (3.3)

We will verify that two-dimensional distributions agree. Let t′ > t ≥ s and ξ, ξ′ ∈ R. The Markov

property of ϕ̂ under P̂s,a and (3.2) imply that

Ês,a
(
eiξϕ̂t+iξ

′ϕ̂t′
)

= Ês,a
(
eiξϕ̂t Êt,ϕ̂t

(
eiξ
′ϕ̂t′
))

=

∫ ∞
−∞

eiξx Êt,x
(
eiξ
′ϕ̂t′
)

√
2π
∫ t
s σ

2(r)dr
exp

(
−

(x−a−
∫ t
s v(r)dr)2

2
∫ t
s σ

2(r)dr

)
dx

=

∫ ∞
−∞

eiξx√
2π
∫ t
s σ

2(r)dr
exp

(
iξ′
(
x+

∫ t′

t
v(r) dr

)
− 1

2
(ξ′)2

∫ t′

t
σ2(r) dr −

(x−a−
∫ t
s v(r)dr)2

2
∫ t
s σ

2(r)dr

)
dx

= exp

(
i(ξ+ξ′)

(
a+

∫ t

s
v(r) dr

)
− 1

2
(ξ+ξ′)

∫ t′

t
σ2(r) dr + iξ′

∫ t′

t
v(r) dr − 1

2
(ξ′)2

∫ t′

t
σ2(r) dr

)
.

On the other hand, the definition of ϕ(s, a) implies that

E
(
eiξϕt(s,a) eiξ

′ϕt′ (s,a)
)

= E
(
ei(ξ+ξ

′)ϕt(s,a) eiξ
′(ϕt′ (s,a)−ϕt(s,a))

)
= exp

(
i(ξ+ξ′)

(
a+

∫ t

s
v(r) dr

)
− 1

2
(ξ+ξ′)

∫ t′

t
σ2(r) dr + iξ′

∫ t′

t
v(r) dr − 1

2
(ξ′)2

∫ t′

t
σ2(r) dr

)
,

which demonstrates that two-dimensional distributions of ϕ̂ and ϕ(s, a) agree. The above argument

generalizes to any finite dimensional distributions by induction.

Considering the standard Markov family M̂, for any s ∈ R+ and ` ∈ R, we define

τ̂+
` (s) := inf

{
t ∈ [s,∞] : ϕ̂t ≥ `

}
and τ̂−` (s) := inf

{
t ∈ [s,∞] : ϕ̂t ≤ `

}
, (3.4)

which are both F̂s-stopping times in light of the continuity of ϕ̂ and the right-continuity of the

filtration F̂s. In what follows, when no confusion arises, we will omit the variable s in τ̂±` (s). The

following proposition is an immediate consequence of (2.2), (3.3), and (3.4), so its proof is skipped.

Proposition 3.1. For any f ∈ L∞(R+), (s, a) ∈ Z , and ` ∈ R, we have

Ês,a
(
f
(
τ̂±`
))

= E
(
f
(
τ±` (s, a)

))
.

Next, we will transform the time-inhomogeneous Markov family M̂ into a time-homogeneous

Markov family

M̃ :=
{(

Ω̃, F̃ , F̃, (Zt)t∈R+
, (θr)r∈R+ , P̃s,a

)
, (s, a) ∈ Z

}
following the setup in [6, Section 3]. The construction of M̃ proceeds as follows.
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• We let Ω̃ := R+× Ω̂ to be the new sample space, with elements ω̃ = (s, ω), where s ∈ R+ and

ω ∈ Ω. On Ω̃ we consider the σ-field

F̃ :=
{
Ã ⊂ Ω̃ : Ãs ∈ F̂ s

∞ for any s ∈ R+

}
,

where Ãs := {ω ∈ Ω : (s, ω) ∈ Ã} and F̂ s
∞ := σ(

⋃
t≥s F̂ s

t ).

• We let Z = Z ∪{(∞,∞)} be the new state space, with elements z = (s, a). On Z = R+×R
we consider the σ-field

B̃(Z ) :=
{
B̃ ⊂ Z : B̃s ∈ B(R) for any s ∈ R+

}
,

where B̃s := {a ∈ R : (s, a) ∈ B̃}. Let B̃(Z ) := σ(B̃(Z ) ∪ {(∞,∞)}).

• We consider a family of probability measures {P̃(s,a), (s, a) ∈ Z }, where, for (s, a) ∈ Z ,

P̃s,a
(
Ã
)

:= P̂s,a
(
Ãs
)
, Ã ∈ F̃ . (3.5)

Frequently, for convenience, we will write P̃z
(
Ã
)

in place of P̃(s,a)

(
Ã
)

where z = (s, a).

• We consider the process Z := (Zt)t∈R+
on (Ω̃, F̃ ), where, for t ∈ R+,

Zt(ω̃) :=
(
s+ t, ϕ̂s+t(ω)

)
, ω̃ = (s, ω) ∈ Ω̃. (3.6)

Hereafter, we denote the two components of Z by Z1 and Z2, respectively.

• On (Ω̃, F̃ ), we define F̃ := (F̃t)t∈R+
, where F̃t := G̃t+ (with the convention G̃∞+ = G̃∞), and

(G̃t)t∈R+
is the completion of the natural filtration generated by Z with respect to the set of

probability measures {P̃z, z ∈ Z } (cf. [10, Chapter I, Page 43]).

• Finally, for any r ∈ R+, we consider the shift operator θr : Ω̃→ Ω̃ defined by

θr ω̃ = (u+ r, ω·+r), ω̃ = (u, ω) ∈ Ω̃.

It follows that Zt ◦ θr = Zt+r, for any t, r ∈ R+.

We define a transition function P̃ on Z × R+ × B̃(Z ) by

P̃
(
z, t, B̃

)
:= P̃z

(
Zt ∈ B̃

)
, z = (s, a) ∈ Z , t ∈ R+, B̃ ∈ B̃(Z ).

In view of (3.2) and (3.5) we have

P̃
(
z, t, B̃

)
= P̂s,a

(
ϕ̂t+s ∈ B̃s+t

)
= P̂

(
s, a, s+ t, B̃s+t

)
. (3.7)

Recall that the transition function P̂ , defined in (3.1), is a Feller transition function. This, together

with [6, Theorem 3.2], implies that P̃ is also a Feller transition function. In light of the continuity

of the sample paths of Z, and invoking [10, Section I.4, Theorem 7], we conclude that M̃ is a

time-homogeneous strong Markov family.
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For ` ∈ R, we define

τ̃+
` := inf

{
t ∈ R+ : Z2

t ≥ `
}

and τ̃−` := inf
{
t ∈ R+ : Z2

t ≤ `
}
.

Both τ̃+
` and τ̃−` are F̃-stopping times since Z2 has continuous sample paths and since F̃ is right-

continuous. By Proposition 3.1, (3.5), and (3.6), for any f ∈ L∞(R+), (s, a) ∈ Z , and ` ∈ R,

Ẽs,a
(
f
(
Z1
τ̃±`

))
= E

(
f
(
τ±` (s, a)

))
, (3.8)

which, together with (2.3), implies that

Ẽs,a
(
f
(
Z1
τ̃±`

))
= Ẽs,0

(
f
(
Z1
τ̃±`−a

))
. (3.9)

We conclude this section by presenting a couple of lemmas which will be needed in the sequel. The

first one provides an important identity related to the strong Markov property of Z. It is a simple

adaption of [4, Lemma 4.2], and the proof is therefore omitted here.

Lemma 3.2. Let τ̃ is an F̃-stopping time and let f ∈ L∞(R+). Then, for any (s, a) ∈ Z and

` ∈ R, we have

1{τ̃≤τ̃±` }
Ẽs,a

(
f
(
Z1
τ̃±`

)∣∣∣F̃τ̃

)
= 1{τ̃≤τ̃±` }

ẼZ1
τ̃
,Z2
τ̃

(
f
(
Z1
τ̃±`

))
,

where we clarify that ẼZ1
τ̃
,Z2
τ̃
( · ) reads Ẽt,b( · )|(t,b)=(Z1

τ̃
,Z2
τ̃

).

The next lemma, the proof of which is deferred to Appendix A.4, provides the regularity of

Ẽs,0(f(τ̃±` )) with respect to different variables.

Lemma 3.3. Under Assumption 2.2, for any f ∈ C0(R+), we have

(i) ` 7→ Ẽs,0(f(Z1
τ̃±`

)) is uniformly continuous on R+, uniformly in s ∈ R+;

(ii) for each ` ∈ R+, s 7→ Ẽs,0(f(Z1
τ̃±`

)) belongs to C0(R+).

3.2 The Feller Semigroup Property and Strong Generators of (P±` )`∈R+

In this section, we will investigate the Feller semigroup property (recall Definition 2.8) of (P±` )`∈R+

defined by (2.5). Moreover, we will characterize the strong generators of (P±` )`∈R+ on Cac
e,cdl(R+),

which is a dense subset of their domains.

In view of (2.5) and (3.8) we can rewrite (P±` )`∈R+ in terms of the time-homogeneous Markov

family M̃ as follows: for any f ∈ L∞(R+),(
P±` f

)
(s) = Ẽs,0

(
f
(
Z1
τ̃±`

))
, s ∈ R+. (3.10)

This representation will be conveniently used later, starting with the following proposition.

Proposition 3.4. Under Assumption 2.2, (P±` )`∈R+ is a Feller semigroup.
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Proof. We will only verify the Feller semigroup property for (P+
` )`∈R+ , as the “−” case can be

proved in an analogous way.

We first verify the semigroup property of (P+
` )`∈R+ . To this end, we fix any f ∈ L∞(R+) and

s ∈ R+. By (2.2) and (2.5), we have (P+
0 f)(s) = E(f(τ+

0 (s))) = f(s). Next, for any ` ∈ R+ and

h > 0, by (3.10) and (A.15), we obtain that

(
P+
`+hf

)
(s) = Ẽs,0

(
f
(
Z1
τ̃+`+h

))
= Ẽs,0

(
1{τ̃+` <∞}

ẼZ1

τ̃+
`

,0

(
f
(
Z1
τ̃+h

)))
= Ẽs,0

(
1{τ̃+` <∞}

P+
h f
(
Z1
τ̃+`

))
= Ẽs,0

(
P+
h f
(
Z1
τ̃+`

))
=
(
P+
` P

+
h f
)
(s),

where we use our convention that g(∞) = 0 for any g ∈ L∞(R+). Hence, (P+
` )`∈R+ is a semigroup

on L∞(R+). The positivity and contraction properties of P+
` on L∞(R+), for any ` ∈ R+, follow

immediately from its definition (2.5).

Finally, the Feller property of (P+
` )`∈R+ follows immediately from Lemma 3.3 (ii) and from

(3.10), while the strong continuity on C0(R+) is a direct consequence of Lemma 3.3 (i). The proof

of the proposition is now complete.

Let (Γ+,D(Γ+)) (respectively, (Γ−,D(Γ−))) be the strong generator of (P+
` )`∈R+ (respectively,

(P−` )`∈R+).11 Since (P±` )`∈R+ are Feller semigroups it holds that D(Γ±) ⊂ C0(R+).

The next proposition provides an integral representation for Γ± on Cac
e,cdl(R+).

Proposition 3.5. Under Assumptions 2.2 and 2.5, we have Cac
e,cdl(R+) ⊂ D(Γ±). Moreover, for

any f ∈ Cac
e,cdl(R+),

(
Γ±f

)
(s) =

∫ ∞
0

gf (t)γ±(s, t) dt, s ∈ R+, (3.11)

where the integral on the right-hand side is finite.

Proof. We will only present the proof for the “+” case, as the “−” case can be proved in an

analogous way. For any f ∈ Cac
e,cdl(R+), using arguments similar to those in the proof of Lemma

2.6, we deduce that the integral on the right-hand side of (3.11) is finite for every s ∈ R+, and

belongs to Ce(R+).

In view of [7, Theorem 1.33] and Proposition 3.4, in order to prove Cac
e,cdl(R+) ⊂ D(Γ+) and

(3.11), we only need to show that, for any f ∈ Cac
e,cdl(R+) and s ∈ R+,

lim
`→0+

1

`

((
P+
` f
)
(s)− f(s)

)
=

∫ ∞
0

gf (t)γ+(s, t) dt, (3.12)

Towards this end, for any ` ∈ (0, 1), an application of integration by parts yields

1

`

((
P+
` f
)
(s)− f(s)

)
=

1

`

(
E
(
f
(
τ+
` (s)

))
− f(s)

)
=

1

`

(
−
∫ ∞
s

gf (t)P
(
τ+
` (s) ≤ t) dt+

∫ ∞
s

gf (t) dt

)
=

∫ ∞
s

gf (t)
1

`
P
(
τ+
` (s) > t

)
dt.

11Although the strong and weak generators are the same for Feller semigroups, cf. [17, Theorem 2.1.3] , we use the

convention of referring to a generator as the strong generator.
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In light of Lemma A.1 and (A.7), there exists b ∈ (0, `), such that

1

`
P
(
τ+
` (s) > t

)
≤ 1

`

(
Φ

(
`+ ‖v‖∞(t− s)

σ
√
t− s

)
− e−2‖v‖∞`/σ2

Φ

(
− `− ‖v‖∞(t− s)

σ
√
t− s

))
=

2 e−(b+‖v‖∞(t−s))2/(2σ2(t−s))

σ
√

2π(t− s)
+

2‖v‖∞
σ2

e−2‖v‖∞b/σ2
Φ

(
− `− ‖v‖∞(t− s)

σ
√
t− s

)
≤ 2

σ
√

2π(t− s)
+

2‖v‖∞
σ2

.

Therefore, (3.12) follows immediately from Proposition 2.4 (ii), the exponential decay of gf , and

the dominated convergence, which completes the proof of the proposition.

3.3 Additional Property of Γ±

In this section, we will establish an operator equation for Γ±, which is crucial for the proof of

our main result. Let D((Γ+)2) (respectively, D((Γ−)2)) be the largest possible domain on which

Γ+ ◦ Γ+ (respectively, Γ− ◦ Γ−) is well-defined, namely,

D
(
(Γ+)2

)
:=
{
f ∈ D(Γ+) : Γ+f ∈ D(Γ+)

}
and D

(
(Γ−)2

)
:=
{
f ∈ D(Γ−) : Γ−f ∈ D(Γ−)

}
.

It is well known that both D((Γ+)2) and D((Γ−)2) are dense in C0(R+) (cf. [17, Chpater I, Theorem

2.7]).

Proposition 3.6. Under Assumption 2.2, for any f ∈ D((Γ±)2), f is right-differentiable on R+

and left-differentiable on (0,∞). Moreover, we have

f ′+(s)∓ v(s)
(
Γ±f

)
(s) +

1

2
σ2(s)

(
(Γ±)2f

)
(s) = 0, s ∈ R+,

f ′−(s)∓ v(s−)
(
Γ±f

)
(s) +

1

2
σ2(s−)

(
(Γ±)2f

)
(s) = 0, s ∈ (0,∞).

In particular, f is differentiable on D(v, σ) := {s ∈ R+ : v and σ are continuous at s}, and

f ′(s)∓ v(s)
(
Γ±f

)
(s) +

1

2
σ2(s)

(
(Γ±)2f

)
(s) = 0, s ∈ D(v, σ). (3.13)

Proof. We will only provide the proof for the “+” case, as the “−” case can be proved in an

analogous way. We fix f ∈ D((Γ+)2) for the rest of the proof.

We begin by observing that in order to prove the proposition it suffices to show that for any

` ∈ (0,∞)

lim
δ→0+

1

δ

((
P+
` f
)
(s+δ)−

(
P+
` f
)
(s)
)

=v(s)
(
P+
` Γ+f

)
(s)− 1

2
σ2(s)

(
P+
` (Γ+)2f

)
(s), s ∈ R+. (3.14)

To see this, we first note that for f ∈ D((Γ+)2) we have Γ+f ∈ D(Γ+) ⊂ C0(R+) and (Γ+)2f ∈
C0(R+), and so, by the Feller property of P+, we have P+

` Γ+f, P+
` (Γ+)2f ∈ C0(R+). This,

together with Assumption 2.2, implies that the function on the right-hand side of (3.14) is càdlàg

and bounded on R+. Therefore, by Lemma A.3, we obtain that(
P+
` f
)
(s)−

(
P+
` f
)
(0) =

∫ s

0

(
v(r)

(
P+
` Γ+f

)
(r)− 1

2
σ2(r)

(
P+
` (Γ+)2f

)
(r)

)
dr, s ∈ R+.(3.15)
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By letting `→ 0+ in (3.15) and using the strong continuity of (P+
` )`∈R+ , we deduce that

f(s)− f(0) =

∫ s

0

(
v(r)

(
Γ+f

)
(r)− 1

2
σ2(r)

(
(Γ+)2f

)
(r)

)
dr, s ∈ R+.

The statement of proposition follows immediately from the above identity, Assumption 2.2, and a

routine proof of elementary calculus.

It remains to prove (3.14). We will fix ` ∈ (0,∞) and s ∈ R+ for the rest of the proof. To begin

with, for any δ > 0, by Lemma 3.2 and (3.10), we have

1

δ

((
P+
` f
)
(s+ δ)−

(
P+
` f
)
(s)
)

=
1

δ

(
Ẽs+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
f
(
Z1
τ̃+`

)))
=

1

δ

(
Ẽs+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
1{τ̃+` ≥δ}

f
(
Z1
τ̃+`

))
− Ẽs,0

(
1{τ̃+` <δ}

f
(
Z1
τ̃+`

)))
=

1

δ

(
Ẽs+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
1{τ̃+` ≥δ}

ẼZ1
δ ,Z

2
δ

(
f
(
Z1
τ̃+`

)))
− Ẽs,0

(
1{τ̃+` <δ}

f
(
Z1
τ̃+`

)))
=

1

δ

(
Ẽs+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))
+

1

δ
Ẽs,0

(
1{τ̃+` <δ}

(
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))
− f

(
Z1
τ̃+`

)))
. (3.16)

For the second term above, it follows from (3.8), Lemma A.1 and (A.7) that, as δ → 0+,

1

δ
Ẽs,0

(
1{τ̃+` <δ}

∣∣∣Ẽs+δ,Z2
δ

(
f
(
Z1
τ̃+`

))
−f
(
Z1
τ̃+`

)∣∣∣) ≤ 2‖f‖∞
δ

P̃s,0
(
τ̃+
` ≤ δ

)
=

2‖f‖∞
δ

P
(
τ+
` (s) ≤ δ + s

)
≤ 2‖f‖∞

δ

(
1− Φ

(
`− ‖v‖∞σ−2σ2δ

σ
√
δ

)
+ e2‖v‖∞`/σ2

Φ

(
− `+ ‖v‖∞σ−2σ2δ

σ
√
δ

))
→ 0. (3.17)

In order to compute the limit of the first term in (3.16), as δ → 0+, ideally we wish to apply

Itô’s formula directly for the function

ψ(a) := Ẽs+δ,a
(
f
(
Z1
τ̃+`

))
= Ẽs+δ,0

(
f
(
Z1
τ̃+`−a

))
=

{(
P+
`−af

)
(s+ δ), a ≤ `,

f(s+ δ), a > `,

where we have used (3.9) in the second equality, and (3.10) in the second equality. However, ψ

may not be differentiable at a = `, so some alternative approach has to be sought. To this end, we

define an auxiliary function h : Z → R (recall Z = R+ × R) as

h(t, r) :=

{(
P+
r Γ+f

)
(t), (t, r) ∈ R2

+,

2
(
Γ+f

)
(t)−

(
P+
−rΓ

+f
)
(t), (t, r) ∈ R+ × (−∞, 0).

(3.18)

Since f ∈ D((Γ+)2), Γ+f ∈ D(Γ+) ⊂ C0(R+), which, together with Proposition 3.4, implies that

h is continuous on Z . The contraction property of P+
` , for any ` ∈ R+, ensures that

‖h‖∞ ≤ 3
∥∥Γ+f

∥∥
∞. (3.19)

Moreover, by [9, Chapter 1, Proposotion 1.5 (b)],

∂

∂r
h(t, r) =

(
P+
|r|(Γ

+)2f
)
(t), (t, r) ∈ Z . (3.20)
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The choice of f ∈ D((Γ+)2) (so that (Γ+)2f ∈ C0(R+)) together with Proposition 3.4 again implies

that ∂h/∂r is continuous on Z . Next, we define H : Z → R as

H(t, r) := f(t) +

∫ r

0
h(t, y) dy, (t, r) ∈ Z . (3.21)

It follows immediately from (3.19) that∣∣H(t, r)
∣∣ ≤ ‖f‖∞ + 3

∥∥Γ+f
∥∥
∞|r|, (t, r) ∈ Z . (3.22)

Note that for any t ∈ R+, H(t, ·) ∈ C2(R), and by (3.10) and (3.18), as well as by [9, Chapter 1,

Proposition 1.5 (c)],

H(t, r) =
(
P+
r f
)
(t) = Ẽt,0

(
f
(
Z1
τ̃+r

))
, (t, r) ∈ R2

+.

Together with (3.9), we obtain that

Ẽs+δ,Z2
δ

(
f
(
Z1
τ̃+`

))
= 1{Z2

δ≤`}
Ẽt,b
(
f
(
Z1
τ̃+`

))∣∣∣
(t,b)=(s+δ,Z2

δ )
+ 1{Z2

δ>`}
Ẽs+δ,Z2

δ

(
g
(
Z1
τ̃+`

))
= 1{Z2

δ≤`}
Ẽt,0

(
f
(
Z1
τ̃+`−b

))∣∣∣
(t,b)=(s+δ,Z2

δ )
+ 1{Z2

δ>`}
Ẽs+δ,Z2

δ

(
g
(
Z1
τ̃+`

))
= 1{Z2

δ≤`}

(
P+
`−Z2

δ
f
)

(s+ δ) + 1{Z2
δ>`}

Ẽs+δ,Z2
δ

(
f
(
Z1
τ̃+`

))
= 1{Z2

δ≤`}
H
(
s+ δ, `− Z2

δ

)
+ 1{Z2

δ>`}
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))
.

Hence, the first term in (3.16) can be further decomposed as

1

δ

(
Ẽs+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))
=

1

δ

(
H(s+ δ, `)− Ẽs,0

(
1{Z2

δ≤`}
H
(
s+ δ, `− Z2

δ

)
+ 1{Z2

δ>`}
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))
=

1

δ
Ẽs,0

(
H(s+ δ, `)−H

(
s+ δ, `− Z2

δ

))
+

1

δ
Ẽs,0

(
1{Z2

δ>`}

(
H
(
s+ δ, `− Z2

δ

)
− Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))
(3.23)

For the first term in (3.23), by (3.1) and (3.7), we have

Ẽs,0
(
H(s+ δ, `)−H

(
s+ δ, `− Z2

δ

))
= Ês,0

(
H(s+ δ, `)−H

(
s+ δ, `− ϕ̂s+δ

))
= E

(
H(s+ δ, `)−H

(
s+ δ, `− ϕs+δ(s)

))
.

Recalling H(t, ·) ∈ C2(R) for any t ∈ R+, by (2.1), (3.20), (3.21), and Itô’s formula, we deduce that

1

δ
Ẽs,0

(
H(s+ δ, `)−H

(
s+ δ, `− Z2

δ

))
=

1

δ
E
(∫ s+δ

s
h
(
s+ δ, `− ϕt(s)

)
v(t) dt− 1

2

∫ s+δ

s

∂

∂r
h
(
s+ δ, `− ϕt(s)

)
σ2(t) dt

)
= E

(
1

δ

∫ s+δ

s
h
(
s+ δ, `− ϕt(s)

)
v(t) dt− 1

2δ

∫ s+δ

s

(
P+
|`−ϕt(s)|(Γ

+)2f
)

(s+ δ)σ2(t) dt

)
.
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Note that for P-a.e. ω ∈ Ω, ϕ·(s)(ω) is continuous on [s,∞), and so there exists δ0 = δ0(ω) ∈ (0, 1)

such that |ϕt(s)(ω)| ≤ `/2 for all t ∈ [s, s+δ0]. Using the (joint) continuity of h on Z (in particular,

the uniform continuity of h on [s, s + 1] × [`/2, 3`/2], the continuity of sample paths of ϕ(s), and

the right-continuity of v, we obtain that, as δ → 0+,

∣∣∣∣1δ
∫ s+δ

s
h
(
s+ δ, `− ϕt(s)(ω)

)
v(t) dt− h(s, `)v(s)

∣∣∣∣
≤
∣∣∣∣1δ
∫ s+δ

s
h
(
s, `−ϕt(s)(ω)

)
v(t)dt−h(s, `)v(s)

∣∣∣∣+ sup
(t,r),(t′,r′)∈[s,s+1]×[`/2,3`/2]

|t−t′|≤δ, |r−r′|≤δ

∣∣h(t, r)−h(t′, r′)
∣∣‖v‖∞→0.

Similarly, noting that (r, t) 7→ (P+
r (Γ+)2f)(t) is jointly continuous on R2

+ (since (P+
` )`∈R+ is strongly

continuous and f ∈ D((Γ+)2)), we also have, for P-a.e. ω ∈ Ω,

lim
δ→0+

1

2δ

∫ s+δ

s

(
P+
|`−ϕt(s)(ω)|(Γ

+)2f
)

(s+ δ)σ2(t) dt =
1

2

(
P+
` (Γ+)2f

)
(s)σ2(s).

Therefore, by (3.19) and the contraction property of P+
` , for any ` ∈ R+, the dominated convergence

theorem implies that

lim
δ→0+

1

δ
Ẽs,0

(
H(s+δ, `)−H

(
s+δ, `−Z2

δ

))
= v(s)h(s, `)− 1

2
σ2(s)

(
P+
` (Γ+)2f

)
(s)

= v(s)
(
P+
` Γ+f

)
(s)− 1

2
σ2(s)

(
P+
` (Γ+)2f

)
(s), (3.24)

where the second equality follows from (3.18).

As for the second term in (3.23), by (3.1), (3.7), and (3.22), we first have∣∣∣∣Ẽs,0(1{Z2
δ>`}

(
H
(
s+ δ, `− Z2

δ

)
− Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))∣∣∣∣
≤ Ẽs,0

(
1{Z2

δ>`}

(
2‖f‖∞+ 3

∥∥Γ+f
∥∥
∞
∣∣`−Z2

δ

∣∣)) = Ês,0
(
1{ϕ̂s+δ>`}

(
2‖f‖∞+ 3

∥∥Γ+f
∥∥
∞
∣∣`−ϕ̂s+δ∣∣))

= 2‖f‖∞ P
(
ϕs+δ(s) > `

)
+ 3
∥∥Γ+f

∥∥
∞E
(
1{ϕs+δ(s)>`}

∣∣`− ϕs+δ(s)∣∣).
Noting that, under P, ϕs+δ(s) has a univariate normal distribution N(

∫ s+δ
s v(r)dr,

∫ s+δ
s σ2(r)dr),

we deduce that

P
(
ϕs+δ(s) > `

)
≤ 1− Φ

(
`− ‖v‖∞δ
σ
√
δ

)
,

where Φ denotes the standard univariate normal distribution function, and that

E
(
1{ϕs+δ(s)>`}

∣∣`− ϕs+δ(s)∣∣) ≤ ∫ ∞
`

1√
2πδ σ

exp

(
− 1

2σ2δ

(
z −

∫ s+δ

s
v(r)dr

)2
)

(z − `)dz.
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Therefore, for any δ ∈ (0, `/‖v‖∞), we obtain that

1

δ

∣∣∣∣Ẽs,0(1{Z2
δ>`}

(
H
(
s+ δ, `− Z2

δ

)
− Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))∣∣∣∣
≤ 2‖f‖∞

δ

(
1− Φ

(
`− ‖v‖∞δ
σ
√
δ

))
+

3‖Γ+f‖∞
δ

∫ ∞
`

1√
2πδ σ

exp

(
−
(
z − ‖v‖∞δ

)2
2σ2δ

)
(z − `)dz

≤ 2‖f‖∞
δ

(
1−Φ

(
`−‖v‖∞δ
σ
√
δ

))
+

3σ‖Γ+f‖∞
σδ

∫ ∞
`

1√
2πδ σ

exp

(
−
(
z−‖v‖∞δ

)2
2σ2δ

)(
‖v‖∞δ−`

)
dz

+
3‖Γ+f‖∞

δ

∫ ∞
`

1√
2πδ σ

exp

(
−
(
z − ‖v‖∞δ

)2
2σ2δ

)(
z − ‖v‖∞δ

)
dz

≤
(

2‖f‖∞
δ

+
3σ‖Γ+f‖∞

σδ

)(
1−Φ

(
`−‖v‖∞δ
σ
√
δ

))
+

3‖Γ+f‖∞σ2

√
2πδσ

exp

(
−
(
`−‖v‖∞δ

)2
2σ2δ

)
→ 0, (3.25)

as δ → 0+.

By combining (3.23), (3.24), and (3.25), we obtain that

lim
δ→0+

1

δ

(̃
Es+δ,0

(
f
(
Z1
τ̃+`

))
− Ẽs,0

(
Ẽs+δ,Z2

δ

(
f
(
Z1
τ̃+`

))))
= v(s)

(
P+
` Γ+f

)
(s)− 1

2
σ2(s)

(
P+
` (Γ+)2f

)
(s),

which, together with (3.17), implies (3.14). The proof of the proposition is complete.

Remark 3.7. Proposition 3.6 can be regarded as an analogue of the so-called “noisy” Wiener-Hopf

(NWH) factorization that was studied in e.g. [12], [14], and [18]. In order to describe the NWH

consider the following Markov-modulated process on (Ω,F ,P)

ψt :=

∫ t

0
v
(
Ys
)
ds+

∫ t

0
σ
(
Ys
)
dWs, t ∈ R+, (3.26)

where Y := (Yt)t∈R+ is a continuous-time time-homogeneous Markov chain, independent of W ,

with finite state space E and (possibly submarkovian) generator matrix Λ, and v : E → R and

σ : E→ (0,∞) are deterministic functions. Define the passage times

ζ+
` := inf

{
t ∈ R+ : ψt > `

}
and ζ−` := inf

{
t ∈ R+ : ψt < −`

}
, ` ∈ R+. (3.27)

It was shown in [12], [14], and [18], respectively under different technical assumptions, that there

exists a unique pair of |E| × |E| generator matrices (Q+,Q−) such that

Λ∓ VQ± +
1

2
Σ2
(
Q±
)2

= 0, (3.28)

where V := diag{v(i), i ∈ E} and Σ := diag{σ(i), i ∈ E}. Moreover, Q± admits the following

probabilistic interpretation

e`Q
±

(i, j) = P
(
Yζ±`

= j
∣∣∣Y0 = i

)
, i, j ∈ E, ` ∈ R+.

That is, Q± is the generator matrix of the time-changed Markov chain (Yζ±`
)`∈R+ .

Proposition 3.6 generalizes the above result in the following manner. We first replace the time-

homogenous finite-state Markov chain in (3.26) with the time-homogeneous deterministic Markov
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process Yt ≡ s+t, t ∈ R+, for some s ∈ R+. Clearly, the generator of Y is the first-order differential

operator and its state space is R+. We still define the passage times ζ±` as in (3.27). Then for

each s ∈ R+, the time-changed process (Yζ±`
)`∈R+ is given by Yζ±`

= s + ζ±` , ` ∈ R+, which has

the same law as τ±` (s) (given as in (2.2)) under P. Therefore, the equation (3.13) is analogous to

(3.28) with Λ replaced by the first-order differential operator, and Q± replaced by the generator of

the time-changed process (Yζ±`
)`∈R+ , which coincides with the generator Γ± of (τ±` )`∈R+ .

4 Proof of Main Result

In this section, we will present the proof of our main result on the Wiener-Hopf factorization for

the time-inhomogeneous diffusion process ϕ. Towards this end we first provide, in Section 4.1, the

proof of Proposition 2.9. The proof of Theorem 2.11 is then presented in Section 4.2, followed by

the proof of Corollary 2.14 that is given in Section 4.3.

4.1 Proof of Proposition 2.9

We begin with the proof of Proposition 2.9 (i). Our proof is based on the version of Hille-Yosida

theorem as stated in [7, Theorem 1.30].

Proof of Proposition 2.9 (i). The proof is divided into the following two steps.

Step 1. In this step we will establish the positive maximum principle for Γ. Given our setup,

Γ is said to satisfy the positive maximum principle if for any f ∈ Cac
e,cdl(R+) and s0 ∈ R+ with

f(s0) = sups∈R+
f(s) ≥ 0, we have (Γf)(s0) ≤ 0.

Throughout this step, we fix any f ∈ Cac
e,cdl(R+) and s0 ∈ R+ such that f(s0) = sups∈R+

f(s).

Since gf (recalling (2.4)) vanishes at infinity with exponential rate, so does f . Hence, it is necessary

to have f(s0) ≥ 0. The proof is further divided into the following three steps.

Step 1.1. Assume first that there exist J ∈ N and 0 ≤ s0 < s1 < · · · < sJ < ∞ such that

supp(f) ⊂ [0, sJ ], that gf is nonpositive on [sj−1, sj) when j is odd, and that gf is nonnegative on

[sj−1, sj) when j is even (if J ≥ 2). We will show that, for any j = 1, . . . , J ,∫ sj

s0

gf (r)γ(s0, r) dr ≤ 0. (4.1)

In particular, we have (Γf)(s0) =
∫ sJ
s0
gf (r)γ(s0, r)dr ≤ 0.

To begin with, when j = 1, since γ is nonnegative and gf is nonpositive on [s0, s1), clearly we

have
∫ s1
s0
gf (r)γ(s0, r) dr ≤ 0. Moreover, when J ≥ 2 and for j = 2, since γ(s0, ·) is nonnegative

and non-increasing on (s0,∞), gf is nonpositive (respectively, nonnegative) on [s0, s1) (respectively,

[s1, s2)), and since s0 is a maximum point of f , we deduce that∫ s2

s0

gf (r)γ(s0, r) dr =

∫ s1

s0

gf (r)γ(s0, r) dr +

∫ s2

s1

gf (r)γ(s0, r) dr

≤ γ(s0, s1)

∫ s2

s0

gf (r) dr = γ(s0, s1)
(
f(s2)− f(s0)

)
≤ 0. (4.2)
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To proceed with the proof of (4.1) for j = 3, . . . , J when J ≥ 3, we will first prove by induction

that, for any j = 2, . . . , J ,12∫ sj

s0

gf (r)γ(s0, r) dr ≤ γ
(
s0, s2b(j−1)/2c+1

)∫ sj

0
gf (r) dr, (4.3)

The case when j = 2 has been verified in the first inequality of (4.2). Now assume that (4.3) holds

for j = 2, . . . , n for some n ∈ N with n < J . If n is odd so that gf is nonnegative on [sn, sn+1),

since γ(s0, ·) is nonnegative and non-increasing on (s0,∞), by the induction hypothesis we have∫ sn+1

s0

gf (r)γ(s0, r) dr ≤ γ(s0, sn)

∫ sn

0
gf (r) dr + γ(s0, sn)

∫ sn+1

sn

gf (r) dr = γ(s0, sn)

∫ sn+1

s0

gf (r) dr.

Similarly, if n is even so that gf is nonpositive on [sn, sn+1), we have∫ sn+1

s0

gf (r)γ(s0, r)dr ≤ γ(s0, sn−1)

∫ sn

0
gf (r)dr+γ(s0, sn+1)

∫ sn+1

sn

gf (r)dr ≤ γ(s0, sn+1)

∫ sn+1

0
gf (r)dr.

The proof of (4.3) for any j = 2, . . . , J is complete by induction.

Returning to the proof of (4.1), for any j = 3, . . . , J , since γ is nonnegative and s0 is a maximum

point of f , by (4.3) we obtain that∫ sj

s0

gf (r)γ(s0, r) dr ≤ γ
(
s0, s2b(j−1)/2c+1

)∫ sj

0
gf (r) dr = γ

(
s0, s2b(j−1)/2c+1

)(
f(sj)− f(s0)

)
≤ 0,

which completes the proof of (4.1) for any j = 1, . . . , J .

We conclude this step by noting that the arguments above do not depend on the values of f on

[0, s0] nor on the càdlàg property of gf .

Step 1.2. Next, we assume that f ∈ Cac
e,cdl(R+) has a compact support, i.e., there exists T ∈ (s0,∞)

such that supp(f) ⊂ [0, T ]. We will construct a sequence of Borel measurable functions (hn)n∈N on

[s0, T ] which satisfy the following properties:

(a) ‖hn‖∞ ≤ ‖gf‖∞, for any n ∈ N;

(b) there exists a subsequence (hnk)k∈N of (hn)n∈N which converges to gf |[s0,T ] Leb -a.e., where

Leb denotes the Lebesgue measure on (R,B(R));

(c) for each n ∈ N, Hn(s0) = supr∈[s0,T ]Hn(r), where

Hn(t) := −
∫ T

t
hn(r)dr, t ∈ [s0, T ]; (4.4)

(d) for each n ∈ N, there are Jn ∈ N and s0 < sn1 < · · · < snJn = T , such that hn is non-positive

on [snj−1, s
n
j ) when j is odd, and non-negative when j is even (if Jn ≥ 2).

Once such sequence is constructed, by applying the result of Step 1.1 to each hn, we obtain that∫ T

s0

hn(r)γ(s0, r) dr ≤ 0, n ∈ N.

12Here bxc denotes the greatest integer less than or equal to x.
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Using properties (a) and (b) above as well as the boundedness of gf , we deduce from dominated

convergence that

(
Γf
)
(s0) =

∫ T

s0

gf (r)γ(s0, r) dr = lim
k→∞

∫ T

s0

hnk(r)γ(s0, r) dr ≤ 0.

We begin the construction with introducing some notations. For any n ∈ N, we set An := {r ∈
[s0, T ] : |gf (r)| > 1/n}, which is clearly a nondecreasing sequence of Borel sets, and we denote its

limit by A := limn→∞An = ∪n∈NAn = {r ∈ [s0, T ] : |gf (r)| > 0}. We also define

gn(t) := gf (t)1An(t), Gn(t) = −
∫ T

t
gn(r) dr, t ∈ [s0, T ], n ∈ N. (4.5)

We first claim that for each n ∈ N, there exist Kn ∈ N and s0 = tn0 < tn1 < · · · < tnKn = T such that

gn is either nonpositive or nonnegative on each subinterval [tnk−1, t
n
k). The proof of this claim is

done by contradiction. Assume that the claim is false, namely, that there exists some N ∈ N, and

for any finite partition of [s0, T ), we can find two points x and y in at least one of the subintervals

such that gN (x) > 0 and gN (y) < 0. From the definition of AN , and since gN is supported on

AN on which it coincides with gf , we have gf (x) > 1/N and gf (y) < −1/N . Now consider the

sequence of uniform partitions of [s0, T ] with mesh (T − s0)/2m, m ∈ N. The previous discussion

shows that, for any m ∈ N, there exists a subinterval of the uniform partition, denoted by [am, bm),

and xm, ym, zm ∈ [am, bm) with xm < ym < zm, such that

∣∣gf (xm)
∣∣ > 1

N
,
∣∣gf (ym)

∣∣ > 1

N
,
∣∣gf (zm)

∣∣ > 1

N
, gf (xm)gf (ym) < 0, gf (xm)gf (zm) > 0. (4.6)

Since both sequences of endpoints (am)m∈N and (bm)m∈N are bounded with bm−am = (T−s0)/2m →
0, as m → ∞, there exists a subsequence (mk)k∈N ⊂ N and t ∈ [s0, T ] such that amk → t and

bmk → t, as k → ∞. It follows that xmk → t, ymk → t, and zmk → t, as k → ∞. Note that for

each k ∈ N, we must have either xmk < ymk < t or t ≤ ymk < zmk . Hence, either there exists a

further subsequence (m′j)j∈N ⊂ (mk)k∈N such that both (xm′j )j∈N and (ym′j )j∈N converge to t from

below, or there exists another further subsequence (m′′j )j∈N ⊂ (mk)k∈N such that both (ym′′j )j∈N
and (zm′′j )j∈N converge to t from above, as k →∞. In view of (4.6), we have found two sequences

of real numbers both of which converge to t from above (or below), such that the values of gf
along these two sequences have different signs but with magnitudes greater than 1/N . Therefore,

in either case the corresponding two sequences of the values of gf cannot have the same limit, which

is clearly a contradiction to the càdlàg property of gf at t.

Next, we will construct a Borel set Dn ⊂ An for every n ∈ N, such that the sequence of functions

hn(t) := gf (t)1An\Dn(t) = gn(t)1An\Dn(t), t ∈ [s0, T ], n ∈ N, (4.7)

satisfies properties (c) and (d). Note that such sequence automatically satisfies property (a).

Toward this end, we fix any n ∈ N in the following discussion. By (4.5), invoking the property of

gn described right below (4.5), we see that supt∈[s0,T ]Gn(t) must be achieved at at least one of the

partition points tn0 = s0, t
n
1 , . . . , t

n
Kn−1, t

n
Kn

= T , and we denote the smallest such point by t
(n)
∗ . By

the definition of Gn in (4.5), we see that gn must be nonnegative on the subinterval with right-end



25

point tn∗ . Moreover, we further divide those subintervals [tnk−1, t
n
k), on which gn is nonnegative, into

disjoint intervals, denoted by In1 , . . . , I
n
Mn

for some Mn ∈ N, such that sup Inm−1 ≤ inf Inm and that

Leb(Inm) ≤ 1/(n‖gf‖∞). (4.8)

Then, there exists mn
∗ ∈ Z+ such that sup Jnmn∗ = tn∗ (with convention sup ∅ = s0), and we have13

∫
⋃mn∗
m=0 I

n
m

gn(r) dr ≥
∫ tn∗

s0

gn(r) dr = Gn(tn∗ )−Gn(s0) = sup
t∈[s0,T ]

Gn(t)−Gn(s0).

Also, we let mn be the smallest nonnegative integer such that∫
⋃mn
m=0 I

n
m

gn(r) dr ≥ Gn(tn∗ )−Gn(s0) = sup
t∈[s0,T ]

Gn(t)−Gn(s0), (4.9)

and define

Dn :=

mn⋃
m=0

Inm ∩An. (4.10)

Together with the definitions of An and gn, we have gn(t) > 1/n for any t ∈ Dn. Combining (4.4),

(4.5), (4.7), (4.9), and (4.10), we deduce that

Hn(s0) = −
∫ T

s0

hn(r) dr = −
∫
An\Dn

gn(r) dr = −
∫
An

gn(r) dr +

∫
Dn

gn(r) dr

= −
∫ T

s0

gn(r) dr +

∫
⋃mn
m=0 I

n
m

gn(r) dr ≥ Gn(s0) +Gn(tn∗ )−Gn(s0) = Gn(tn∗ ). (4.11)

Noting that mn ≤ mn
∗ , by letting tnD := supDn, we have tnD ≤ tn∗ . Moreover, since ∪m

n

m=0I
n
m contains

all the points in [s0, t
n
D] at which gn is positive, by (4.7) we see that hn is nonpositive on [s0, t

n
D],

and thus Hn, defined by (4.4), is non-increasing on [s0, t
n
D]. In addition, it follows from (4.7) that

hn(t) = gn(t) for all t ∈ (tnD, T ], which, together with (4.4) and (4.5), implies that Hn(t) = Gn(t)

for all t ∈ [tnD, T ]. Therefore, we obtain that

sup
t∈[s0,T ]

Hn(t) = max

{
sup

t∈[s0,tnD]
Hn(t), sup

t∈(tnD,T ]
Hn(t)

}
= max

{
Hn(s0), Gn(tn∗ )

}
= Hn(s0), (4.12)

where the last equality follows from (4.11). Hence, we have shown that (hn)n∈N defined as in (4.7)

satisfies property (c). As for property (d), recalling that as shown above, for each n ∈ N, there exist

Kn ∈ N and and s0 = tn0 < tn1 < · · · < tnKn = T such that gn is either nonpositive or nonnegative

on each subinterval [tnk−1, t
n
k). By the construction of Dn and hn, we see that the same property

holds for each hn. That is, for each n ∈ N, there exists Jn ∈ N and s0 = sn0 < sn1 < · · · < snJn = T

such that hn is either nonpositive or nonnegative on each [snj−1, s
n
j ). By merging all the consecutive

subintervals on which hn has the same sign, we can always assume that hn has alternating signs on

[snj−1, s
n
j ), j = 1, . . . , Jn. Moreover, in view of (4.4) and (4.12), hn must be nonpositive on [sn0 , s

n
1 ).

Therefore, we obtain a finite partition s0 = sn0 < sn1 < · · · < snJn = T such that hn is nonpositive

on [snj−1, s
n
j ) when j is odd and nonnegative when j is even, which is indeed property (d).

13We let In0 = ∅.
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It remains to show that the functions (hn)n∈N, defined as in (4.7) (with Dn given by (4.10)),

satisfy property (b). Toward this end, by (4.5), (4.8), (4.9), (4.10), and since gn is nonnegative on

each Inm, if mn ≥ 1, we have∫
Dn

gn(r) dr =

∫
⋃mn
m=0 I

n
m

gn(r) dr ≤
∫
⋃mn−1
i=0 Inm

gn(r) dr +
1

n
≤ sup

t∈[s0,T ]
Gn(t)−Gn(s0) +

1

n
,(4.13)

where the last inequality is due to the fact that mn is the smallest nonnegative integer such that

(4.9) holds true. When mn = 0, clearly Dn = In0 = ∅ and (4.13) holds trivially. Moreover, recalling

f ∈ Cac
e,cdl(R+) and f(s0) = sups∈R+

f(s), by (4.5) we have

sup
t∈[s0,T ]

Gn(t)−Gn(s0) = sup
t∈[s0,T ]

Gn(t)− sup
t∈[s0,T ]

f(t) + f(s0)−Gn(s0) ≤ 2 sup
t∈[s0,T ]

∣∣Gn(t)− f(t)
∣∣

≤ 2 sup
t∈[s0,T ]

∫ T

t

∣∣gn(r)− gf (r)
∣∣ dr = 2 sup

t∈[s0,T ]

∫
[t,T ]∩A

∣∣gf (r)1An(r)− gf (r)
∣∣ dr ≤ 2‖gf‖∞ Leb(A \An).

Together with (4.13), we obtain that∫
Dn

gn(r) dr ≤ 1

n
+ 2‖gf‖∞ Leb(A \An)→ 0, as n→ 0.

Finally, since gn > 1/n on Dn, we deduce that limn→∞ Leb(Dn) = 0, and together with (4.7), we

conclude that, as n→∞,

Leb
({
t ∈ [s0, T ] : gf (r) 6= hn(t)

})
= Leb

(
(A \An) ∪Dn

)
≤ Leb(A \An) + Leb(Dn)→ 0,

which clearly implies property (b).

Step 1.3. Finally, we consider any arbitrary f ∈ Cac
e,cdl(R+). For any T ∈ (s0,∞), let fT (t) :=

1[0,T ](t)(f(t)− f(T )). Clearly, fT ∈ Cac
e,cdl(R+) with

supp(fT ) ⊂ [0, T ]; fT (s0) = sup
t∈[s0,T ]

fT (t), fT (t) = −
∫ ∞
t

gf (r)1[0,T )(r) dr, t ∈ R+,

where gf1[0,T ) is càdlàg on R+. Applying the result of Step 1.2 to fT , we obtain that

(
Γf
)
(s0) =

∫ ∞
s0

gf (r)γ(s0, r) dr =

∫ T

s0

gf (r)γ(s0, r) dr +

∫ ∞
T

gf (r)γ(s0, r) dr

≤
∫ ∞
T

gf (r)γ(s0, r) dr → 0, as T →∞,

which completes the proof of the positive maximum principle for f .

Step 2. We now complete the proof of Proposition 2.9 (i). In view of Lemma 2.6, we have

Γf ∈ C0(R+) for all f ∈ Cac
e,cdl(R+), which is dense in C0(R+). Together with the positive maximum

principle for Γ verified in Step 1 above as well as Assumption 2.7, the statement of Proposition 2.9

(i) is a direct consequence of the Hille-Yosida theorem (cf. [7, Theorem 1.30]). �

Let (P`)`∈R+ be the Feller semigroup established in Proposition 2.9 (i). In view of Riesz rep-

resentation theorem (cf. [20, Theorem 6.19]), for any `, s ∈ R+, there exists a measure µ`,s on

(R+,B(R+)) such that (
P`f

)
(s) =

∫ ∞
0

f(t)µ`,s(dt), f ∈ C0(R+). (4.14)
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Since P` is a contraction operator the measure µ`,s is a sub-probability.

The proof of Proposition 2.9 (ii) requires the following technical lemma, the proof of which is

deferred to Appendix A.6.

Lemma 4.1. Under Assumptions 2.2, 2.5 and 2.7, for any ε > 0, there is a constant c =

c(ε, ‖v‖∞, σ, σ) ∈ (0,∞), such that for any T ∈ (0,∞) and ` ∈ R+,∥∥P`1[0,T ]

∥∥
∞ ≤ 2e−(c/(2T∧1))ε`.

Proof of Proposition 2.9 (ii). Let f ∈ Ce(R+), i.e., there exist K,κ ∈ (0,∞), such that |f(t)| ≤
Ke−κt for all t ∈ R+. By (4.14), Lemma 4.1 (with ε = 1), and Fubini’s theorem, there exists

c1 = c1(‖v‖∞, σ, σ) ∈ (0,∞), such that for any `, s ∈ R+,

∣∣(P`f)(s)∣∣ ≤ ∫ ∞
0
|f(t)|µ`,s(dt) ≤ K

∫ ∞
0

e−κt µ`,s(dt) = K

∫ ∞
0

(∫ ∞
t

κe−κr dr

)
µ`,s(dt)

= Kκ

∫ ∞
0
e−κr

(∫ r

0
µ`,s(dt)

)
dr ≤ Kκ

∫ ∞
0
e−κr

(∫ ∞
0
f̃r(t)µ`,s(dt)

)
dr = Kκ

∫ ∞
0
e−κr

(
P`f̃r

)
(s) dr

≤ Kκ
∫ ∞

0
e−κr

(
P`1[0,2r]

)
(s) dr ≤ 2Kκ

∫ ∞
0

e−κr−(c1/(4r∧1))` dr,

where f̃r is some function in C0(R+) with 1[0,r] ≤ f̃r ≤ 1[0,2r]. Hence, by Fubini’s theorem again,

for any L ≥ c2
1, we obtain that∥∥∥∥∫ ∞

L
P`f d`

∥∥∥∥
∞
≤
∫ ∞
L

2Kκ

(∫ ∞
0
e−κr−(c1/(4r∧1))` dr

)
d` ≤ 2Kκ

c1

∫ ∞
0

(
(4r) ∨ c1

)
e−κr−(c1/(4r∧1))L dr

≤ 2Kκ

c1

(√
Le−c1

√
L

∫ √L/4
0

e−κr dr + 4

∫ ∞
√
L/4

re−κr dr

)
≤ 2Kκ

c1

(
L

4
e−c1

√
L +

√
L

κ
e−κ
√
L/4 +

4e−κ
√
L/4

κ2

)
,

which shows the convergence of
∫∞

0 P`f d` in L∞(R+). Moreover, by Proposition 2.9 and [9,

Chapter 1, Proposition 1.5 (a)], for any L ∈ (0,∞), we have
∫ L

0 P`f d` ∈ D(Γ) and

PLf − f = Γ

∫ L

0
P`f d`.

Hence, by (4.14) and Lemma 4.1, we obtain that, for any T ∈ (0,∞),

lim
L→∞

∥∥∥∥Γ

∫ L

0
P`f d`− (−f)

∥∥∥∥
∞

= lim
L→∞

∥∥PLf∥∥∞ ≤ lim
L→∞

sup
s∈R+

∣∣∣∣ ∫ T

0
f(t)µL,s(dt)

∣∣∣∣+ sup
t∈[T,∞)

|f(t)|

≤ 2‖f‖∞ lim
L→∞

e−(c/(2T )∧1)εL + sup
t∈[T,∞)

|f(t)| = sup
t∈[T,∞)

|f(t)|.

Since T ∈ (0,∞) is arbitrary and f ∈ Ce(R+), by taking T →∞ on the right-hand side of the last

equality above, we deduce that Γ
∫ L

0 P`f d` converges to −f in L∞(R+), as L→∞. Finally, since

Γ is a closed operator, we conclude that
∫
R+
P`f d` ∈ D(Γ) and that Γ

∫
R+
P`f d` = −f , which

completes the proof of the proposition. �
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4.2 Proof of Theorem 2.11

We are now ready to present the proof of our main result Theorem 2.11. We will fix any (s, a) ∈ Z

throughout the proof, which will proceeds in the following two steps.

Step 1. In this step, we will prove (2.10) for any u ∈ C(R), h ∈ Ce(R+), and any F-stopping time

τ , under the following additional assumptions

(a) u ∈ Cc(R) with supp(u) ⊂ [−M,M ], for some M ∈ (0,∞);

(b) h ∈ Ce(R+) is of the form h = Γf , for some f ∈ Cac
e,cdl(R+);

(c) there exists T ∈ (0,∞), such that τ ≤ T P-a.s..

With the above choices of u and h, (2.9) is clearly satisfied. Also, since f ∈ Cac
e,cdl(R+) ⊂ Ce(R+),

we obtain from Lemma 2.6 that Γf ∈ Ce(R+), which, together with Proposition 2.9 (i) and [9,

Chapter 1, Proposition 1.5 (a) & (c)], implies that, for any L ∈ (0,∞),∫ L

0
P` Γf d` =

∫ L

0
P` Γf dy = Γ

∫ L

0
P`f d`.

By Proposition 2.9 (ii) and the closedness of Γ, we obtain that∫ ∞
0
P` Γf d` = lim

L→∞

∫ L

0
P` Γf d` = lim

L→∞
Γ

∫ L

0
P`f d` = Γ

∫ ∞
0
P`f d` = −f.

Hence, under the additional assumptions (a)−(c) above, (2.10) can be written as

E
(∫ τ

s
u
(
ϕt(s, a)

)(
Γf
)
(t) dt

)
= −2

∫ ∞
0

u(a+ `)
(
P+
` f
)
(s) d`− 2

∫ ∞
0

u(a− `)
(
P−` f

)
(s) d`

+ 2E
(∫ ∞

0
u
(
ϕτ (s, a)+`

)(
P+
` f
)
(τ) d`+

∫ ∞
0
u
(
ϕτ (s, a)−`

)(
P−` f

)
(τ) d`

)
. (4.15)

To proceed the proof of (4.15), we first introduce some auxiliary functions. To begin with, let

F (t, x) := 2

∫ ∞
0

u(x+ `)
(
P+
` f
)
(t) d`+ 2

∫ ∞
0

u(x− `)
(
P−` f

)
(t) d`, (t, x) ∈ Z . (4.16)

Also, for any ε > 0, we define

f+
ε (t) :=

1

ε

∫ ε

0

(
P+
` f
)
(t) d`, f−ε (t) :=

1

ε

∫ ε

0

(
P−` f

)
(t) d`, t ∈ R+, (4.17)

and

Fε(t, x) := 2

∫ ∞
0

u(x+ `)
(
P+
` f

+
ε

)
(t) d`+ 2

∫ ∞
0

u(x− `)
(
P−` f

−
ε

)
(t) d`, (t, x) ∈ Z . (4.18)

Clearly, ‖f±ε ‖∞ ≤ ‖f‖∞, and so by the contraction property of (P±` )`∈R+ (see Proposition 3.4),∥∥Fε∥∥∞ ≤ 4M‖u‖∞
∥∥P+

` f
+
ε

∥∥
∞ + 4M‖u‖∞

∥∥P−` f−ε ∥∥∞ ≤ 8M‖u‖∞‖f‖∞.
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Moreover, from the strong continuity of (P±` )`∈R+ (see Proposition 3.4), we have

∥∥f±ε − f∥∥∞ ≤ 1

ε

∫ ε

0

∥∥P±` f − f∥∥∞d`→ 0, as ε→ 0+, (4.19)

and hence∥∥Fε − F∥∥∞ ≤ 2 sup
x∈R

∫ ∞
0

∣∣u(x+ `)
∣∣∥∥P+

`

(
f+
ε − f

)∥∥
∞ d`+ 2 sup

x∈R

∫ ∞
0

∣∣u(x− `)
∣∣∥∥P−` (f−ε − f)∥∥∞ d`

≤ 4M‖u‖∞
(∥∥f+

ε − f
∥∥
∞ +

∥∥f−ε − f∥∥∞)→ 0, as ε→ 0 + . (4.20)

In addition, since f ∈ Cac
e,cdl(R+) ⊂ D(Γ±), by (4.17) and [9, Chapter 1, Proposition 1.5 (a) & (c)],

we have f±ε ∈ D(Γ±) and

Γ±f±ε =
1

ε
Γ±
∫ ε

0
P±` f d` =

1

ε

∫ ε

0
P±` Γ±f d` ∈ D(Γ±), (4.21)

i.e., f±ε ∈ D((Γ±)2). Hence, with similar reasoning as in (4.19), we obtain that, as ε→ 0+,∥∥Γ±f±ε − Γ±f
∥∥
∞ =

∥∥∥∥1

ε

∫ ε

0
P±` Γ±f d`− Γ±f

∥∥∥∥
∞
≤ 1

ε

∫ ε

0

∥∥P±` Γ±f − Γ±f
∥∥
∞d`→ 0. (4.22)

In addition to the assumptions (a)−(c) above, we first provide the proof of (4.15) when u ∈
C1
c (R). Such choice of u, together with (4.18), the boundedness of P±` f

±
ε , and dominated conver-

gence, ensures that Fε(t, ·) is differentiable on R, for every t ∈ R+, and that

∂

∂x
Fε(t, x) = 2

∫ ∞
0

u′(x+ `)
(
P+
` f

+
ε

)
(t) d`+ 2

∫ ∞
0

u′(x− `)
(
P−` f

−
ε

)
(t) d`, (t, x) ∈ Z .(4.23)

By [9, Chapter 1, Proposition 1.5 (b)] and integration by parts, and noting that u is compactly

supported, we deduce that, for any (t, x) ∈ Z ,

∂

∂x
Fε(t, x) = 2u(x)

(
f−ε (t)−f+

ε (t)
)
− 2

∫ ∞
0
u(x+`)

d

d`

(
P+
` f

+
ε

)
(t) d`+ 2

∫ ∞
0
u(x−`) d

d`

(
P−` f

−
ε

)
(t) d`

= 2u(x)
(
f−ε (t)−f+

ε (t)
)
− 2

∫ ∞
0
u(x+`)

(
P+
` Γ+f+

ε

)
(t) d`+ 2

∫ ∞
0
u(x−`)

(
P−` Γ−f−ε

)
(t) d`. (4.24)

A similar argument shows that ∂F (t, ·)/∂x is differentiable on R, for every t ∈ R+, and that

∂2

∂x2
Fε(t, x) = 2

∫ ∞
0

u(x+ `)
(
P+
` (Γ+)2f+

ε

)
(t) d`+ 2

∫ ∞
0

u(x− `)
(
P−` (Γ−)2f−ε

)
(t) d`

+ 2u(x)
((

Γ+f+
ε

)
(t) +

(
Γ−f−ε

)
(t)
)

+ 2u′(x)
(
f−ε (t)− f+

ε (t)
)
. (4.25)

The dominated convergence, together with the facts that P±` (Γ±)2f±ε ,Γ
±f±ε , f

±
ε ∈ C0(R+) (since

f±ε ∈ D((Γ±)2) as shown by (4.21)) and that u ∈ C1
c (R), ensures that ∂2F/∂x2 ∈ C(Z ).

Moreover, since f±ε ∈ D((Γ±)2) (so that Γ±f±ε ∈ D(Γ±)), we obtain from [9, Chapter 1,

Proposition 1.5 (b)] that, for any ` ∈ R+, P±` f
±
ε ∈ D(Γ±) and Γ±P±` f

±
ε = P±` Γ±f±ε ∈ D(Γ±), i.e.,

P±` f
±
ε ∈ D((Γ±)2). It follows from Proposition 3.6 that P±` f

±
ε is right-differentiable on R+ and(

P±` f
±
ε

)′
+

(t) = ±v(t)
(
P±` Γ±f±ε

)
(t)− 1

2
σ2(t)

(
P±` (Γ±)2f±ε

)
(t), t ∈ R+,
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where the right-hand side above is càdlàg and bounded in light of Assumption 2.2 and the fact

that P±` Γ±f±ε ,P±` (Γ±)2f±ε ∈ C0(R+). This, together with (4.18) and the dominated convergence

argument, implies that for any x ∈ R, Fε(·, x) is right-differentiable on R+ with

∂+

∂t
Fε(t, x) = 2

∫ ∞
0

u(x+ `)
(
P+
` f

+
ε

)′
+

(t) d`+ 2

∫ ∞
0

u(x− `)
(
P−` f

−
ε

)′
+

(t) d`

= 2

∫ ∞
0

u(x+ `)

(
v(t)

(
P+
` Γ+f+

ε

)
(t)− 1

2
σ2(t)

(
P+
` (Γ+)2f+

ε

)
(t)

)
d`

− 2

∫ ∞
0

u(x− `)
(
v(t)

(
P−` Γ−f−ε

)
(t) +

1

2
σ2(t)

(
P−` (Γ−)2f−ε

)
(t)

)
d`. (4.26)

Since P±` Γ±f±ε ,P±` (Γ±)2f±ε ∈ C0(R+) and u ∈ Cc(R), we obtain from Assumption 2.2 and the

dominated convergence argument again, that ∂+Fε(·, x)/∂t is càdlàg and bounded on R+, for any

x ∈ R. In view of Lemma A.3, this implies that ∂+Fε(·, x)/∂t is absolutely continuous on R+, for

any x ∈ R. Hence, by integration by parts, for any L ∈ (0,∞) and any continuously differentiable

test function ρ on [0, L] with ρ(0) = ρ(L) = 0, we obtain that

0 = Fε(L, x)ρ(L)− Fε(0, x)ρ(0) =

∫ L

0

∂+

∂t
Fε(t, x)ρ(t) dt+

∫ L

0
Fε(t, x)ρ′(t) dt, x ∈ R,

that is, ∂+Fε(·, x)/∂t is the generalized derivative of Fε(·, x) on [0, L] (cf. [15, Section 2.1, Definition

1]).

For any n ∈ N, let τn(s, a) := τ+
a+n(s, a)∧τ−a−n(s, a). By Itô formula with generalized derivatives

(cf. [15, Section 2.10, Theorem 1]), and using (4.24), (4.25), and (4.26), we deduce that

Fε
(
τ ∧ τn(s, a), ϕτ∧τn(s,a)(s, a)

)
− Fε(s, a)

=

∫ τ∧τn(s,a)

s

(
∂+

∂t
Fε
(
t, ϕt(s, a)

)
+ v(t)

∂

∂x
Fε
(
t, ϕt(s, a)

)
+

1

2
σ2(t)

∂2

∂x2
Fε
(
t, ϕt(s, a)

))
dt

+

∫ τ∧τn(s,a)

s

∂

∂x
Fε
(
t, ϕt(s, a)

)
σ(t) dWt

=

∫ τ∧τn(s,a)

s

(
u
(
ϕt(s, a)

)((
Γ+f+

ε

)
(t) +

(
Γ−f−ε

)
(t)
)

+ u′
(
ϕt(s, a)

)(
f−ε (t)− f+

ε (t)
))
σ2(t) dt

+

∫ τ∧τn(s,a)

s

∂

∂x
Fε
(
t, ϕt(s, a)

)
σ(t) dWt.

In view of Assumption 2.2, (4.17), and (4.23), and recalling the contraction property of P±` , ` ∈ R+,

and the fact that u ∈ C1
c (R), we deduce that ‖σFε‖∞ ≤ 8M‖u′‖∞‖f‖∞ < ∞. Hence, by taking

expectation on both sides of the above equality, we obtain that

E
(
Fε
(
τ ∧ τn(s, a), ϕτ∧τn(s,a)(s, a)

))
− Fε(s, a)

= E
(∫ τ∧τn(s,a)

s

(
u
(
ϕt(s, a)

)((
Γ+f+

ε

)
(t)+

(
Γ−f−ε

)
(t)
)
+u′

(
ϕt(s, a)

)(
f−ε (t)−f+

ε (t)
))
σ2(t) dt

)
.(4.27)

Moreover, by (2.3), Lemma A.1, and (A.7), we have

P
(
τn(s, a)≤T

)
≤ P

(
τ+
n (s)≤T

)
+P
(
τ−−n(s)≤T

)
≤ 2

(
1−P

(
sup

r∈[0,σ2(T−s)]

(
‖v‖∞r
σ2

+Wr

)
< n

))
→ 0,



31

as n→∞. Recalling that τ ≤ T P-a.s., this implies that τ ∧ τn(s, a)→ τ in probability, as n→∞.

Hence, by dominated convergence and using the boundedness of Fε, f
±
ε , Γ±f±ε , u, u′, τ , and σ2,

we can take n→∞ on both sides of (4.27) to deduce that

E
(
Fε
(
τ, ϕτ (s, a)

))
− Fε(s, a)

= E
(∫ τ

s

(
u
(
ϕt(s, a)

)((
Γ+f+

ε

)
(t) +

(
Γ−f−ε

)
(t)
)

+ u′
(
ϕt(s, a)

)(
f−ε (t)− f+

ε (t)
))
σ2(t) dt

)
.

Finally, by taking ε → 0+ on both sides of the above equality, and using (4.19), (4.20), (4.22), as

well as dominated convergence, we obtain that

E
(
F
(
τ, ϕτ (s, a)

))
− F (s, a) = E

(∫ τ

s
u
(
ϕt(s, a)

)((
Γ+f

)
(t) +

(
Γ−f

)
(t)
)
σ2(t) dt

)
,

which is indeed (4.15) in light of (4.16).

As for the validity of (4.15) for u ∈ Cc(R), we note that C1
c (R) is dense in Cc(R) with the

sup-norm. Hence, there exist (un)n∈N ⊂ C1
c (R) such that ‖un − u‖∞ → 0, as n → ∞, and (4.15)

holds true for each un. Therefore, the validity of (4.15) for u ∈ Cc(R) follows from dominated

convergence and the uniform boundedness of (‖un‖∞)n∈N.

Step 2. Next, we will prove (2.10) for any h ∈ Ce(R+) and any F-stopping time τ , while u is still

assumed to satisfy condition (a) in Step 1. The exponential decay of h and the boundedness of u

ensure that (2.9) is satisfied in this case.

To this end, we first observe from Proposition 2.9 (ii) that
∫∞

0 (P`h)d` ∈ D(Γ). By Proposition

2.9 (i), the graph of Γ is the closure of that of Γ. Hence, there exist (fn)n∈N ⊂ Cac
e,cdl(R+), so that

lim
n→∞

∥∥∥∥fn − ∫ ∞
0
P`h d`

∥∥∥∥
∞

= 0 and lim
n→∞

∥∥∥∥Γfn − Γ

∫ ∞
0
P`h d`

∥∥∥∥
∞

= 0.

It follows from (2.8) that

lim
n→∞

∥∥Γfn + h
∥∥
∞ = 0 (4.28)

By the contraction property of P±` , ` ∈ R+, we also have

lim
n→∞

sup
`∈R+

∥∥∥∥P±` fn − P±` ∫ ∞
0
Pyh dy

∥∥
∞ ≤ lim

n→∞

∥∥∥∥fn − ∫ ∞
0
Pyh dy

∥∥∥∥
∞

= 0. (4.29)

By (4.15), for any n ∈ N and T ∈ R+, with τT := τ ∧ T , we have

E
(∫ τT

s
u
(
ϕt(s, a)

)(
Γfn

)
(t)σ2(t) dt

)
= −2

∫ ∞
0

u(a+ `)
(
P+
` fn

)
(s) d`− 2

∫ ∞
0

u(a− `)
(
P−` fn

)
(s) d`

+ 2E
(∫ ∞

0
u
(
ϕτT (s, a) + `

)(
P+
` fn

)
(τT ) d`+

∫ ∞
0
u
(
ϕτT (s, a)− `

)(
P−` fn

)
(τT ) d`

)
.

Letting n→∞ in the above equality and, by (4.28), (4.29), the assumption that u ∈ C1
c (R+), and
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the dominated convergence, we obtain that

E
(∫ τT

s
u
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= − lim

n→∞
E
(∫ τT

s
u
(
ϕt(s, a)

)(
Γfn

)
(t)σ2(t) dt

)
= 2 lim

n→∞

∫ ∞
0

u(a+ `)
(
P+
` fn

)
(s) d`+ 2 lim

n→∞

∫ ∞
0

u(a− `)
(
P−` fn

)
(s) d`

− 2 lim
n→∞

E
(∫ ∞

0
u
(
ϕτT (s, a) + `

)(
P+
` fn

)
(τT ) d`+

∫ ∞
0

u
(
ϕτT (s, a)− `

)(
P−` fn

)
(τT ) d`

)
= 2

∫ ∞
0

u(a+ `)

(
P+
`

∫
R+

Pyh dy
)

(s) d`+ 2

∫ ∞
0

u(a− `)
(
P−`

∫
R+

Pyh dy
)

(s) d`

− 2E
(∫ ∞

0
u
(
ϕτT(s, a)+`

)(
P+
`

∫ ∞
0
Pyh dy

)
(τT ) d`+

∫ ∞
0
u
(
ϕτT(s, a)−`

)(
P−`
∫ ∞

0
Pyh dy

)
(τT ) d

)̀
.

Moreover, since
∫
R+
Pyh dy ∈ D(Γ), for any ` ∈ R+, we have P+

`

∫
R+
Pyh dy ∈ C0(R+) and

(P+
`

∫
R+
Pyh dy)(∞) = 0. With the help of the continuity of sample paths of ϕ(s, a), the con-

traction property of (P±` )`∈R+ , the assumption that u ∈ C1
c (R), (2.9), and dominated convergence,

we conclude by taking T →∞ in the above equality that

E
(∫ τ

s
u
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= 2

∫ ∞
0
u(a+`)

(
P+
`

∫ ∞
0
Pyh dy

)
(s) d`+ 2

∫ ∞
0
u(a−`)

(
P−`
∫ ∞

0
Pyh dy

)
(s) d`

−2E
(
1{τ<∞}

(∫ ∞
0
u
(
ϕτ(s, a)+`

)(
P+
`

∫ ∞
0
Pyh dy

)
(τ)d`+

∫ ∞
0
u
(
ϕτ(s, a)−`

)(
P−`
∫ ∞

0
Pyh dy

)
(τ)d

)̀)
.

Step 3. Finally, we will complete the proof of (2.10) for any F-stopping time τ , h ∈ Ce(R+), and

u ∈ C(R), which satisfy the condition (2.9). Without loss of generality, we assume that both u and

h are nonnegative. For general u and h it is sufficient to take u = u+ − u−, and h = h+ − h− and

the result follows from the linearity of integral and the operators (P`)`∈R+ and (P±` )`∈R+ .

Let now (un)n∈N be a nondecreasing sequence of nonnegative functions in Cc(R) such that, for

any n ∈ N, un(x) = u(x) for all x ∈ [−n, n], and that supp(un) ⊂ [−n− 1, n+ 1]. From the result

in Step 2, for every n ∈ N, we have

E
(∫ τ

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
=2

∫ ∞
0
un(a+`)

(
P+
`

∫ ∞
0
Pyh dy

)
(s) d`+2

∫ ∞
0
un(a−`)

(
P−`
∫ ∞

0
Pyh dy

)
(s) d`

− 2E
(
1{τ<∞}

∫ ∞
0
un
(
ϕτ (s, a) + `

)(
P+
`

∫ ∞
0
Pyh dy

)
(τ) d`

)
− 2E

(
1{τ<∞}

∫ ∞
0
un
(
ϕτ (s, a)− `

)(
P−`
∫ ∞

0
Pyh dy

)
(τ) d`

)
. (4.30)

In particular, for τ ≡ ∞, we have

E
(∫ ∞

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= 2

∫ ∞
0
un(a+ `)

(
P+
`

∫ ∞
0
Pyh dy

)
(s) d`+ 2

∫ ∞
0
un(a− `)

(
P−`
∫ ∞

0
Pyh dy

)
(s) d`. (4.31)
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By (2.9) and the monotone convergence, we deduce that

lim
n→∞

E
(∫ τ

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= E

(∫ τ

s
u
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
<∞,

lim
n→∞

E
(∫ ∞

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
= E

(∫ ∞
s

u
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
<∞.

Together with (4.30) and (4.31), we obtain that

lim
n→∞

E
(
1{τ<∞}

∫ ∞
0

(
un
(
ϕτ (s, a)+`

)(
P+
`

∫ ∞
0
Pyh dy

)
(τ)+un

(
ϕτ (s, a)−`

)(
P−`
∫ ∞

0
Pyh dy

)
(τ)

)
d`

)
= lim

n→∞
E
(∫ ∞

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
− lim
n→∞

E
(∫ τ

s
un
(
ϕt(s, a)

)
h(t)σ2(t) dt

)
<∞.

Therefore, we can pass the limit, as n→∞, for each term on either side of (4.30), which leads to

(2.10) by monotone convergence. The proof of Theorem 2.11 is now complete.

4.3 Proof of Corollary 2.14

In this section, we will present a proof of Corollary 2.14. We start with the following technical

lemma, the proof of which is deferred to Appendix A.7.

Lemma 4.2. Under the setting of Corollary 2.14, for any k, ` ∈ R+, P−k and P+
` commute. In

particular, (P+
` P
−
` )`∈R+ is a Feller semigroup, and P+

` P
−
` = P` on L∞(R+), for any ` ∈ R+, where

(P`)`∈R+ is given as in Proposition 2.9 (i). Moreover, for any f ∈ Cac
e,cdl(R+) and ` ∈ R+, we have

P±` f ∈ C
ac
e,cdl(R+), and

Γ+P−` f = P−` Γ+f, Γ−P+
` f = P+

` Γ−f.

Proof of Corollary 2.14. We will only present the proof of (2.20) in the case when u ∈ C1
c (R). The

result for general u ∈ C(R) satisfying (2.19) follows from an approximation argument similar to

those in the proof of Theorem 2.11 (see the last paragraph in Step 1, and Step 3 therein). In what

follows, we fix any c ∈ (0,∞), a ∈ R, and we set h(t) = e−ct, t ∈ R+.

To begin with, by Proposition 2.9 (ii) and the contraction property of P±` , ` ∈ R+ (since

(P±` )`∈R+ is a Feller semigroup shown as in Proposition 3.4), we see that both
∫ L

0 Pyhdy and

P±`
∫ L

0 Pyhdy converge in L∞(R+), as L → ∞. It follows from [9, Chapter 1, Lemma 1.4 (b)],

Proposition 2.9 (ii), and Lemma 4.2 that, for any ` ∈ R+,

P+
`

∫ ∞
0
Pyh dy = P+

` lim
L→∞

∫ L

0
Pyh dy = lim

L→∞
P+
`

∫ L

0
Pyh dy = lim

L→∞

∫ L

0
P+
` P

+
y P−y h dy =

∫ ∞
0
P+
`+yP

−
y h dy,

and similarly,

P−`
∫ ∞

0
Pyh dy =

∫ ∞
0
P+
y P−`+yh dy.
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Hence, by Corollary 2.12 and Fubini’s theorem, we have(
Ecu
)
(a) = cσ−2 E

(∫ ∞
0

u
(
ϕt(0, a)

)
h(t)σ2 dt

)
= 2cσ−2

∫ ∞
0

u(a+ `)

(
P+
`

∫ ∞
0
Pyh dy

)
(0) d`+ 2cσ−2

∫ ∞
0

u(a− `)
(
P−`
∫ ∞

0
Pyh dy

)
(0) d`

= 2cσ−2

∫ ∞
0
u(a+ `)

(∫ ∞
0
P+
`+yP

−
y h dy

)
(0) d`+ 2cσ−2

∫ ∞
0
u(a− `)

(∫ ∞
0
P+
y P−`+yh dy

)
(0) d`

= 2cσ−2σ−2

∫ ∞
0

∫ ∞
y
u(a+ x− y)

(
P+
x P−y h

)
(0) dx dy + 2cσ−2

∫ ∞
0

∫ y

0
u(a+ x− y)

(
P+
x P−y h

)
(0) dx dy

= 2cσ−2

∫ ∞
0

∫ ∞
0

u(a+ x− y)
(
P+
x P−y h

)
(0) dx dy. (4.32)

Due to the time-homogeneity of ϕ(a), we see that, for any ` ∈ R and s ∈ R+, τ±` (s) − s has the

identical law as τ±` (0) under P, and so(
P±` h

)
(s) = E

(
e−cτ

±
` (s)

)
= E

(
e−c(s+τ

±
` (0))

)
= e−cs E

(
e−cτ

±
` (0)

)
= h(s)

(
P±` h

)
(0), `, s ∈ R+.

It follows that, for any x, y ∈ R+,(
P+
x P−y h

)
(0) =

(
P+
x h
)
(0) ·

(
P−y h

)
(0), (4.33)

and that (noting that h(t) = e−ct ∈ Cac
e,cdl(R+) ⊂ D(Γ±))

(
Γ±h

)
(s) = lim

`→0+

1

`

(
P±` h− h

)
(s) = h(s) · lim

`→0+

1

`

(
P±` h− h

)
(0) = h(s)

(
Γ±h

)
(0). (4.34)

Combining (4.34) with [9, Chapter 1, Proposition 1.5 (b)] leads to, for any ` ∈ R+,

∂

∂`

(
P±` h

)
(s) =

(
P±` Γ±h

)
(s) =

(
Γ±h

)
(0) ·

(
P±` h

)
(s), s ∈ R+, (4.35)

and thus (
P±` h

)
(s) = h(s) e`(Γ

±h)(0), s ∈ R+. (4.36)

By combining (4.32), (4.33), and (4.36), we obtain that(
Ecu
)
(a) = 2

∫ ∞
0

∫ ∞
0

u(a+ x− y) ex(Γ+h)(0)+y(Γ−h)(0) dx dy. (4.37)

Next, we will investigate the expression E+
c E−c u on the right-hand side of (2.20). For any t ∈ R+,

let F t be the distribution function of ϕt(0, 0) under P. Using integration by parts, the assumption

that u ∈ C1
c (R), and Fubini’s theorem, we have(

E+
c u
)
(a) = cE

(∫ ∞
0

u
(
ϕt(0, a)

)
h(t) dt

)
= c

∫ ∞
0

(∫ ∞
0

u(a+ `) dF t(`)

)
h(t) dt

= −c
∫ ∞

0

(∫ ∞
0

u′(a+ `)P
(
ϕt(0, 0) ≤ `

)
d`

)
h(t) dt

= −c
∫ ∞

0
u′(a+ `)

(∫ ∞
0

P
(
τ+
` (0) > t

)
h(t) dt

)
d` = −c

∫ ∞
0
u′(a+ `)E

(∫ τ+` (0)

0
h(t) dt

)
d`.
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Recalling h(t) = e−ct, it follows from integration by parts, the assumption that u ∈ C1
c (R), (4.35),

and (4.36) that

(
E+
c u
)
(a) =

∫ ∞
0

u′(a+ `)
(
E
(
e−cτ

+
` (0)

)
− 1
)
d` =

∫ ∞
0

u′(a+ `)
((
P+
` h
)
(0)− 1

)
d`

= −
(
Γ+h

)
(0) ·

∫ ∞
0
u(a+ `)

(
P+
` h
)
(0) d` = −

(
Γ+h

)
(0) ·

∫ ∞
0
u(a+ `) e`(Γ

+h)(0) d`.(4.38)

A similar argument as above shows that

(
E−c u

)
(a) = −

(
Γ−h

)
(0) ·

∫ ∞
0

u(a− `) e`(Γ−h)(0) d`. (4.39)

Therefore, by combining (4.38) and (4.39), we deduce that

(
E−c E+

c u
)
(a) =

(
Γ+h

)
(0)
(
Γ−h

)
(0) ·

∫ ∞
0

∫ ∞
0

u(a+ x− y) ex(Γ+h)(0)+y(Γ−h)(0) dx dy.

Finally, by solving (Γ±h)(0) from (3.13) (with v(t) ≡ v and σ(t) ≡ σ), and noting that (Γ±h)(0) ≤ 0

in light of (3.11), we obtain that

(
Γ±h

)
(0) = ± v

σ2
−
√
v2

σ4
+

2c

σ2
,

and thus (
E−c E+

c u
)
(a) = 2cσ−2

∫ ∞
0

∫ ∞
0

u(a+ x− y) ex(Γ+h)(0)+y(Γ−h)(0) dx dy. (4.40)

Combining (4.37) and (4.40) completes the proof of corollary. �

5 Example

In this section, we will present a nontrivial example of functions v and σ in (2.1), for which our

Assumptions 2.2, 2.5, and 2.7 are all satisfied. More precisely, for some v0, v1 ∈ R and t0, σ0, σ1 ∈
(0,∞), we consider

v(t) =

{
v0, t ∈ [0, t0)

v1, t ∈ [t0,∞)
, σ(t) =

{
σ0, t ∈ [0, t0)

σ1, t ∈ [t0,∞)
, (5.1)

which clearly satisfy Assumption 2.2. In what follows, we will verify that such v and σ also satisfy

Assumptions 2.5 and 2.7. By induction, the result can then be extended to any càdlàg piecewise

constant functions v and σ with finitely many jumps, with the proof omitted here to avoid extra

technicalities. Note that by refining the partition we can always assume that v and σ share the

same set of jump times (with possibly zero-size jumps).

Step 1. We first show that the functions v and σ, given as in (5.1), satisfy Assumption 2.5. We

will only present the proof for the continuity of γ+, since the continuity for γ− can be verified in

an analogous way.



36

To begin with, for any ` ∈ R+, by (A.7) we first have

P
(
τ+
` (s) > t

)
= Φ

(
`− v0(t− s)
σ0

√
t− s

)
− e2v0`/σ2

0Φ

(
− `+ v0(t− s)

σ0

√
t− s

)
, 0 ≤ s < t ≤ t0,

and

P
(
τ+
` (s) > t

)
= Φ

(
`− v1(t− s)
σ1

√
t− s

)
− e2v1`/σ2

1Φ

(
− `+ v1(t− s)

σ1

√
t− s

)
, 0 < t0 ≤ s < t. (5.2)

When 0 ≤ s < t0 < t, the Markov property of ϕ implies that

P
(
τ+
` (s) > t

)
= P

(
τ+
` (s) > t, τ+

` (s) > t0
)

= E
(
1{τ+` (s)>t0}E

(
1{τ+` (s)>t}

∣∣∣Ft0

))
= E

(
1{τ+` (s)>t0}E

(
1{τ+` (s)>t}

∣∣∣ϕt0(s)
))

= E
(
1{τ+` (s)>t0}G

(
ϕt0(s); t0, t

))
,

where G(y; t0, t) := P(τ+
`−y(t0) > t), y ∈ R. It follows from (A.10) and a standard simple function

approximation procedure that, for any 0 ≤ s < t0 < t,

P
(
τ+
` (s)>t

)
=

∫ `

−∞

P
(
τ+
`−y(t0)>t

)
σ0

√
2π(t0−s)

(
exp

(
−
(
y−v0(t0−s)

)2
2σ2

0(t0−s)

)
−exp

(
2v0`

σ2
0

−
(
2`−y+v0(t0−s)

)2
2σ2

0(t0−s)

))
dy.

Hence, we conclude that P(τ+
` (s) > t) is differentiable with respect to ` on R+ (with right-

differentiability at ` = 0). By Proposition 2.4 (ii), we deduce that

γ+(s, t) =



e−v
2
0(t−s)/(2σ2

0)

σ0

√
2π(t− s)

− 2v0

σ2
0

Φ

(
− v0

√
t− s
σ0

)
, 0 ≤ s < t ≤ t0,

∫ 0

−∞

−2y

σ3
0

√
2π(t0 − s)3

exp

(
−
(
y − v0(t0 − s)

)2
2σ2

0(t0 − s)

)
·
(

Φ

(
−y−v1(t−t0)

σ1
√
t−t0

)
− e−2v1y/σ2

1 Φ

(
−−y+v1(t−t0)

σ1
√
t−t0

))
dy, 0 ≤ s < t0 < t,

e−v
2
1(t−s)/(2σ2

1)

σ1

√
2π(t− s)

− 2v1

σ2
1

Φ

(
− v1

√
t− s
σ1

)
, t0 ≤ s < t.

(5.3)

We now verify the continuity of γ+(·, t) on [0, t), for any t ∈ (0,∞). When t ≤ t0, it is clear

from the first equality in (5.3) that γ+(·, t) is continuous on [0, t). When t > t0, the second and

the third equalities in (5.3) ensure that γ+(·, t) is continuous on [0, t0) ∪ (t0, t), and that γ+(·, t) is

right-continuous at t0. It remains to show the left-continuity of γ+(·, t) at t0. To this end, in view

of (5.2) and the second equality in (5.3), for any 0 ≤ s < t0 < t we have

γ+(s, t) =

∫ 0

−∞

−2y

σ3
0

√
2π(t0 − s)3

exp

(
−
(
y − v0(t0 − s)

)2
2σ2

0(t0 − s)

)
P
(
τ+
−y(t0) > t

)
dy

=

∫ −v0√t0−s/σ0
−∞

2`(s, z)

σ2
0

√
2π(t0 − s)

P
(
τ+
`(s,z)(t0) > t

)
e−z

2/2 dz,
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where `(s, z) := −σ0
√
t0 − sz− v0(t0− s). It follows from Proposition 2.4 (i) & (iii) and dominated

convergence that

lim
s→t0−

γ+(s, t) =

∫ 0

−∞

(
lim
s→t0−

2`2(s, z)

σ2
0

√
2π(t0 − s)

· 1

`(s, z)
P
(
τ+
`(s,z)(t0) > t

))
e−z

2/2 dz

= γ+(t0, t)

∫ 0

−∞

2z2

√
2π

e−z
2/2 dz = γ+(t0, t).

Step 2. Next, we show that the functions v and σ in (5.1) satisfy Assumption 2.7 with λ = 1. In

this case, using (5.3) and the analogous formula for γ−, and recalling that γ = γ+ + γ−, we have

γ(s, t) =



2
√

2√
πσ2

0(t− s)
exp

(
− v2

0(t− s)
2σ2

0

)
, 0 ≤ s < t ≤ t0,

2
√

2√
πσ2

1(t− s)
exp

(
− v2

1(t− s)
2σ2

1

)
, t0 ≤ s < t.

. (5.4)

The expression of γ(s, t) when 0 ≤ s < t0 < t is omitted here as it is not needed for the rest of

the proof. Since C1
c (R+) is dense in C0(R+), in order to show that {(I − Γ)f : f ∈ Cac

e,cdl(R+)}
is dense in C0(R+), it is sufficient to verify that this set is dense in C1

c (R+). In what follows, for

any fixed ε > 0 and h ∈ C1
c (R+), with supp(h) ⊂ [0, T ) for some T ∈ (0,∞), we will construct

f ε ∈ Cac
e,cdl(R+) such that

∥∥h− (I − Γ)f ε
∥∥
∞ ≤ ε.

To begin with, we first construct f1 ∈ Cac
e,cdl(R+) such that(

(I − Γ)f1

)
(s) = h(s), for any s ∈ [t0,∞). (5.5)

Note that if T ∈ (0, t0], (5.5) holds trivially with f1 ≡ 0. Hence, without loss of generality, hereafter

we assume T ∈ (t0,∞). To this end, for any s ∈ R+, we consider the process ϕ(s, a) as in (2.1) with

a = 0 and v(t) ≡ v1, σ(t) ≡ σ1, for any t ∈ R+, which we now denote by ϕ1(s) = (ϕ1
t (s))t∈[s,∞)

in order to distinguish it from the process ϕ(s) with coefficient functions (5.1). Note that those

constant coefficients trivially satisfy Assumption 2.2. Accordingly, the passage times defined by

(2.2), the functions defined by Proposition 2.4 (ii), and the operators defined by (2.5) with respect

to ϕ1(s), are denoted respectively by τ1,±
` (s), P1,±

` , and γ1,±, for any s ∈ R+ and ` ∈ R+. From the

result of step 1, γ1,±(·, t) is continuous on [0, t) for any t ∈ R+ (i.e., Assumption 2.5 is satisfied),

and by a version of Proposition 2.4 (ii) (with constant coefficients v1 and σ1) and (A.9), we have

γ1,±(s, t) =

√
2√

πσ2
1(t− s)

exp

(
− v2

1(t− s)
2σ2

1

)
∓ 2v1

σ2
1

Φ

(
∓ v1

√
t− s
σ1

)
. (5.6)

Next, by a version of Proposition 3.4 (with constant coefficients v1 and σ1), (P1,±
` )`∈R+ is a Feller

semigroup, and in view of (A.8), for any ` ∈ R+ and f ∈ L∞(R+), we have

(
P1,±
` f

)
(s) =

∫ ∞
0

`√
2πσ2

1t
3

exp

(
−
(
`∓ v1t

)2
2σ2

1t

)
f(s+ t) dt, s ∈ R+.

Together with the commutativity between (P1,+
` )`∈R+ and (P1,−

` )`∈R+ , given by a version of Lemma

4.2 (with constant coefficients v1 and σ1), we deduce that, for any k, ` ∈ R+ and f ∈ L∞(R+),(
P1,+
k P

1,−
` f

)
(s) =

(
P1,−
` P

1,+
k f

)
(s) =

∫ ∞
0

ρ1
` (t)f(s+ t) dt, s ∈ R+, (5.7)
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where

ρ1
` (t) :=

`2e−v
2
1t/2

2πσ2
1

∫ t

0

1√
r3(t− r)3

exp

(
− 2`2t

2σ1r(t− r)

)
dr, t ∈ R+.

Moreover, by a version of Lemma 4.2 (with constant coefficients v1 and σ1) again, (P1,+
` P

1,−
` )`∈R+

is a Feller semigroup which coincides with the Feller semigroup given by a version of Proposition

2.9 (i) (with constant coefficients v1 and σ1). In particular, the strong generator of (P1,+
` P

1,−
` )`∈R+

is the closure of Γ1 defined by a version of (2.7) (with constant coefficients v1 and σ1). Denoting the

strong generator of (P1,±
` )`∈R+ by Γ1,±, it follows from a version of Proposition 3.5 (with constant

coefficients v1 and σ1) and (5.6) that, for any f ∈ Cac
e,cdl(R+),

(
Γ1f

)
(s) =

(
Γ1,+f + Γ1,−f

)
(s) =

∫ ∞
s

2
√

2√
πσ2

1(t− s)
exp

(
− v2

1(t− s)
2σ2

1

)
gf (t) dt, s ∈ R+. (5.8)

This, together with (2.7) and (5.4), implies that, for any f ∈ Cac
e,cdl(R+),

(
Γf
)
(s) =

∫ ∞
s

2
√

2√
πσ2

1(t− s)
exp

(
− v2

1(t− s)
2σ2

1

)
gf (t) dt =

(
Γ1f

)
(s), s ∈ [t0,∞). (5.9)

We now define f1 as the 1-resolvent operator associated with (P1,+
` P

1,−
` )`∈R+ on h, namely

f1(s) :=

∫ ∞
0

e−`
(
P1,+
` P

1,−
` h

)
(s) d` =

∫ ∞
0

(∫ ∞
0

e−`ρ1
` (t) d`

)
h(s+ t) dt, s ∈ R+,

where the second equality follows from (5.7). Since h ∈ C1
c (R+), we see that the last integral above

is finite, and that f1 ∈ C1
c (R+) ⊂ Cac

e,cdl(R+), and thus f1 ∈ D(Γ1). Moreover, by [7, Lemma 1.27],

we have (I − Γ1)f1 = h on R+, which, together with (5.9), leads to (5.5).

Next, in view of (5.5), we have h0 := h − (I − Γ)f1 ∈ Cc(R+) with supp(h0) ⊂ [0, t0). Hence,

there exists hε0 ∈ C1
c (R+), with supp(hε0) ⊂ [0, t0), such that

‖hε0 − h0‖∞ = ‖hε0 − h+ (I − Γ)f1‖∞ ≤ ε. (5.10)

We will construct f ε0 ∈ C1
c (R+) such that(

(I − Γ)f ε0
)
(s) = hε0(s), s ∈ R+. (5.11)

The construction of f ε0 is almost identical to that of f1 above, with the constant coefficients v1

and σ1 replaced by v0 and σ0, respectively, and the function h replaced by hε0. More precisely,

let (P0,±
` )`∈R+ be the analogous operators of (P1,±

` )`∈R+ with (v1, σ1) replaced by (v0, σ0). With

similar arguments leading to (5.7), we deduce that (P0,+
` P

0,−
` )`∈R+ is a Feller semigroup, and that

for any k, ` ∈ R+ and f ∈ L∞(R+),(
P0,+
k P

0,−
` f

)
(s) =

(
P0,−
` P

0,+
k f

)
(s) =

∫ ∞
0

ρ0
` (t)f(s+ t) dt, s ∈ R+, (5.12)

where

ρ0
` (t) :=

`2e−v
2
0t/2

2πσ2
0

∫ t

0

1√
r3(t− r)3

exp

(
− 2`2t

2σ0r(t− r)

)
dr, t ∈ R+.
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Moreover, similar arguments leading to (5.8) imply that the strong generator of (P0,+
` P

0,−
` )`∈R+ is

the closure of Γ0 defined by a version of (2.7) (with constant coefficients v0 and σ0), and that for

any f ∈ Cac
e,cdl(R+),

(
Γ0f

)
(s) =

∫ ∞
s

2
√

2√
πσ2

0(t− s)
exp

(
− v2

0(t− s)
2σ2

0

)
gf (t) dt, s ∈ R+. (5.13)

We now define f ε0 as 1-resolvent operator associated with (P0,+
` P

0,−
` )`∈R+ on hε0, namely,

f ε0 (s) :=

∫ ∞
0

e−`
(
P0,+
` P

0,−
` hε0

)
(s) d` =

∫ ∞
0

(∫ ∞
0

e−`ρ0
` (t) d`

)
hε0(s+ t) dt, s ∈ R+,

where the second equality follow from (5.12). Since hε0 ∈ C1
c (R+) with supp(hε0) ⊂ [0, t0), we see

that the last integral above is finite, and that f ε0 ∈ C1
c (R+) ⊂ Cac

e,cdl(R+) with supp(f ε0 ) ⊂ [0, t0),

so that f ε0 ∈ D(Γ0) and gfε0 = (f ε0 )′. Together with (2.7), (5.4), and (5.13), we obtain that

(
Γf ε0

)
(s) =

(
Γ0f ε0

)
(s) =



∫ t0

s

2
√

2√
πσ2

0(t− s)
exp

(
− v2

0(t− s)
2σ2

0

)
(f ε0 )′(t) dt, t ∈ [0, t0),

0, t ∈ [t0,∞).

(5.14)

On the other hand, by [7, Lemma 1.27] again, we have (I − Γ0)f ε0 = hε0 on R+, which, together

with (5.14), leads to (5.11).

Finally, we define f ε := f ε0 +f1. In view of (5.5) and since supp(f ε0 ) ⊂ [0, t0), for any s ∈ [t0,∞),

we deduce that ∣∣h(s)−
(
(I − Γ)f ε

)
(s)
∣∣ =

∣∣h(s)−
(
(I − Γ)f1

)
(s)
∣∣ = 0.

Moreover, for any s ∈ [0, t0), by (5.10) and (5.11) we have∣∣h(s)−
(
(I − Γ)f ε

)
(s)
∣∣ =

∣∣h(s)−
(
(I − Γ)f1

)
(s)− hε0(s)

∣∣ ≤ ε.
which concludes the proof in step 2.

A Additional Lemmas and Proofs

This appendix includes additional proofs of technical results. For those results presented in both

the “+” and the “−” cases, we will only provide the proof for the “+” scenario, as the “−” scenario

can be proved in an analogous way.

A.1 Proof of Proposition 2.3

Without loss of generality, we will fix s = 0, a = 0, and any ` ∈ R through out the proof, and will

omit the variables (0, 0) in ϕ(0, 0), τ+
` (0, 0), and η+

` (0, 0) for simplicity.

To start with note the following. By the fact that (tW1/t)t>0 is also a standard Brownian motion

with respect to F under P and the oscillation behavior of Brownian paths close to infinity (cf. [19,

Chapter I, Lemma (3.6)]), we have

P
(
∀ε ∈ (0, 1), ∃ t1, t2 ∈ (0, ε), s.t. Wt1 < 0 < Wt2

)
= 1. (A.1)
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By Girsanov theorem, for any µ ∈ R, there exists a probability measure Q on F1, such that Q is

absolutely continuous with respect to P restricted on F1, and that (µt + Wt)t∈[0,1] is a standard

Brownian motion under Q. This, together with a version of (A.1), implies that

P
(
∀ε ∈ (0, 1), ∃ t1, t2 ∈ (0, ε), s.t. µt1 +Wt1 < 0 < µt2 +Wt2

)
= 1. (A.2)

Next, we will show that P(τ+
` = η+

` ) = 1 when σ ≡ 1. Toward this end, note that

1{τ+` <∞}
P
(
τ+
` = η+

`

∣∣∣Fτ+`

)
= 1{τ+` <∞}

P
(
∀ε ∈ (0, 1), ∃t ∈ (0, ε), s.t. ϕτ+` +t > `

∣∣∣Fτ+`

)
≥ 1{τ+` <∞}

P
(
∀ε ∈ (0, 1), ∃t ∈ (0, ε), s.t. `−‖v‖∞t+Wτ+` +t−Wτ+`

>`
∣∣∣Fτ+`

)
= 1{τ+` <∞}

P
(
∀ε ∈ (0, 1), ∃t ∈ (0, ε), s.t. − ‖v‖∞t+Wt > 0

)
= 1{τ+` <∞}

,

where the last equity follows from (A.2). It follows immediately that

1{τ+` <∞}
P
(
τ+
` = η+

`

∣∣∣Fτ+`

)
= 1{τ+` <∞}

,

and thus

P
(
τ+
` = η+

`

)
= E

(
1{τ+` <∞}

P
(
τ+
` = η+

`

∣∣∣Fτ+`

)
+ 1{τ+` =∞}

)
= P

(
τ+
` ≤ ∞

)
= 1. (A.3)

Finally, we use a time-change argument to complete the proof. Towards this end, let us consider

the martingale M := (Mt)t∈R+ defined as

Mt :=

∫ t

0
σ(s) dWs, t ∈ R+.

The quadratic variation process of M is given as 〈M〉t =
∫ t

0 σ
2(r)dr for t ∈ R+. In light of the

strict positivity of σ in Assumption 2.2 (ii), 〈M〉 is a strictly increasing (deterministic) bijection

from R+ to R+. Hence, the function β, given as

β(t) := inf
{
s ∈ R+ : 〈M〉s > t

}
, t ∈ R+,

is its inverse, so that β(〈M〉t) = 〈M〉β(t) = t. It follows from the Dambis-Dubins-Schwarz theorem

(cf. [13, Chapter 3, Theorem 4.6]) that the process B := (Bt)t∈R+ given via

Bt := Mβ(t) =

∫ β(t)

0
σ(r) dWr, t ∈ R+. (A.4)

is standard Brownian motion with respect to (Fβ(t))t∈R+ under P. Together with (2.1), (2.2), and

(2.6), we obtain that

P
(
τ+
` = η+

`

)
= P

(
inf
{
t ∈ R+ : ϕt ≥ `

}
= inf

{
t ∈ R+ : ϕt > `

})
= P

(
inf
{
t ∈ R+ : ϕβ(t) ≥ `

}
= inf

{
t ∈ R+ : ϕβ(t) > `

})
= P

(
inf

{
t ∈ R+ :

∫ β(t)

0
v(r) dr +Bt ≥ `

}
= inf

{
t ∈ R+ :

∫ β(t)

0
v(r) dr +Bt > `

})

= P
(

inf

{
t ∈ R+ :

∫ t

0

v(β(r))

σ2(β(r))
dr +Bt ≥ `

}
= inf

{
t ∈ R+ :

∫ t

0

v(β(r))

σ2(β(r))
dr +Bt > `

})
= 1,

where the last equality follows from a version of (A.3). The proof of Proposition 2.3 is now complete.
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A.2 Proof of Proposition 2.4

The proof of Proposition 2.4 relies on the following two technical lemmas. The first lemma provides

the estimates for the tail distribution of τ+
` when both v and σ are functions of time. An analogous

estimate for τ−` can be obtained by replacing v with −v.

Lemma A.1. For any t > s ≥ 0 and ` ∈ R+, we have

P

(
sup

r∈[0,σ2(t−s)]

(
‖v‖∞r
σ2

+Wr

)
<

)̀
≤ P

(
τ+
` (s)>t

)
≤ P

(
sup

r∈[0,σ2(t−s)]

(
−‖v‖∞r

σ2
+Wr

)
<

)̀
.(A.5)

Proof. Using the same time-change technique as in the proof of Proposition 2.3 (see Section A.1),

for any t > s ≥ 0 and ` ∈ R+, we have

P
(
τ+
` (s) > t

)
= P

(
ϕr(s) < `, ∀r ∈ [s, t]

)
= P

(
ϕβ(r)(s) < `, ∀r ∈

[
〈M〉s, 〈M〉t

])
= P

(∫ r

〈M〉s

v
(
β(u)

)
σ2
(
β(u)

) du+Br −B〈M〉s < `, ∀r ∈
[
〈M〉s, 〈M〉t

])
, (A.6)

where B is a standard Brownian motion under P, given as in (A.4). It follows that, for any t > s ≥ 0

and ` ∈ R+,

P
(
τ+
` (s) > t

)
≤ P

(
sup

r∈[0,〈M〉t−〈M〉s]

(
−‖v‖∞r

σ2
+Br

)
< `

)
≤ P

(
sup

r∈[0,σ2(t−s)]

(
−‖v‖∞r

σ2
r +Br

)
< `

)
,

and that

P
(
τ+
` (s) > t

)
≥ P

(
sup

r∈[0,〈M〉t−〈M〉s]

(
‖v‖∞r
σ2

+Br

)
< `

)
≥ P

(
sup

r∈[0,σ2(t−s)]

(
‖v‖∞r
σ2

+Br

)
< `

)
,

which completes the proof of the lemma.

The second lemma provides two formulas for the tail probability of τ+
` (s) in the case when both

v and σ are constant functions (i.e., when ϕ is a drifted Brownian motion). In particular, both the

lower bound and the upper bound in (A.5) can be computed using those formulas.

Lemma A.2. Suppose that v(t) ≡ v ∈ R and σ(t) ≡ σ ∈ (0,∞), for all t ∈ R+. Then, for any

t > s ≥ 0, ` ∈ R+, we have

P
(
τ+
` (s)>t

)
= Φ

(
`− v(t− s)
σ
√
t− s

)
− e2v`/σ2

Φ

(
− `+ v(t− s)

σ
√
t− s

)
(A.7)

=

∫ t−s

0

`

σ
√

2πr3
exp

(
−
(
`− vr

)2
2σ2r

)
dr, (A.8)

where Φ denotes the standard normal distribution function. Consequently, for any t > s ≥ 0,

lim
`→0+

1

`
P
(
τ+
` (s) > t

)
=

√
2√

πσ2(t− s)
exp

(
− v2

2σ2
(t− s)

)
− 2v

σ2
Φ
(
− v

σ

√
t− s

)
. (A.9)
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Proof. When both v and σ are constants, for any t > s ≥ 0, ` ∈ R+, and A ∈ B((−∞, `)),

P
(
τ+
` (s) > t, ϕt(s) ∈ A

)
= P

(
sup
r∈[s,t]

(
v(r − s) + σ

(
Wr −Ws

))
< `, v(t− s) + σ

(
Wt −Ws

)
∈ A

)
= P

(
sup

u∈[0,t−s]

(
vu+ σWu

)
< `, v(t− s) + σWt−s ∈ A

)

=
1√

2πσ2(t− s)

∫
A

(
exp

(
−
(
y − v(t− s)

)2
2σ2(t− s)

)
− exp

(
2v`

σ2
−
(
2`− y + v(t− s)

)2
2σ2(t− s)

))
dy, (A.10)

where we have used (1.1.8) in [5, Part II, Section 2.1] for the last equality above. The identity (A.7)

follows immediately by taking A = (−∞, `) in (A.10), and it leads directly to (A.9) by L’Hôpital’s

rule. Finally, the identity (A.8) is an immediate consequence of (2.0.2) in [5, Part II, Section 2.2]),

which completes the proof of the lemma.

Proof of Proposition 2.4. In view of Lemma A.1 and (A.9), for any t > s ≥ 0, we have

√
2√

πσ2(t− s)
exp

(
− σ2‖v‖2∞

2σ4
(t− s)

)
− 2‖v‖∞

σ2
Φ

(
− σ‖v‖∞

σ2

√
t− s

)
≤ lim inf

`→0+

1

`
P
(
τ+
` (s) > t

)
≤ lim sup

`→0+

1

`
P
(
τ+
` (s) > t

)
≤

√
2√

πσ2(t− s)
exp

(
− ‖v‖

2
∞

2σ2
(t− s)

)
+ 2
‖v‖∞
σ2

Φ

(
‖v‖∞
σ

√
t− s

)
. (A.11)

We first claim that, for any fixed T > s ≥ 0, and for any ε > 0, there exist at most finitely many

t ∈ (s, T ] such that

lim sup
`→0+

1

`
P
(
τ+
` (s) > t

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > t

)
> ε.

Otherwise, there exists ε0 > 0 and an increasing sequence (tn)n∈N ⊂ (s, T ] such that

lim sup
`→0+

1

`
P
(
τ+
` (s) > tn

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > tn

)
> ε0, for any n ∈ N.

Since P(τ+
` (s) > t) is non-increasing in t, the above statement implies that

lim sup
`→0+

1

`
P
(
τ+
` (s) > t1

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > T

)
> ε0 + lim inf

`→0+

1

`
P
(
τ+
` (s) > t1

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > T

)
≥ ε0 + lim sup

`→0+

1

`
P
(
τ+
` (s) > t2

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > T

)
> · · ·

> nε0 + lim sup
`→0+

1

`
P
(
τ+
` (s) > tn+1

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > T

)
→∞, as n→∞,
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which is a clear contradiction to (A.11). For any s ∈ R+, let Ts be the collection of t ∈ (s,∞) such

that lim`→0+ `
−1P(τ+

` (s) > t) exists and is finite. Noting that

(s,∞) \ Ts =

{
t ∈ (s,∞) : lim sup

`→0+

1

`
P
(
τ+
` (s) > t

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > t

)
> 0

}
=

∞⋃
T=bsc+1

∞⋃
k=1

{
t ∈ (s, T ] : lim sup

`→0+

1

`
P
(
τ+
` (s) > t

)
− lim inf

`→0+

1

`
P
(
τ+
` (s) > t

)
>

1

k

}
,

we conclude that, for each s ∈ R+, (s,∞) \ Ts is at most countable.

Next, we will show that, for any s ∈ R+, lim`→0+ `
−1P(τ+

` (s) > ·) is continuous on Ts. In view

of (A.6), for any t ∈ (s,∞),

P
(
τ+
` (s) > t

)
= P

(
inf

{
r ∈

[
〈M〉s,∞) :

∫ r

〈M〉s

v
(
β(u)

)
σ2
(
β(u)

) du+Br −B〈M〉s ≥ `
}
> 〈M〉t

)
.

Since 〈M〉 is continuous on R+, it is sufficient to prove the continuity of lim`→0+ `
−1P(τ+

` (s) > ·)
on Ts when σ ≡ 1. In what follows, we will fix s ∈ R+ and assume that σ ≡ 1. For any t, t′ ∈ Ts
with t′ > t, we first have

P
(
τ+
` (s) > t

)
− P

(
τ+
` (s) > t′

)
= P

(
inf

{
r ∈ [s,∞) :

∫ r

s
v(u) du+Wr −Ws ≥ `

}
∈ (t, t′]

)
= P

(
inf

{
r∈R+ :

∫ r

0
v(s+u)du+Wr ≥ `

}
∈ (t− s, t′ − s]

)
.(A.12)

For any fixed T ∈ [t′ − s,∞), we define a probability measure P1 on (Ω,FT ) via

dP1

dP|FT
= exp

(
−
∫ T

0
v(s+ r) dWr −

1

2

∫ T

0
v2(s+ r) dr

)
.

By Girsanov Theorem, the process W := (W t)t∈[0,T ] defined by

W t :=

∫ t

0
v(s+ r) dr +Wt, t ∈ [0, T ],

is a standard Brownian motion under P1. With the help of Cauchy Schwarz inequality, we deduce

from (A.12) that, for any ` ∈ (0,∞),

1

`
P
(
τ+
` (s) > t

)
− 1

`
P
(
τ+
` (s) > t′

)
=

1

`
P
(

inf
{
r ∈ R+ : W r ≥ `

}
∈ (t− s, t′ − s]

)
=

1

`
E1

(
exp

(∫ t′−s

0
v(s+ r) dW r −

1

2

∫ t′−s

0
v2(s+ r) dr

)
1{inf{r∈R+:W r≥`}∈(t−s,t′−s]}

)

≤

(
1

`
E1

(
exp

(
2

∫ t′−s

0
v(s+ r) dW r −

∫ t′−s

0
v2(s+ r) dr

)
1{inf{r∈R+:W r≥`}∈(t−s,t′−s]}

))1/2

·
(

1

`
P1

(
inf{r ∈ R+ : W r ≥ `} ∈ (t− s, t′ − s]

))1/2

. (A.13)
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Similarly, we define another probability measure P2 on (Ω,FT ) via

dP2

dP1

= exp

(
2

∫ T

0
v(s+ r) dW r − 2

∫ T

0
v2(s+ r) dr

)
.

The Girsanov Theorem implies that the process B := (Bt)t∈[0,T ], where

Bt := W t − 2

∫ t

0
v(s+ r) dr, t ∈ [0, T ],

is a standard Brownian motion under P2. Hence, the first factor in (A.13) can be estimated as

1

`
E1

(
exp

(
2

∫ t′−s

0
v(s+ r) dW r −

∫ t′−s

0
v2(s+ r) dr

)
1{inf{r∈R+:W r≥`}∈(t−s,t′−s]}

)

= exp

(∫ t′−s

0
v2(s+ r) dr

)
· 1

`
P2

(
inf

{
r ∈ R+ : Br + 2

∫ r

0
v(s+ u) du ≥ `

}
∈ (t− s, t′ − s]

)
≤ e‖v‖∞T · 1

`
P2

(
inf
{
r ∈ R+ : Br − 2‖v‖∞r ≥ `

}
> t− s

)
. (A.14)

Combining (A.13) and (A.14), and using (A.8) and (A.9), for any t, t′ ∈ Ts with t′ > t, we have

lim
`→0+

1

`
P
(
τ+
` (s) > t

)
− lim
`→0+

1

`
P
(
τ+
` (s) > t′

)
≤ e‖v‖∞T/2

(
lim
`→0+

1

`
P2

(
inf
{
r ∈ R+ : Br − 2‖v‖∞r ≥ `

}
> t− s

))1/2

·
(

lim
`→0+

1

`
P1

(
inf{r ∈ R+ : W r ≥ `} ∈ (t− s, t′ − s]

))1/2

= e‖v‖∞T/2
(√

2 e−2‖v‖2∞(t−s)√
π(t− s)

− 4‖v‖∞Φ
(
− 2‖v‖∞

√
t− s

))1/2(
lim
`→0+

∫ t′−s

t−s

e−`
2/(2r)

√
2πr3

dr

)1/2

≤ 21/4e‖v‖∞T/2

π1/4(t− s)1/4

(∫ t′−s

t−s

1√
2πr3

dr

)1/2

,

which completes the proof of the continuity of lim`→0+ `
−1P(τ+

` (s) > ·) on Ts.
Finally, since Ts is dense in (s,∞), for any t∈(s,∞), there exist an increasing sequence (tn)n∈N ⊂

Ts and a decreasing sequence (tn)n∈N ⊂ Ts such that limn→∞ tn = limn→∞ tn = t, and so

lim sup
`→0+

1

`
P
(
τ+
` (s)>t

)
− lim inf

`→0+

1

`
P
(
τ+
` (s)>t

)
≤ lim

`→0+

1

`
P
(
τ+
` (s)>tn

)
− lim
`→0+

1

`
P
(
τ+
` (s)>tn

)
→ 0,

as n → ∞, where the convergence follows from the continuity of lim`→0+ `
−1P(τ+

` (s) > ·) on Ts.
This completes the proof of part (i), which, together with (A.11), leads to the estimates for γ+(s, t)

in part (iii). As for part (ii), since Ts = (s,∞), we have shown that γ+(s, ·) is continuous on (s,∞)

for every s ∈ R+. The non-increasing property of γ+(s, ·) on (s,∞) follows immediately from the

same property for P(τ+
` (s) > ·). The proof of Proposition 2.4 is now complete. �
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A.3 Proof of Lemma 2.6

We fix any f ∈ Cac
e,cdl(R+) throughout the proof. By Proposition 2.4 (iii), for any s ∈ R+, we have

∫ ∞
s
|gf (t)γ(s, t)| dt ≤ K̃

∫ ∞
s

(
1√
t− s

+ 1

)
e−κt dt = K̃e−κs

∫ ∞
0

(
1√
t

+ 1

)
e−κt dt,

where K̃ := K(
√

2/
√
πσ2 + 2‖v‖∞/σ2). Since the last integral above is finite, we obtain that Γf

is well-defined and vanishes at infinity with exponential rate.

It remains to verify the continuity of Γf on R+. For any ε > 0, we pick δ ∈ (0, 1) so that∫ δ
0 (t−1/2 +1)dt ≤ ε. For any s ∈ R+ and s′ ∈ (s, s+δ], by Proposition 2.4 (iii) and the boundedness

of gf , we deduce that

∣∣∣(Γf)(s)−(Γf)(s′)∣∣∣ ≤∫ s+δ

s

∣∣gf (t)
∣∣γ(s, t)dt+

∫ s+δ

s′

∣∣gf (t)
∣∣γ(s′, t)dt+

∣∣∣∣∫ ∞
s+δ

gf (t)
(
γ(s, t)−γ(s′, t)

)
dt

∣∣∣∣
≤ 2K̃

∫ s+δ

s

(
1√
t− s

+ 1

)
dt+

∣∣∣∣ ∫ ∞
s+δ

gf (t)
(
γ(s, t)− γ(s′, t)

)
dt

∣∣∣∣
≤ 2K̃ε+

∣∣∣∣ ∫ ∞
0

1[s+δ,∞)(t)gf (t)
(
γ(s, t)− γ(s′, t)

)
dt

∣∣∣∣.
The second term above vanishes to zero, as s′ → s+, due to Assumption 2.5, the dominated

convergence theorem, as well as the estimate

1[s+δ,∞)(t)
∣∣gf (t)

∣∣∣∣γ(s, t)− γ(s′, t)
∣∣ ≤ 2K̃δ−1/2e−κt,

which follows from Proposition 2.4 (iii) and the exponential decay of gf . Thus Γf is right-continuous

at any s ∈ R+. The left continuity of Γf on R+ can be shown using similar arguments. The proof

of Lemma 2.6 is complete.

A.4 Proof of Lemma 3.3

We will only present the proof for the “plus” case, as the “minus” case can be verified in an

analogous way. We will fix f ∈ C0(R+) throughout the proof, for which we 2 stipulate f(∞) = 0.

(i) We fix any `1, `2 ∈ R+ with `1 < `2, and so τ̃+
`1
≤ τ̃+

`2
. Hence, we have f(Z1

τ̃+`2
) = f(∞) = 0 on

{τ̃+
`1

=∞} and Z2
τ̃+`1

= `1 on {τ̃+
`1
<∞}. Together with Lemma 3.2 and (3.9), we deduce that

Ẽs,0
(
f
(
Z1
τ̃+`2

))
= Ẽs,0

(
1{τ̃+`1<∞}

1{τ̃+`1≤τ̃
+
`2
}Ẽs,0

(
f
(
Z1
τ̃+`2

)∣∣∣F̃τ̃+`1

))
= Ẽs,0

(
1{τ̃+`1<∞}

1{τ̃+`1≤τ̃
+
`2
}ẼZ1

τ̃+
`1

,Z2

τ̃+
`1

(
f
(
Z1
τ̃+`2

)))
= Ẽs,0

(
1{τ̃+`1<∞}

ẼZ1

τ̃+
`1

,`1

(
f
(
Z1
τ̃+`2

)))
= Ẽs,0

(
1{τ̃+`1<∞}

ẼZ1

τ̃+
`1

,0

(
f
(
Z1
τ̃+δ`

)))
, (A.15)



46

where δ` := `2 − `1. Therefore, by (3.8), Lemma A.1, and (A.7), we obtain that∣∣∣∣Ẽs,0(f(Z1
τ̃+`2

))
− Ẽs,0

(
f
(
Z1
τ̃+`1

))∣∣∣∣ ≤ Ẽs,0

(
1{τ̃+`1<∞}

∣∣∣∣ẼZ1

τ̃+
`1

,0

(
f
(
Z1
τ̃+δ`

))
− f

(
Z1
τ̃+`1

)∣∣∣∣
)

≤ sup
t∈R+

∣∣∣Ẽt,0(f(Z1
τ̃+δ`

))
− f(t)

∣∣∣ = sup
t∈R+

∣∣∣E(f(τ+
δ`(t)

))
− f(t)

∣∣∣
≤ sup

s1,s2∈R+: |s2−s1|≤δ`

∣∣f(s2)− f(s1)
∣∣+ 2‖f‖∞ sup

t∈R+

P
(
τ+
δ`(t) > δ`+ t

)
≤ sup

s1,s2∈R+

|s2−s1|≤δ`

∣∣f(s2)− f(s1)
∣∣+ 2‖f‖∞

(
Φ

(√
δ`

σ

(
1−‖v‖∞

))
−e−2‖v‖2∞δ`/σ2

Φ

(
−
√
δ`

σ

(
1+‖v‖∞

)))
,

where the right-hand side tends to 0 as δ` = `2 − `1 → 0+, uniformly for all s ∈ R+. This finishes

the proof of part (i).

(ii) Since f ∈ C0(R+), and Z1
τ̃+`
≥ s, P̃s,0-a.s., we have∣∣∣Ẽs,0(f(Z1
τ̃±`

))∣∣∣ ≤ sup
r∈[s,∞)

∣∣f(r)
∣∣→ 0, as s→∞.

It remains to show that s 7→ Ẽs,0(f(Z1
τ̃±`

)) is continuous on R+, for any ` ∈ R+. Note that the

continuity is trivial when ` = 0 since Ẽs,0(f(Z1
τ̃±0

)) = f(s). We therefore fix any ` ∈ (0,∞) for the

rest of the proof. For any s1, s2 ∈ R+ with s1 < s2 and δs := s2 − s1, by Lemma 3.2 and the fact

that Z1
δs = s1 + δs = s2, P̃s1,0-a.s., we first have

Ẽs1,0
(
f
(
Z1
τ̃+`

))
= Ẽs1,0

(
1{δs≤τ̃+` }

f
(
Z1
τ̃+`

))
+ Ẽs1,0

(
1{δs>τ̃+` }

f
(
Z1
τ̃+`

))
= Ẽs1,0

(
1{δs≤τ̃+` }

Ẽs1,0
(
f
(
Z1
τ̃+`

)∣∣∣F̃δs

))
+ Ẽs1,0

(
1{δs>τ̃+` }

f
(
Z1
τ̃+`

))
= Ẽs1,0

(
1{δs≤τ̃+` }

Ẽs2,Z2
δs

(
f
(
Z1
τ̃+`

)))
+ Ẽs1,0

(
1{δs>τ̃+` }

f
(
Z1
τ̃+`

))
It follows that∣∣∣∣Ẽs1,0(f(Z1

τ̃+`

))
−Ẽs2,0

(
f
(
Z1
τ̃+`

))∣∣∣∣ ≤ ∣∣∣∣Ẽs1,0(1{δs≤τ̃+` }
(
Ẽs2,Z2

δs

(
f
(
Z1
τ̃+`

))
− Ẽs2,0

(
f
(
Z1
τ̃+`

))))∣∣∣∣
+

∣∣∣∣Ẽs1,0(1{δs>τ̃+` }Ẽs2,0(f(Z1
τ̃+`

)))∣∣∣∣+∣∣∣∣Ẽs1,0(1{δs>τ̃+` }f(Z1
τ̃+`

))∣∣∣∣
≤ Ẽs1,0

(
f
(
Z2
δs

))
+ 2‖f‖∞P̃s,0

(
τ̃+
` < δs

)
, (A.16)

where we define

f(r) := sup
s∈R+,`1,`2∈R+

|`1−`2|<|r|

∣∣∣∣Ẽs,0(f(Z1
τ̃+`1

))
− Ẽs1,0

(
f
(
Z1
τ̃+`2

))∣∣∣∣, r ∈ R.

In view of part (i), f is a bounded even function such that limr→0 f(r) = 0. Since Z2
δs admits a

normal distribution under P̃s1,0 with mean
∫ s2
s1
v(t)dt and variance

∫ s2
s1
σ2(t)dt), which converges to

0 in distribution as δs→ 0, we obtain that

lim
δs→0

Ẽs1,0
(
f
(
Z2
δs

))
= 0. (A.17)
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Moreover, by (3.8), Lemma A.1, and (A.7), we have

P̃s1,0
(
τ̃+
` <δs

)
=P
(
τ+
` (s1)<s2

)
≤
(

1−Φ

(
`−‖v‖∞δs
σ
√
δs

)
+e2‖v‖∞`/σ2

Φ

(
− `+‖v‖∞δs

σ
√
δs

))
→ 0,(A.18)

as δs→ 0. Combining (A.16), (A.17), and (A.18) completes the proof of part (ii).

A.5 A Technical Lemma for the Proof of (3.15)

The identity (3.15) follows immediately from the following lemma.

Lemma A.3. Let f ∈ C(R+). Assume that f is right-differentiable on R+, and that its right-

derivative, denoted by f ′+, is càdlàg and bounded on R+. Then, f is globally Lipschitz continuous,

and we have

f(t)− f(0) =

∫ t

0
f ′+(s) ds, t ∈ R+.

Proof. We will fix any t ∈ (0,∞) for the rest of the proof. Since f ′+ is càdlàg, it has at most

countably many jumps in [0, t), denoted by (rn)n∈N (note that this sequence is not ordered in

general). For each n ∈ N, we define sn := inf{r > rn : f ′+(r) 6= f ′+(r−)}∧ t. The right-continuity of

f ′+ implies that In := [rn, sn) is nonempty and disjoint from each other, and that f ′+ is continuous on

In (with right-continuity at rn), n ∈ N. Assume without loss of generality that [0, t)\(∪n∈NIn) 6= ∅.
From the construction of (In)n∈N, we see that [0, t) \ (∪n∈NIn) is a countable union of intervals

Jm := [am, bm), m ∈ N, so that [0, t) = (∪n∈NIn) ∪ (∪m∈NJm). Moreover, f ′+ is continuous on

each Jm (with right-continuity at am). By [17, Corollary 2.1.2], f is continuously differentiable

on each In and Jm (with right-continuous differentiability at each left-end point). Hence, by the

fundamental theorem of calculus and the continuity of f ,

f(sn)− f(rn) =

∫ sn

rn

f ′+(r) dr, f(bm)− f(am) =

∫ bm

am

f ′+(r) dr, n,m ∈ N. (A.19)

In particular, f is Lipschitz continuous on [0, t] with Lipschitz constant ‖f ′+‖∞ < ∞. Hence, for

any N ∈ N, by rearranging the end points of (In)Nn=1 and (Jm)Nm=1 into

0 =: t0 ≤ t1 < t2 ≤ t3 < t4 ≤ · · · ≤ t4N−1 < t4N ≤ t4N+1 := t,

and denoting by AN := (∪Nn=1In) ∪ (∪Nm=1Jm) = ∪2N
k=1[t2k−1, t2k), we deduce from (A.19) that

∣∣∣∣f(t)−f(0)−
∫
AN

f ′+(r) dr

∣∣∣∣ =

∣∣∣∣∣
2N∑
k=0

(
f(t2k+1)− f(t2k)

)∣∣∣∣∣ ≤ ‖f ′+‖∞ · Leb
(
[0, t) \AN

)
→ 0, N →∞.

Finally, we obtain from the dominate convergence that

f(t)− f(0) = lim
N→∞

∫
AN

f ′+(r) dr =

∫ t

0
f ′+(r) dr,

which completes the proof of the lemma.
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A.6 Proof of Lemma 4.1

In view of Proposition 2.4 (iii), for any ε > 0, there exists c ∈ (0,∞), depending only on ‖v‖∞, σ,

and σ, such that for any s ∈ R+ and r ∈ [0, c], γ(s, s+ r) ≥ ε. Assuming first T ≥ c/2, we define

f2T (t) := (2T − t)1[0,2T ](t) = −
∫ ∞
t

(
− 1[0,2T )(r)

)
dr. t ∈ R+. (A.20)

Clearly, f2T ∈ Cac
e,cdl(R+). By (2.7) and (A.20) we have, for any t ∈ R+,

−
(
Γf2T

)
(t) =

∫ ∞
t

1[0,2T )(r)γ(t, r) dr = 1[0,2T )(t)

∫ 2T

t
γ(t, r) dr

≥ 1[0,2T−c)(t)

∫ t+c

t
γ(t, r) dr + 1[2T−c,2T )(t)

∫ 2T

t
γ(t, r) dr

≥ cε1[0,2T−c)(t) + (2T − t)ε1[2T−c,2T )(t) ≥
2T − t

2T
cε1[0,2T )(t) =

cε

2T
f2T (t).

Together with [9, Chapter 1, Proposition 1.5 (b)] and the positivity of (P`)`∈R+ (recalling from

Proposition 2.9 (i) that (P`)`∈R+ is a Feller semigroup), we obtain that, for any ` ∈ R+ and t ∈ R+,

∂

∂`

(
P`f2T

)
(t) =

(
P`Γf2T

)
(t) ≤ − cε

2T

(
P`f2T

)
(t).

Since 1[0,T ] ≤ f2T /T , the positivity of (P`)`∈R+ with Grönwall’s inequality implies that

∥∥P`1[0,T ]

∥∥
∞ ≤

1

T

∥∥P`f2T

∥∥
∞ ≤

e−cε`/(2T )

T

∥∥fT∥∥∞ = 2e−cε`/(2T ), T ≥ c

2
. (A.21)

Finally, when T ∈ (0, c/2), it follows from the positivity property of (P`)`∈R+ and (A.21) that∥∥P`1[0,T ]

∥∥
∞ ≤

∥∥P`1[0,c/2]

∥∥
∞ ≤ 2e−ε`,

which completes the proof of the lemma.

A.7 Proof of Lemma 4.2

When both v and σ are constants, the time-homogeneity of ϕ implies that, for any s ∈ R+, τ±(s)−s
has the identical law as τ±(0). It follows from (2.5) that, for any ` ∈ R+ and f ∈ L∞(R+),(

P±` f
)
(s) = E

(
f
(
(s+ τ±` (0)

))
, s ∈ R+. (A.22)

Hence by Fubini’s theorem, for any k, ` ∈ R+ and f ∈ L∞(R+), we have

(
P+
k P
−
` f
)
(s) =

(
P+
k E
(
f
(
·+τ−` (0)

))
(s) = E

(
E
(
f
(
r + τ−` (0)

)) ∣∣∣
r=s+τ+k (0)

)
= E

(
E
(
f
(
s+ r + τ−` (0)

)) ∣∣∣
r=τ+k (0)

)
= E

(
E
(
f
(
s+ r + τ+

k (0)
)) ∣∣∣

r=τ−` (0)

)
= E

(
E
(
f
(
r + τ+

k (0)
)) ∣∣∣

r=s+τ−` (0)

)
=
(
P−` E

(
f
(
·+τ+

k (0)
))

(s) =
(
P−` P

+
k f
)
(s), s ∈ R+,



49

that is, P+
k and P−` are commutative. This, together with Proposition 3.4, implies that (P+

` P
−
` )`∈R+

is a Feller semigroup. Moreover, by (2.7) and Proposition 3.5, for any f ∈ Cac
e,cdl(R+), we have

lim
`→0+

1

`

∥∥P+
` P
−
` f − f

∥∥
∞ = lim

`→0+

1

`

∥∥P+
`

(
P−` f − f

)∥∥
∞ + lim

`→0+

1

`

∥∥P+
` f − f

∥∥
∞ =

(
Γ++ Γ−

)
f = Γf,

namely, the strong generator of (P+
` P
−
` )`∈R+ coincides with Γ on Cac

e,cdl(R+). In view of Proposition

2.9 (i), we deduce that

P`f = P+
` P
−
` f, for any f ∈ L∞(R+), ` ∈ R+.

Next, for any ` ∈ R+, f ∈ Cac
e,cdl(R+), and s ∈ R+, we deduce from (2.4), (A.22), and Fubini’s

theorem that(
P±` f

)
(s)=E

(
−
∫ ∞
s+τ±` (0)

gf (r)dr

)
=−
∫ ∞

0

(∫ ∞
s
gf (t+r)dt

)
dF±` (r)=−

∫ ∞
s

(∫ ∞
0
gf (t+r)dF±` (r)

)
dt,

where F±` denotes the distribution function of τ±` under P. Since gf is càdlàg and vanishes at infinity

with exponential rate, so is h(t) :=
∫∞

0 gf (t+r)dF±` (r), t ∈ R+. Hence, we have P±` f ∈ C
ac
e,cdl(R+).

Finally, by the fact that Cac
e,cdl(R+) ⊂ D(Γ±) (given as in Proposition 3.5), the commutativity of

P+
k and P−` , for any k, ` ∈ R+, as well as the strong continuity of (P±` )`∈R+ (given as in Proposition

3.4), we obtain that, for any f ∈ Cac
e,cdl(R+) and ` ∈ R+,

Γ+P−` f = lim
δ`→0+

1

`

(
P+
δ` − I

)
P−` f = lim

δ`→0+

1

`
P−`
(
P+
δ` − I

)
f = P−` Γ+f.

The other identity can be shown using similar arguments. The proof of the lemma is now complete.
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