
Wiener-Hopf Factorization Technique for Time-Inhomogeneous

Finite Markov Chains

Tomasz R. Bielecki
tbielecki@iit.edu

http://math.iit.edu/~bielecki

Ziteng Cheng
zcheng7@hawk.iit.edu

Igor Cialenco
cialenco@iit.edu

http://math.iit.edu/~igor

Ruoting Gong
rgong2@iit.edu

http://mypages.iit.edu/~rgong2

Department of Applied Mathematics, Illinois Institute of Technology

W 32nd Str, John T. Rettaliata Engineering Center, Room 208, Chicago, IL 60616, USA

November 26, 2019

Abstract: This work contributes to the theory of Wiener-Hopf type factorization for finite Markov

chains. This theory originated in the seminal paper [BRW80], which treated the case

of finite time-homogeneous Markov chains. Since then, several works extended the

results of [BRW80] in many directions. However, all these extensions were dealing with

time-homogeneous Markov case. The first work dealing with the time-inhomogeneous

situation was [BCGH19], where Wiener-Hopf type factorization for time-inhomogeneous

finite Markov chain with piecewise constant generator matrix function was derived. In

the present paper we go further: we derive and study Wiener-Hopf type factorization

for time-inhomogeneous finite Markov chain with the generator matrix function being

a fairly general matrix valued function of time.

Keywords: Time-inhomogeneous finite Markov chain, Markov family, Feller semigroup, time ho-

mogenization, Wiener-Hopf factorization.
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1 Introduction

The main goal of this paper is to develop a Wiener-Hopf type factorization for finite time-inhomo-

geneous Markov chains. In order to motivate this goal, we first provide a brief account of the

Wiener-Hopf factorization for time-homogeneous Markov chains based on [BRW80].

Towards this end, consider a finite state space E with cardinality m, and let Λ be a sub-

Markovian generator matrix of dimension m×m, that is, Λ(i, j) ≥ 0, i 6= j, and
∑

j∈E Λ(i, j) ≤ 0.

Next, let v be a real valued function on E, such that v(i) 6= 0 for all i ∈ E, and define

E± := {i ∈ E : ± v(i) > 0} .
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We also denote by m± cardinality of E±, and we let V := diag{v(i) : i ∈ E} be the diagonal matrix

of dimension m ×m. Finally, let I and I± denote the identity matrices of dimensions m ×m and

m± ×m±, respectively. Using probabilistic methods, the following result was proved in [BRW80].

Theorem 1.1 ([BRW80, Theorem I]). For any c > 0, there exists a unique pair of matrices

(Π+
c ,Π

−
c ) of dimensions m− ×m+ and m+ ×m− respectively, such that the matrix

S =

(
I+ Π−c
Π+
c I−

)

is invertible and the following factorization holds true

V−1(Λ− c I) = S

(
Q+
c 0

0 Q−c

)
S−1, (1.1)

where Q±c are m±×m± sub-Markovian generator matrices. Moreover, Π±c are strictly substochastic.

The right-hand side of (1.1) is said to constitute the Wiener-Hopf factorization of the matrix

V−1(Λ − cI). While the factorization (1.1) is algebraic in its nature, it admits a very important

probabilistic interpretation, which leads to very efficient computation of some useful expectations.

More precisely, let X be a time-homogeneous Markov chain taking values in E ∪ ∂, where ∂ is a

coffin state, with generator Λ. For t ≥ 0, we define the additive functional

φ(t) :=

∫ t

0
v(Xu) du,

and two stopping times

τ±t := inf {u ≥ 0 : ±φ(u) > t} .

Theorem 1.2 ([BRW80, Theorem II]). For any i ∈ E∓ and j ∈ E±,

E
(
e−c τ

±
0 1{

X
τ±0

=j
} ∣∣∣X0 = i

)
= Π±c (i, j). (1.2)

For any i, j ∈ E± and t ≥ 0,

E
(
e−c τ

±
t 1{

X
τ±t

=j
} ∣∣∣X0 = i

)
= etQ

±
c (i, j). (1.3)

Both Theorems 1.1 and 1.2 have been studied for more general classes of Markov process, as well

as for various types of stopping times, that naturally occur in applications (cf. [KW90], [APU03],

[Wil08], [MP11], and references therein). However, in all these studies the Markov processes have

been assumed to be time-homogeneous.

As it turns out, the time-inhomogeneous case is more intricate, and direct (naive) generalizations

or applications of the time-homogenous case to the non-homogenous case can not be done in

principle. Specifically, let now X be a finite state time-inhomogeneous Markov chain taking values

in E ∪ ∂, with generator function Λs, s ≥ 0. The first observation that one needs to make is that

the Wiener-Hopf factorization of the matrix V−1(Λs − cI) can be done for each s ≥ 0 separately,
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exactly as described in Theorem 1.1. However, the resulting matrices Π±c (s) and Q±c (s), s ≥ 0, are

not useful for computing the expectations of the form

E
(
e−c τ

±
t (s)

1{
X
τ±t (s)

=j
} ∣∣∣Xs = i

)
,

where

τ±t (s) := inf

{
u ≥ s : ±

∫ s+u

s
v(Xr) dr > t

}
.

This makes the study of the time-inhomogeneous case a highly nontrivial and novel enterprise. As

it will be seen from the discussion presented below, an entirely new theory needs to be put forth

for this purpose. The research effort in this direction has been originated in [BCGH19]. This work

contributes to the continuation of the research endeavor in this direction.

2 Setup and the main goal of the paper

2.1 Preliminaries

Throughout this paper we let E be a finite set, with |E| = m > 1. We define E := E ∪ {∂}, where

∂ denotes the coffin state isolated from E. Let (Λs)s∈R+ , where R+ := [0,∞), be a family of m×m
generator matrices, i.e., their off-diagonal elements are non-negative, and the entries in their rows

sum to zero. We additionally define Λ∞ := 0, the m×m matrix with all entries equal to zero.

We make the following standing assumption:

Assumption 2.1.

(i) There exists a universal constant K ∈ (0,∞), such that |Λs(i, j)| ≤ K, for all i, j ∈ E and

s ∈ R+.

(ii) (Λs)s∈R+, considered as a mapping from R+ to the set of m × m generator matrices, is

continuous with respect to s.

Let v : E → R with v(i) 6= 0 for any i ∈ E and v(∂) = 0, V := diag{v(i) : i ∈ E}, v :=

maxi∈E |v(i)|, and v := mini∈E |v(i)|. We will use the following partition of the set E

E+ := {i ∈ E : v(i) > 0} and E− := {i ∈ E : v(i) < 0} .

We assume that both E+ and E− are non-empty, and that the indices of the first m+ = |E+|
(respectively, last m− = |E−|) rows and columns of any m×m matrix correspond to the elements

in E+ (respectively, E−). Accordingly, we write Λs and V in the block form

Λs =

(E+ E−

E+ As Bs

E− Cs Ds

)
, V =

(E+ E−

E+ V+ 0

E− 0 V−

)
. (2.1)

In what follows we let X := R+×E, and X± := R+×E±. The Borel σ-field on X (respectively,

X±) is denoted by B(X ) := B(R+)⊗ 2E (respectively, B(X±) := B(R+)⊗ 2E±). Accordingly, we
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let X := X ∪ (+∞, ∂) (respectively, X± := X± ∪ (+∞, ∂)) be the one-point completion of X

(respectively, X±), and let B(X ) := σ(B(X ) ∪ {(∞, ∂)}) (respectively, B(X±) := σ(B(X±) ∪
{(∞, ∂)})). A pair (s, i) ∈X consists of the time variable s and the space variable i.

We will also use the following notations for various spaces of real-valued functions:

• L∞(X ) is the space of B(X )-measurable, and bounded functions f on X , with f(+∞, ∂) =

0.

• C0(X ) is the space of functions f ∈ L∞(X ) such that f(·, i) ∈ C0(R+) for all i ∈ E, where

C0(R+) is the space of functions vanishing at infinity.

• Cc(X ) is the space of functions f ∈ L∞(X ) such that f(·, i) ∈ Cc(R+) for all i ∈ E, where

Cc(R+) is the space of functions with compact support.

• C1
0 (X ) is the space of functions f ∈ C0(X ) such that, for any i ∈ E, ∂f(·, i)/∂s exists and

belongs to C0(R+) (for convenience, we stipulate that ∂f(∞, ∂)/∂s = 0).

• C1
c (X ) is the space of functions f ∈ Cc(X ) such that, for any i ∈ E, ∂f(·, i)/∂s exists (for

convenience, we stipulate that ∂f(∞, ∂)/∂s = 0).

Sometimes X will be replaced by X+ or X− when the functions are defined on these spaces,

in which case the set E will be replaced by E+ or E−, respectively, in the above definitions. Note

that each function on X can be viewed as a time-dependent vector of size m, which can be split

into a time-dependent vector of size m+ (a function on X+) and a time-dependent vector of size

m− (a function on X−).

We conclude this section by introducing some more notations, this time for operators:

• Λ̃ : L∞(X )→ L∞(X ) is the multiplication operator associated with (Λs)s∈R+ , defined by

(Λ̃ g)(s, i) := (Λs g(s, ·))(i), (s, i) ∈X . (2.2)

• Similarly, we define multiplication operators Ã : L∞(X+) → L∞(X+), B̃ : L∞(X−) →
L∞(X+), C̃ : L∞(X+)→ L∞(X−), and D̃ : L∞(X−)→ L∞(X−), associated with the blocks

(As)s∈R+ , (Bs)s∈R+ , (Cs)s∈R+ , and (Ds)s∈R+ given in (2.1), respectively.

Given the above, for any1 g = (g+, g−)T ∈ L∞(X ), where g± ∈ L∞(X±), we have

Λ̃ g =

(
Ã g+ + B̃ g−

C̃ g+ + D̃ g−

)
. (2.3)

2.2 A time-inhomogeneous Markov family corresponding to (Λs)s∈R+ and related

passage times

We start with introducing a time-inhomogeneous Markov Family corresponding to (Λs)s∈R+ . Then,

we proceed with a study of some passage times related to this family.

1The superscript T will be used to denote the transpose of a vector or matrix.
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2.2.1 A time-inhomogeneous Markov family M∗ corresponding to (Λs)s∈R+

We take Ω∗ as the collection of E-valued functions ω∗ on R+, and F ∗ := σ{X∗t , t ∈ R+}, where

X is the coordinate mapping X∗· (ω
∗) := ω∗(·). Sometimes we may need the value of ω∗ ∈ Ω∗ at

infinity, and in such case we set X∗∞(ω∗) = ω∗(∞) = ∂, for any ω∗ ∈ Ω∗. We endow the space

(Ω∗,F ∗) with a family of filtrations F∗s := {F s,∗
t , t ∈ [s,∞]}, s ∈ R+, where, for s ∈ R+,

F s,∗
t :=

⋂
r>t

σ (X∗u, u ∈ [s, r]) , t ∈ [s,∞); F s,∗
∞ := σ

(⋃
t≥s

F s,∗
t

)
,

and F∞,∗∞ := {∅,Ω∗}. We denote by

M∗ :=
{(

Ω∗,F ∗,F∗s, (X∗t )t∈[s,∞],P∗s,i
)
, (s, i) ∈X

}
a canonical time-inhomogeneous Markov family. That is,

• P∗s,i is a probability measure on (Ω∗,F s,∗
∞ ) for (s, i) ∈X ;

• the function P ∗ : X × R+ × 2E → [0, 1] defined for 0 ≤ s ≤ t ≤ ∞ as

P ∗(s, i, t, B) := P∗s,i(X∗t ∈ B)

is measurable with respect to i for any fixed s ≤ t and B ∈ 2E;

• P∗s,i(X∗s = i) = 1 for any (s, i) ∈X ;

• for any (s, i) ∈X , s ≤ t ≤ r ≤ ∞, and B ∈ 2E, it holds that

P∗s,i
(
X∗r ∈ B |F

s,∗
t

)
= P∗t,X∗t (X∗r ∈ B) , P∗s,i − a.s. .

Let U∗ := (U∗s,t)0≤s≤t<∞ be the evolution system (cf. [Bot14]) corresponding to M∗ defined by

U∗s,tf(i) := E∗s,i (f(X∗t )) , 0 ≤ s ≤ t <∞, i ∈ E, (2.4)

for all functions (column vectors) f : E→ R.2 We assume that

lim
h↓0

1

h

(
U∗s,s+hf(i)− f(i)

)
= Λsf(i), for any (s, i) ∈X , (2.5)

for all f : E→ R.

It is well known that a standard version of the Markov familyM∗ (cf. [GS04, Definition I.6.6])

can be constructed. This is done by first constructing via Peano-Baker series the evolution system

U∗ = (U∗s,t)0≤s≤t<∞ that solves

dU∗s,t
dt

= Λt U∗s,t, U∗s,s = I, 0 ≤ s ≤ t <∞. (2.6)

Since Λt is a generator matrix, U∗s,t is positive preserving and contracting with U∗s,t1m = 1m. In

addition, due to Assumption 2.1-(i) and (2.6), it holds for any 0 ≤ s < t and r ∈ (0, t− s) that∥∥U∗s,t+r − U∗s,t
∥∥
∞ =

∥∥U∗s,t
(
U∗t,t+r − I

)∥∥
∞ ≤ Cr,

2Note that for t ∈ R+, X∗t takes values in E.
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and ∥∥U∗s+r,t − U∗s,t
∥∥
∞ =

∥∥(I− U∗s,s+r
)

U∗s+r,t
∥∥
∞ ≤ Cr,

for some positive constant C, so that U∗s,t is strongly continuous in s and t. The above, together with

the finiteness of the state space, implies that U∗ is a Feller evolution system. The corresponding

standard version can then be constructed (cf. [GS04, Theorem I.6.3]).

In view of the above, we will consider the standard version of M∗ in what follows, and, for

simplicity, we will preserve the notation M∗ = {(Ω∗,F ∗,F∗s, (X∗t )t≥s,P∗s,i), (s, i) ∈ X }, in which

Ω∗ is restricted to the collection of E-valued càdlàg functions ω∗ on R+ with ω∗(∞) = ∂.

2.2.2 Passage times related to M∗

For any s ∈ R+, we define an additive functional φ∗· (s) as

φ∗t (s) :=

∫ t

s
v(X∗u) du, t ∈ [s,∞],

and we stipulate φ∗∞(s, ω∗) = ∞ for every ω∗ ∈ Ω∗. In addition, for any s ∈ R+ and ` ∈ R+, we

define associated passage times

τ+,∗` (s) := inf {t ∈ [s,∞] : φ∗t (s) > `} and τ−,∗` (s) := inf {t ∈ [s,∞] : φ∗t (s) < −`} .

Both τ+,∗` (s) and τ−,∗` (s) are F∗s-stopping times since, φ∗· (s) is F∗s-adapted, has continuous sample

paths, and F∗s is right-continuous (cf. [JS03, Proposition 1.28]). For notational convenience, if no

confusion arises, we will omit the parameter s in φ∗t (s) and τ±,∗` (s).

The following result is an immediate consequence of the setup above and therefore its proof is

omitted.

Lemma 2.2. For any s ∈ R+, ` ∈ R+, and ω∗ ∈ Ω∗ we have X∗
τ±,∗` (s)

(ω∗) ∈ E± ∪ {∂}. In

particular, if τ±,∗` (s, ω∗) <∞, then X∗
τ±,∗` (s)

(ω∗) ∈ E±.

2.3 The main goal of the paper

Our main interest is to derive a Wiener-Hopf type method for computing expectations of the

following form

E∗s,i
(
g±
(
τ±,∗` , X∗

τ±,∗`

))
(2.7)

for g± ∈ L∞(X±), ` ∈ R+, and (s, i) ∈ X . In view of Lemma 2.2, it is enough to compute

the expectation in (2.7) for g± ∈ L∞(X±) in order to compute the analogous expectation for

g ∈ L∞(X ).

The Wiener-Hopf type method derived in this paper generalizes the Wiener-Hopf type method

of [BRW80] that was developed for the time-homogeneous Markov chains.

Remark 2.3. The time-homogeneous version of the problem of computing the expectation of the

type given in (2.7) appears frequently in time-homogeneous fluid models (see e.g. [Rog94] and the

references therein). Time inhomogeneous extensions of such models is important and natural due

to temporal (seasonal) effect, for example. This is one practical motivation for the study presented

in this paper.
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In order to proceed, we introduce the following operators:

• J+ : L∞(X+)→ L∞(X−) is defined as(
J+g+

)
(s, i) := E∗s,i

(
g+
(
τ+,∗0 , X∗

τ+,∗0

))
, (s, i) ∈X−. (2.8)

Clearly, for any g+ ∈ L∞(X+), |(J+g+)(s, i)| ≤ ‖g+‖L∞(X+) < ∞ for any (s, i) ∈ X−, and

(J+g+)(∞, ∂) = 0, so that J+g+ ∈ L∞(X−).

• J− : L∞(X−)→ L∞(X+) is defined as,(
J−g−

)
(s, i) := E∗s,i

(
g−
(
τ−,∗0 , X∗

τ−,∗0

))
, (s, i) ∈X+. (2.9)

• For any ` ∈ R+, P+
` : L∞(X+)→ L∞(X+) is defined as(
P+
` g

+
)
(s, i) := E∗s,i

(
g+
(
τ+,∗` , X∗

τ+,∗`

))
, (s, i) ∈X+. (2.10)

• For any ` ∈ R+, P−` : L∞(X−)→ L∞(X−) is defined as,(
P−` g

−)(s, i) := E∗s,i
(
g−
(
τ−,∗` , X∗

τ−,∗`

))
, (s, i) ∈X−. (2.11)

• For any (s, i) ∈X+, we define

(
G+g+

)
(s, i) := lim

`→0+

1

`

(
P+
` g

+(s, i)− g+(s, i)
)
, (2.12)

for any g+ ∈ C0(X+) such that the limit in (2.12) exists and is finite.

• For any (s, i) ∈X−, we define

(
G−g−

)
(s, i) := lim

`→0+

1

`

(
P−` g

−(s, i)− g−(s, i)
)
, (2.13)

for all g− ∈ C0(X+) such that the above limit in (2.13) exists and is finite.

Remark 2.4. For g+ ∈ L∞(X+), ` ∈ (0,∞), and (s, i) ∈X−, it can be shown that

E∗s,i
(
g+
(
τ+,∗` , X∗

τ+,∗`

))
=
(
J+P+

` g
+
)
(s, i). (2.14)

Similarly, for g− ∈ L∞(X−), ` ∈ (0,∞), and (s, i) ∈X+, we have

E∗s,i
(
g−
(
τ−,∗` , X∗

τ−,∗`

))
=
(
J−P−` g

−)(s, i). (2.15)

The identity (2.14) will be verified in Remark 4.5 below, while (2.15) can be proved in an analogous

way with v replaced by −v.

In view of (2.8)−(2.11) and (2.14)−(2.15), the expectation of the form (2.7) for any g± ∈
L∞(X±), ` ∈ R+, and (s, i) ∈X , can be represented in terms of the operators J± and P±` .
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3 Main Results

We now state the main results of this paper, Theorem 3.1 and Theorem 3.2. Theorem 3.1 is

analytical in nature, and it provides the Wiener-Hopf factorization for the generator V−1(∂/∂s+Λ̃).

This factorization is given in terms of operators (S+, H+, S−, H−) showing in the statement of the

theorem. Theorem 3.2 is probabilistic in nature, and provides the probabilistic interpretation of the

operators (S+, H+, S−, H−), which is key for various applications of our Wiener-Hopf factorization.

Theorem 3.1. Let (Λs)s∈R+ be a family of m×m generator matrices satisfying Assumption 2.1,

and let Λ̃ be the associated multiplication operator defined as in (2.2). Let v : E→ R with v(i) 6= 0

for any i ∈ E, v(∂) = 0, and V = diag {v(i) : i ∈ E}. Then, there exists a unique quadruple of

operators (S+, H+, S−, H−) which solves the following operator equation

V−1
(
∂

∂s
+ Λ̃

)(
I+ S−

S+ I−

)(
g+

g−

)
=

(
I+ S−

S+ I−

)(
H+ 0

0 −H−

)(
g+

g−

)
, g± ∈ C1

0 (X±), (3.1)

subject to the conditions below:

(a±) S± : C0(X±)→ C0(X∓) is a bounded operator such that

(i) for any g± ∈ Cc(X±) with supp g± ⊂ [0, ηg± ]× E± for some constant ηg± ∈ (0,∞), we

have suppS±g± ⊂ [0, ηg± ]×E∓;

(ii) for any g± ∈ C1
0 (X±), we have S±g± ∈ C1

0 (X∓).

(b±) H± is the strong generator of a strongly continuous positive contraction semigroup (Q±` )`∈R+

on C0(X±) with domain D(H±) = C1
0 (X±).

Theorem 3.2. For any g± ∈ C0(X±), we have

S±g± = J±g± and Q±` g
± = P±` g

±, for any ` ∈ R+,

where J± and (P±` )`∈R+ are defined in (2.8)−(2.11). Moreover, G+ given in (2.12) is the (strong)

generator of (P+
` )`≥0 with D(G+) = C1

0 (X +), and G− given in (2.13) is the (strong) generator of

(P−` )`≥0 with D(G−) = C1
0 (X −).

The proofs of these two theorems is deferred to Section 4.

By Theorems 3.1 and 3.2, we are able to compute J±g± and P±` g
±, for any g± ∈ C1

0 (X±) and

` ∈ R+, by solving equation (3.1) subject to the conditions (a±) and (b±). In view of Remark 2.4,

these functions lead to the expectation of the form (2.7) for any g± ∈ C1
0 (X±). In particular, for

any c > 0 and j ∈ E±, by taking g±j ∈ C1
0 (X±) with

g±j (s, i) := e−cs 1{j}(i), (s, i) ∈X±, (3.2)

we obtain the following Laplace transform for (τ±,∗` , X∗
τ±,∗`

)

E∗s,i
(
e−cτ

±,∗
` 1{

X∗
τ
±,∗
`

=j
}),
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for any c ∈ (0,∞), ` ∈ R+, and (s, i) ∈ X . We then perform the inverse Laplace transform with

respect to c to obtain the joint distribution of (τ±,∗` , X∗
τ±,∗`

) under P∗s,i, which enables us to compute

the expectations (2.7) for any g± ∈ L∞(X±).

Note that the equation (3.1) can be decomposed into the following two uncoupled equations

V−1
(
∂

∂s
+ Λ̃

)(
I+

S+

)
g+ =

(
I+

S+

)
H+g+, g+ ∈ C1

0 (X+), (3.3)

V−1
(
∂

∂s
+ Λ̃

)(
I−

S−

)
g+ = −

(
I−

S−

)
H−g−, g− ∈ C1

0 (X−). (3.4)

Hence, one can compute J+g+ and G+g+ (and thus P+
` g

+) separately from J−g− and G−g− (and

thus P−` g
−) by solving (3.3) and (3.4) subject to (a+) and (b+), and (a−) and (b−), respectively.

Remark 3.3. By (2.1), (2.3), and Theorems 3.1 and 3.2, we see that (J+, G+) is the unique solution,

subject to (a+) and (b+), to the following two operator equations,(
V+
)−1( ∂

∂s
+ Ã + B̃S+

)
g+ = H+g+, (3.5)

(
V−
)−1( ∂

∂s
S+ + C̃ + D̃S+

)
g+ = S+H+g+, (3.6)

where g+ ∈ C1
0 (X+). By plugging (3.5) into (3.6), we obtain the operator Riccati equation of the

form (
S+
(
V +
)−1

B̃S+ + S+
(
V+
)−1( ∂

∂s
+ Ã

)
−
(
V−
)−1( ∂

∂s
+ D̃

)
S+ −

(
V−
)−1

C̃

)
g+ = 0.

Hence, in order to compute (J+, G+) from (3.3), one needs first to compute J+ by solving the

above operator equation subject to (a+), and then G+ is given in terms of J+ by (3.5). Similarly,

one can compute (J−, G−) from (3.4) in an analogous way.

Remark 3.4. The operator

Ψ :=

(
I+ J−

J+ I−

)
: C0(X )→ C0(X )

is the counterpart of the matrix S given in Theorem 1.1. It can be shown that the operator Ψ

is injective. However, unlike the matrix S which is invertible, the operator Ψ is not invertible in

general. In fact, the surjectivity of Ψ may fail, even when restricted to C1
0 (X ) (recall the condition

(a+)(ii)). Nevertheless, the potential lack of invertibility of Ψ does not affect the existence and

uniqueness of our Wiener-Hopf factorization. It only affects the form of equality (3.1), with S±

replaced with J±.

Remark 3.5. When the Markov family M∗ is time-homogeneous, namely, Λs = Λ for all s ∈ R+,

where Λ is an m×m generator matrix, the equation (3.1) reduces to the time-homogeneous Wiener-

Hopf factorization (1.1), which, in light of the invertibility of S, can be rewritten as

V−1(Λ− c I)

(
I+ Π−c
Π+
c I−

)
=

(
I+ Π−c
Π+
c I−

)(
Q+
c 0

0 Q−c

)
. (3.7)
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In what follows, we will only check the “+” part of the above equality.

Towards this end, for any c ∈ (0,∞) and j ∈ E+, take g+j ∈ C1
0 (X+) as in (3.2). Since (J+, G+)

is the unique solution to (3.3) subject to (a+) and (b+), we have

V−1
(
∂

∂s
+ Λ

)(
I+

J+

)
g+j =

(
I+

J+

)
G+g+j . (3.8)

Since M∗ is a time-homogeneous Markov family, for any s, ` ∈ R+ and i ∈ E, the distribution of

(τ+,∗` (s)− s,Xτ+,∗` (s)) under P∗s,i is the same as that of (τ+,∗` (0), Xτ+,∗` (0)) under P∗0,i. Hence, for any

s ∈ R+ and i ∈ E+, we have

(
G+g+j

)
(s, i) = lim

`→0+

1

`

((
P+
` g

+
j

)
(s, i)−g+j (s, i)

)
= lim
`→0+

1

`

(
E∗s,i
(
e−cτ

+,∗
` (s)

1{
X∗
τ
+,∗
`

(s)
=j
})−1{j}(i))

= lim
`→0+

e−cs

`

(
E∗0,i
(
e−cτ

+,∗
` (0)

1{
X∗
τ
+,∗
`

(0)
=j
})− 1{j}(i)) = e−cs Q+

c (i, j), (3.9)

where we recall that the matrix Q+
c is defined in (1.3). Similarly, for any s ∈ R+ and i ∈ E−,

(
J+g+j

)
(s, i) = E∗s,i

(
g+j

(
τ+,∗0 (s), X∗

τ+,∗0 (s)

))
= E∗s,i

(
e−cτ

+,∗
0 (s)

1{
X∗
τ
+,∗
0 (s)

=j
})

= e−cs E∗0,i
(
e−cτ

+,∗
0 (0)

1{
X∗
τ
+,∗
0 (0)

=j
}) = e−cs Π+

c (i, j), (3.10)

where the matrix Π+
c is defined by (1.2), and(

J+G+g+j
)
(s, i) = E∗s,i

((
G+g+j

)(
τ+,∗0 (s), X∗

τ+,∗0 (s)

))
= E∗s,i

(
e−cτ

+,∗
0 (s) Q+

c

(
X∗
τ+,∗0 (s)

, j
))

= e−cs E∗0,i
(
e−cτ

+,∗
0 (0)Q+

c

(
X∗
τ+,∗0 (0)

, j
))

=e−cs
∑
k∈E+

E∗0,i
(
e−cτ

+,∗
0 (0)

1{
X∗
τ
+,∗
0

=k
})Q+

c (k, j)

= e−cs
∑
k∈E+

Π+
c (i, k) Q+

c (k, j) = e−cs
(
Π+
c Q+

c

)
(i, j). (3.11)

By plugging (3.9)−(3.11) into (3.8), we obtain

V−1
(
∂

∂s
+ Λ

)(
I+

Π+
c

)
e−cs e+j =

(
I+

Π+
c

)
Q+
c e

+
j ,

where e+j is the j-th m+-dimensional unit column vector. Finally, by evaluating the derivative and

taking s = 0 on the left-hand side above, we deduce that

V−1
(
Λ− c I

)( I+

Π+
c

)
=

(
I+

Π+
c

)
Q+
c ,

which is the “+” part of (3.7).

Remark 3.6. From the discussion in Remark 3.5, for each c > 0, solving the time-homogeneous

Wiener-Hopf equation (1.1) for the matrices (Π±c ,Q
±
c ) is equivalent to solving the time-inhomogeneous

Wiener-Hopf equation (3.1), subject to the conditions (a±) and (b±), for the operators (J±, G±)
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with g± ∈ C1
0 (X±) of the form (3.2). Therefore, for each c ∈ (0,∞), the uniqueness of (Π±c ,Q

±
c )

as a solution to (1.1) corresponds to the uniqueness of (J±, G±) as a solution to (3.1), subject to

(a±) and (b±), when g± is restricted to the subclasses of C1
0 (X±) of the form (3.2).

When c = 0, the functions g± of the form (3.2) do not belong to C1
0 (X±) anymore. Hence, our

uniqueness result does not contradict the non-uniqueness of (Π±0 ,Q
±
0 ) that was shown in [BRW80].

4 Proofs of the main results

In this section we prove Theorems 3.1 and 3.2. We will only give the proofs of the “+” case in both

theorems, as the “−” case can be proved in an analogous way with v replaced by −v.

4.1 Auxiliary Markov families

In this subsection, we introduce an auxiliary time-inhomogenous Markov familyM and an auxiliary

time-homogenous Markov family M̃. We start by introducing some more notations of spaces and σ-

fields. Let Y := E×R, and the Borel σ-field on Y is denoted by B(Y ) := 2E⊗B(R). Accordingly,

let Y := Y ∪ {(∂,∞)} be the one-point completion of Y , and B(Y ) := σ(B(Y ) ∪ {(∂,∞)}).
Moreover, we set Z := R+ × Y = X × R and Z := Z ∪ {(∞, ∂,∞)}.

Let Ω be the set of càdlàg functions ω on R+ taking values in Y . We define ω(∞) := (∂,∞)

for every ω ∈ Ω. One can construct a standard canonical time-inhomogeneous Markov family (cf.

[GS04, Definition I.6.6])

M :=
{(

Ω,F ,Fs, (Xt, ϕt)t∈[s,∞],Ps,(i,a)
)
, (s, i, a) ∈ Z

}
with transition function P given by

P (s, (i, a), t, A) := P∗s,i
((

X∗t , a+

∫ t

s
v
(
X∗u
)
du

)
∈ A

)
, (4.1)

where (s, i, a) ∈ Z , t ∈ [s,∞], and A ∈ B(Y ). Indeed, a routine check verifies that P is a transition

function associated with a Feller semigroup, this allows us to apply [GS04, Theorem I.6.3] in order

to prove existence of such M. Furthermore, by investigating the finite dimensional distribution of

(X,ϕ) under Ps,(i,a) and invoking their right continuous sample paths, it can be shown thatM has

the following properties:3

(i) for any (s, i, a) ∈ Z ,

the law of X under Ps,(i,a) = the law of X∗ under P∗s,i; (4.2)

(ii) for any (s, i, a) ∈ Z ,

Ps,(i,a)
(
ϕt = a+

∫ t

s
v(Xu) du, for all t ∈ [s,∞)

)
= 1. (4.3)

3The details of construction of the family M and its properties take much space, and therefore are not given here.

They can be obtained from the authors upon request.
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Considering the standard Markov family M, for any s, ` ∈ R+, we define

τ+` (s) := inf
{
t ∈ [s,∞] : ϕt > `

}
,

which is an Fs-stopping time in light of the continuity of ϕ and the right-continuity of the filtration

Fs. By similar arguments as in the proof of Lemma 2.2, for any (s, i, a) ∈ Z and ` ∈ [a,∞),

Ps,(i,a)
(
Xτ+` (s) ∈ E+ ∪ {∂}

)
= 1. (4.4)

Moreover, it follows from (4.3) that, for any (s, i, a) ∈ Z ,

τ+` (s) = inf

{
t ≥ s : a+

∫ t

s
v(Xu) du > `

}
, Ps,(i,a) − a. s. .

If no confusion arise, we will omit the s in τ+` (s).

The next proposition is an immediate consequence of (4.2) and (4.3), so its proof is skipped.

Proposition 4.1. For any g+ ∈ L∞(X+), (s, i, a) ∈ Z , and ` ∈ [a,∞),

Es,(i,a)
(
g+
(
τ+` , Xτ+`

))
= E∗s,i

(
g+
(
τ+,∗`−a, X

∗
τ+,∗`−a

))
.

Proposition 4.1 provides a useful representation of the expectation E∗s,i
(
g+
(
τ+,∗`−a, X

∗
τ+,∗`−a

))
. We

will need still another representation of this expectation. Towards this end, we will first transform

the time-inhomogeneous Markov family M into a time-homogeneous Markov family

M̃ =
{(

Ω̃, F̃ , F̃, (Zt)t∈R+
, (θr)r∈R+ , P̃z

)
, z ∈ Z

}
following the setup in [Bot14]. The construction of M̃ proceeds as follows.

• We let Ω̃ := R+ × Ω be the new sample space, with elements ω̃ = (s, ω), where s ∈ R+ and

ω ∈ Ω. On Ω̃ we consider the σ-field

F̃ :=
{
Ã ⊂ Ω̃ : Ãs ∈ F s

∞ for any s ∈ R+

}
,

where Ãs := {ω ∈ Ω : (s, ω) ∈ Ã} and F s
∞ is the last element in Fs (the filtration in M).

• We let Z = Z ∪{(∞, ∂,∞)} to be the new state space, where Z = R+×Y = X ×R, with

elements z = (s, i, a). On Z we consider the σ-field

B̃(Z ) :=
{
B̃ ⊂ Z : B̃s ∈ B(Y ) for any s ∈ R+

}
,

where B̃s :=
{

(i, a) ∈ Y : (s, i, a) ∈ B̃
}

. Let B̃(Z ) := σ(B̃(Z ) ∪ {(∞, ∂,∞)}).

• We consider a family of probability measures (P̃z)z∈Z , where, for z = (s, i, a) ∈ Z ,

P̃z
(
Ã
)

= P̃s,i,a
(
Ã
)

:= Ps,(i,a)
(
Ãs
)
, Ã ∈ F̃ . (4.5)
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• We consider the process Z := (Zt)t∈R+
on (Ω̃, F̃ ), where, for t ∈ R+,

Zt(ω̃) :=
(
s+ t,Xs+t(ω), ϕs+t(ω)

)
, ω̃ = (s, ω) ∈ Ω̃. (4.6)

Hereafter, we denote the three components of Z by Z1, Z2, and Z3, respectively.

• On (Ω̃, F̃ ), we define F̃ := (F̃t)t∈R+
, where F̃t := G̃t+ (with the convention G̃∞+ = G̃∞), and

(G̃t)t∈R+
is the completion of the natural filtration generated by (Zt)t∈R+

with respect to the

set of probability measures {P̃z, z ∈ Z } (cf. [GS04, Chapter I]).

• Finally, for any r ∈ R+, we consider the shift operator θr : Ω̃→ Ω̃ defined by

θr ω̃ = (u+ r, ω·+r), ω̃ = (u, ω) ∈ Ω̃.

It follows that Zt ◦ θr = Zt+r, for any t, r ∈ R+.

For z = (s, i, a) ∈ Z , t ∈ R+, and B̃ ∈ B̃(Z ), we define the transition function P̃ by

P̃
(
z, t, B̃

)
:= P̃z

(
Zt ∈ B̃

)
.

In view of (4.5), we have

P̃
(
z, t, B̃

)
= Ps,(i,a)

(
(Xt+s, ϕt+s) ∈ B̃s+t

)
= P

(
s, (i, a), s+ t, B̃s+t

)
. (4.7)

Since the transition function P , defined in (4.1), is associated with a Feller semigroup, so that P is

a Feller transition function. This and [Bot14, Theorem 3.2] imply that P̃ is also a Feller transition

function. In light of the right continuity of the sample paths, and invoking [GS04, Theorem I.4.7],

we conclude that M̃ is a time-homogeneous strong Markov family.

For any ` ∈ R, we define

τ̃+` := inf
{
t ∈ R+ : Z3

t > `
}
.

Note that τ̃+` is an F̃-stopping time since Z3 has continuous sample paths and F̃ is right-continuous.

In light of (4.3), (4.5), and (4.6), for any (s, i, a) ∈ Z , we have

P̃s,i,a
(
Z3
t = a+

∫ t

0
v
(
Z2
u

)
du, for all t ∈ R+

)
= 1. (4.8)

Consequently, for any (s, i) ∈X+ and ` ∈ R,

P̃s,i,`
(
τ̃+` = 0

)
= 1. (4.9)

Moreover, by (4.4) and (4.8), for any (s, i, a) ∈ Z and ` ∈ [a,∞), we have

P̃s,i,a
(
Z2
τ̃+`
∈ E+ ∪ {∂}

)
= 1. (4.10)

By Proposition 4.1, (4.5) and (4.6), for any g+ ∈ L∞(X+), (s, i, a) ∈ Z , and ` ∈ [a,∞),

E∗s,i
(
g+
(
τ+,∗`−a, X

∗
τ+,∗`−a

))
= Ẽs,i,a

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
, (4.11)
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which, in particular, implies that

Ẽs,i,a
(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
= Ẽs,i,0

(
g+
(
Z1
τ̃+`−a

, Z2
τ̃+`−a

))
. (4.12)

Consequently, the operators J+ and P+
` , ` ∈ R+, defined by (2.8) and (2.10), can be written as(

J+g+
)
(s, i) = Ẽs,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
, g+ ∈ L∞(X+), (s, i) ∈X−, (4.13)(

P+
` g

+
)
(s, i) = Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
, g+ ∈ L∞(X+), (s, i) ∈X+. (4.14)

We conclude this section with the following key lemma, which will be crucial in the proofs of

the main results.

Lemma 4.2. Let τ̃ be any F̃-stopping time, and g+ ∈ L∞(X+). Then, for any (s, i, a) ∈ Z and

` ∈ [a,∞), we have

1{τ̃≤τ̃+` }
Ẽs,i,a

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

) ∣∣∣ F̃τ̃

)
= 1{τ̃≤τ̃+` }

ẼZ1
τ̃
,Z2
τ̃
,Z3
τ̃

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
, P̃s,i,a − a. s., (4.15)

where we clarify that ẼZ1
τ̃
,Z2
τ̃
,Z3
τ̃

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
reads Ẽz1,z2,z3

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))∣∣
(z1,z2,z3)=(Z1

τ̃
,Z2
τ̃
,Z3
τ̃)

.

Proof. Note that if (s, i, a) = (∞, ∂,∞), then both sides of (4.15) are zero. Hence, without loss of

generality, assume that (s, i, a) ∈ Z and {τ̃ ≤ τ̃+` } 6= ∅. Note that for any ` ∈ R and ω̃ ∈ {τ̃ ≤ τ̃+` },

τ̃+`
(
θτ̃ (ω̃)

)
= inf

{
t ∈ R+ : Z3

t

(
θτ̃ (ω̃)

)
> `
}

= inf
{
t ∈ R+ : Z3

t+τ̃(ω̃)(ω̃) > `
}

= inf
{
t ≥ τ̃(ω̃) : Z3

t (ω̃) > `
}
− τ̃(ω̃) = τ̃+` (ω̃)− τ̃(ω̃),

and thus (
Zτ̃+`
◦ θτ̃

)
(ω̃) = Zτ̃+` (θτ̃ (ω̃))

(
θτ̃ (ω̃)

)
= Zτ̃+` (ω̃)−τ̃(ω̃)

(
θτ̃(ω̃)ω̃

)
= Zτ̃+`

(ω̃).

Therefore, for any (s, i, a) ∈ Z and ` ∈ [a,∞),

1{τ̃≤τ̃+` }
Ẽs,i,a

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)∣∣∣F̃τ̃

)
= Ẽs,i,a

(
1{τ̃≤τ̃+` }

g+
(
Z1
τ̃+`
◦ θτ̃ , Z2

τ̃+`
◦ θτ̃

)∣∣∣F̃τ̃

)
= 1{τ̃≤τ̃+` }

ẼZ1
τ̃
,Z2
τ̃
,Z3
τ̃

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
,

where we used the fact that {τ̃ ≤ τ̃+` } ∈ F̃τ̃ (cf. [KS98, Lemma 1.2.16]) in the first and third

equality, and the strong Markov property of Z (cf. [RW94, Theorem III.9.4]) in the last equality.

Corollary 4.3. Under the assumptions of Lemma 4.2,

Ẽs,i,a
(
1{τ̃≤τ̃+` }

g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
= Ẽs,i,a

(
1{τ̃≤τ̃+` }

ẼZ1
τ̃
,Z2
τ̃
,Z3
τ̃

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)))
.

Proof. This is a direct consequence of (4.15) and the fact that {τ̃ ≤ τ̃+` } ∈ F̃τ̃ .

Corollary 4.4. For any g+ ∈ L∞(X+), (s, i, a) ∈ Z , ` ∈ [a,∞), and h ∈ (0,∞),

Ẽs,i,a
(
g+
(
Z1
τ̃+`+h

, Z2
τ̃+`+h

))
= Ẽs,i,a

((
P+
h g

+
)(
Z1
τ̃+`
, Z2

τ̃+`

))
.
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Proof. Since g+ ∈ L∞(X+) and τ̃+`+h ≥ τ̃+` , g+(Z1
τ̃+`+h

, Z2
τ̃+`+h

) = g+(∞, ∂) = 0 on {τ̃+` = ∞}, so

that ẼZ1

τ̃+
`

,Z2

τ̃+
`

,Z3

τ̃+
`

(g+(Z1
τ̃+`+h

, Z2
τ̃+`+h

)) = 0 on {τ̃+` = ∞}. Moreover, Z3
τ̃+`

= ` on {τ̃+` < ∞}. Thus,

using Corollary 4.3, (4.12), (4.14), and (4.4), we obtain that

Ẽs,i,a
(
g+
(
Z1
τ̃+`+h

, Z2
τ̃+`+h

))
= Ẽs,i,a

(
1{τ̃+` <∞}

ẼZ1

τ̃+
`

,Z2

τ̃+
`

,`

(
g+
(
Z1
τ̃+`+h

, Z2
τ̃+`+h

)))
= Ẽs,i,a

(
1{τ̃+` <∞}

ẼZ1

τ̃+
`

,Z2

τ̃+
`

,0

(
g+
(
Z1
τ̃+h
, Z2

τ̃+h

)))
= Ẽs,i,a

((
P+
h g

+
)(
Z1
τ̃+`
, Z2

τ̃+`

))
,

where the last equality is due to the fact that (P+
h g

+)(∞, ∂) = 0.

Remark 4.5. We now verify (2.14) using the strong Markov family M̃. Indeed, by (4.11) and

Corollary 4.4, for any g+ ∈ L∞(X+), (s, i) ∈X−, and ` ∈ (0,∞),

E∗s,i
(
g+
(
τ+,∗` , X∗

τ+,∗`

))
= Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
= Ẽs,i,0

((
P+
` g

+
)(
Z1
τ̃+0
, Z2

τ̃+0

))
=
(
J+P+

` g
+
)
(s, i).

4.2 A regularity lemma

Fix g+ ∈ C0(X+), and define f+ : X × R+ → R by

f+(s, i, `) := Ẽs,i,0
(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

))
. (4.16)

In particular, in view of (4.9), we have

f+(s, i, 0) = g+(s, i), (s, i) ∈X+. (4.17)

Moreover, by (4.13), (4.14), and (4.16),

J+g+(s, i) = f+(s, i, 0), (s, i) ∈X−, (4.18)

P+
` g

+(s, i) = f+(s, i, `), (s, i) ∈X+, ` ∈ R+. (4.19)

The following lemma addresses the continuity of f+ with respect to different variables. In particular,

due to (4.18) and (4.19), for any g+ ∈ C0(X+), the continuity of J+g+(·, i), and P+
· g

+(·, i), with

respect to each individual variable, is established as special cases of f+.

Recall that, by Assumption 2.1, K is a constant such that sups∈R+,i,j∈E |Λs(i, j)| ≤ K. Addi-

tionally, recall that v = mini∈E |v(i)| and v = maxi∈E |v(i)|.

Lemma 4.6. For any g+ ∈ C0(X+), f+(·, i, ·) is uniformly continuous on R2
+, uniformly for all

i ∈ E. That is, for any ε > 0, there exists δ = δ(ε,K, ‖g+‖∞, v, v) > 0 such that

sup
i∈E

sup
(s1,`1),(s2,`2)∈R2

+:

|s2−s1|+|`2−`1|<δ

∣∣f+(s2, i, `2)− f+(s1, i, `1)
∣∣ < ε.

Moreover, for any i ∈ E and ` ∈ R+, f(·, i, `) ∈ C0(R+). In particular, J+g+ ∈ C0(X−) and

P+
` g

+ ∈ C0(X+).

The proof of this lemma is deferred to Appendix A.
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4.3 Existence of the Wiener-Hopf factorization

This section is devoted to the proof of the “+” portion of Theorem 3.1. We do this by demonstrating

the existence of solution to (3.3) subject to conditions (a+) and (b+). Recall that J+ and (P+
` )`∈R+

are defined as in (2.8) and (2.10), and have the respective representations (4.13) and (4.14) in terms

of the time-homogeneous Markov family M̃; G+ is defined as in (2.12) with respect to (P+
` )`∈R+ .

We will show that (J+, G+) is a solution to (3.3) (which is equivalent to (3.5)−(3.6)) subject to

(a+) and (b+). The proof is divided into four steps.

Step 1. In this step show that J+ satisfies the condition (a+)(i).

Let g+ ∈ C0(X+). By Lemma 4.6, we have J+g+ ∈ C0(X−). Moreover, if supp g+ ⊂ [0, ηg+ ]×
E+ for some ηg+ ∈ (0,∞), we have (J+g+)(s, i) = Ẽs,i,0(g+(s + τ̃+0 , Z

2
τ̃+0

)) = 0, for any (s, i) ∈
[ηg+ ,∞)×E−, which completes the proof in Step 1.

Step 2. Here we will show that (P+
` )`∈R+ is a strongly continuous positive contraction semigroup

on C0(X+), and thus a Feller semigroup.

Let g+ ∈ C0(X+) and ` ∈ R+. By Lemma 4.6, we have P+
` g

+ ∈ C0(X+). The positivity and

contraction property of P+
` follow immediately from its definition. Hence, it remains to show that

(P+
` )`∈R+ is a strongly continuous semigroup.

To this end, we fix any (s, i) ∈ X+. By (4.17) and (4.19), we first have (P+
0 g

+)(s, i) =

f+(s, i, 0) = g+(s, i). Moreover, for any ` ∈ R+ and h > 0, by (4.14) and Corollary 4.4, we have(
P+
`+hg

+
)
(s, i) = Ẽs,i,0

(
g+
(
Z1
τ̃+`+h

, Z2
τ̃+`+h

))
= Ẽs,i,0

((
P+
h g

+
)(
Z1
τ̃+`
, Z2

τ̃+`

))
=
(
P+
` P

+
h g

+
)
(s, i), (4.20)

Hence, (P+
` )`∈R+ is a semigroup on C0(X+).

Finally, for any ` ∈ R+ and g+ ∈ C0(X+), by (4.19) and Lemma 4.6, we have

lim
`→0+

sup
(s,i)∈X+

∣∣(P+
` g

+
)
(s, i)− g+(s, i)

∣∣ = lim
`→0+

sup
(s,i)∈X+

∣∣f+(s, i, `)− f+(s, i, 0)
∣∣ = 0,

which shows the strong continuity of (P+
` )`∈R+ , and thus completes the proof in Step 2.

Step 3. We will show here that G+ is the strong generator of (P+
` )`∈R+ with domain C1

0 (X+),

and that

G+g+ =
(
V+
)−1( ∂

∂s
+ Ã + B̃J+

)
g+, g+ ∈ C1

0 (X+), (4.21)

which corresponds to (3.5).

Using Lemma 4.2 and Lemma 4.6 one can show (see Appendix B.1 for the detailed argument)

that for any g+ ∈ C0(X+), the pointwise limit in (2.12) exists for every (s, i) ∈ X+ if and only if

g(·, i) is right-differentiable on R+ for each i ∈ E. Moreover, for such g+, we have

lim
`→0+

1

`

(
P+
` g

+(s, i)− g+(s, i)
)

=
1

v(i)

(
∂+g

+

∂s
(s, i) +

∑
j∈E+

Λs(i, j)g
+(s, j) +

∑
j∈E−

Λs(i, j)
(
J+g+

)
(s, j)

)
, (s, i) ∈X+. (4.22)

Note that when (s, i) = (∞, ∂), then (4.22) is trivial since both sides of the equality are equal to

zero.
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We now show that D(G+) = C1
0 (X+). Toward this end we define

L (G+) :=
{
g+ ∈ C0(X+) : the limit in (2.12) exists for all (s, i) ∈X+ and G+g+ ∈ C0(X+)

}
.

Since (P+
` )`∈R+ is a Feller semigroup on C0(X+) (cf. Step 2), it follows from [BSW13, Theorem

1.33] that G+ is the strong generator of (P+
` )`∈R+ with D(G+) = L (G+). Hence, we only need to

show that L (G+) = C1
0 (X+).

We first show that L (G+) ⊂ C1
0 (X+). For any g+ ∈ L (G+), it was shown in Step 3 (i) that

(
G+g+

)
(s, i)=

1

v(i)

(
∂+g

+

∂s
(s, i)+

∑
j∈E+

Λs(i, j)g
+(s, j)+

∑
j∈E−

Λs(i, j)
(
J+g+

)
(s, j)

)
, (s, i)∈X+, (4.23)

where the right-hand side, as a function of (s, i), belongs to C0(X+). By Lemma 4.6, we have

J+g+ ∈ C0(X−). This, together with Assumption 2.1 (ii), ensures that∑
j∈E+

Λs(i, j)g
+(s, j) +

∑
j∈E−

Λs(i, j)
(
J+g+

)
(s, j), (4.24)

as a function of (s, i) ∈ X+, belongs to C0(X+). Thus, we must have ∂+g
+/∂s exists at any

(s, i) ∈ X+, ∂+g
+(∞, ∂)/∂s = 0, and ∂+g

+/∂s ∈ C0(X+). Therefore, ∂g+/∂s exists and belongs

to C0(X+), i.e., g+ ∈ C1
0 (X+).

To show C1
0 (X+) ⊂ L (G+), we first note that for g+ ∈ C1

0 (X+), Step 3 (i) shows that the

limit in (2.12) exists for every (s, i) ∈ X+, and that (4.23) holds true. Since g+ ∈ C0(X+), the

same argument as above implies that (4.24), as a function of (s, i), belongs to C0(X+). Hence,

G+g+ ∈ C0(X+). The proof in Step 3 is now complete.

Step 4. In this step we will show that J+ satisfies the condition (a+)(ii), that is for any g+ ∈
C1
0 (X+) we have J+g+ ∈ C1

0 (X−). We will also show that

∂

∂s

(
J+g+

)
=
(
− C̃− D̃J+ + V−J+G+

)
g+, g+ ∈ C1

0 (X+), (4.25)

which corresponds to (3.6).

We fix g+ ∈ C1
0 (X+) for the rest of the proof, and we claim that in order to prove J+g+ ∈

C1
0 (X−) and (4.25), it is sufficient to show that

∂+
∂s
J+g+ =

(
− C̃− D̃J+ + V−J+G+

)
g+. (4.26)

In fact, since g+ ∈ C1
0 (X+), Step 3 shows that G+g+ ∈ C0(X+). Hence, by Lemma 4.6, we

have J+g+ ∈ C0(X−) and J+G+g+ ∈ C0(X−). Given the definition of C̃ and D̃ and invoking

Assumption 2.1, we conclude that (−C̃ − D̃J+ + V−J+G+)g+ ∈ C0(X−). Thus, indeed, (4.26)

implies that J+g+ ∈ C1
0 (X−) and that (4.25) holds.

The proof of (4.26) relies on Lemma 4.2, Lemma 4.6 and the result of Step 3. It is deferred to

Appendix B.2.
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4.4 Uniqueness of the Wiener-Hopf factorization

In this section we prove the “+” part of Theorem 3.2. Specifically, we will show that, if (S+, H+)

solves (3.3) subject to (a+) and (b+), then, for any g+ ∈ C0(X+), S+g+ = J+g+ and Q+
` g

+ =

P+
` g

+, ` ∈ R+. This also guarantees the uniqueness of G+, since two strongly continuous con-

traction semigroup coincide if and only if their generators coincide (cf. [Dyn65, Theorem 1.2]).

Throughout this subsection, we assume that (S+, H+) satisfies (3.3) (or equivalently, (3.5) and

(3.6)) and the conditions (a+) and (b+).

To begin with, we will show a sufficient condition of what we would like to prove. For any

g+ ∈ C0(X+), (s, i, a) ∈ Z , and ` ∈ [a,∞), we define

F̂+(s, i, a, `; g+) :=

((
I+

S+

)
Q+
`−ag

+

)
(s, i), (4.27)

F+(s, i, a, `; g+) := Ẽs,i,0
(
g+
(
Z1
τ̃+`−a

, Z2
τ̃+`−a

))
. (4.28)

When no confusion arises, we will omit g+ in F̂+(s, i, a, `; g+) and F+(s, i, a, `; g+).

Proposition 4.7. Suppose that

F̂+(s, i, 0, `; g+) = F+(s, i, 0, `; g+), (s, i) ∈X , ` ∈ R+, g+ ∈ C1
c (X+). (4.29)

Then, for any g+ ∈ C0(X+),

S+g+ = J+g+, Q+
` g

+ = P+
` g

+, ` ∈ R+.

Proof. Let g+ ∈ C1
c (X+). By Corollary 4.4, for any (s, i) ∈X and ` ∈ R+,

F+(s, i, 0, `; g+) = Ẽs,i,0
((
P+
` g

+
)(
Z1
τ̃+0
, Z2

τ̃+0

))
=

((
I+

J+

)
P+
` g

+

)
(s, i).

This, together with (4.29), implies that, for any ` ∈ R+,

Q+
` g

+ = P+
` g

+, S+Q+
` g

+ = J+P+
` g

+, (4.30)

and thus S+P+
` g

+ = J+P+
` g

+. Since (P+
` )`∈R+ is a strongly continuous semigroup, and S+ and

J+ are bounded operators, we have

S+g+ = lim
`→0+

S+P+
` g

+ = lim
`→0+

J+P+
` g

+ = J+g+ (4.31)

so that S+g+ = J+g+. Alternatively, this equality can be obtained by letting ` = 0 in (4.29).

Finally, since C1
c (X+) is dense in C0(X+), and S+, J+, and P+

` are bounded operators, both

(4.30) and (4.31) hold true for any g+ ∈ C0(X+), which completes the proof of the proposition.

Proposition 4.7 states that if (4.29) is satisfied then the “+” part of Theorem 3.2 holds true.

Thus, to conclude the proof of the “+” part of Theorem 3.2, and therefore the proof of uniqueness

of our Wiener-Hopf factorization, it remains to prove that (4.29) holds. The rest of this section is

devoted to this task.

We need the following three technical lemmas, whose proofs are deferred to Appendix C.
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Lemma 4.8. For any g+ ∈ C1
0 (X+) and (s, i) ∈X−, (S+Q+

· g
+)(s, i) is differentiable on R+, and

∂

∂`

((
S+Q+

` g
+
)
(s, i)

)
=
(
S+H+Q+

` g
+
)
(s, i).

Let C0(Z ) be the space of real-valued B(Z )-measurable functions h on Z such that h(∞, ∂,∞) =

0, and that h(·, i, ·) ∈ C0(R+ × R) for all i ∈ E. Let C1
0 (Z ) be the space of functions h ∈ C0(Z )

such that, for all i ∈ E, ∂h(·, i, ·)/∂s and ∂h(·, i, ·)/∂a exist and belong to C0(R+ × R).

Lemma 4.9. Let A be the strong generator of the Feller semigroup associated with the Markov

family M̃. Then, C1
0 (Z ) ⊂ D(A), and for any h ∈ C1

0 (Z ),

(Ah)(s, i, a) =
∂h

∂s
(s, i, a) +

∑
j∈E

Λs(i, j)h(s, j, a) + v(i)
∂h

∂a
(s, i, a), (s, i, a) ∈ Z .

Lemma 4.10. For any g+ ∈ Cc(X+) with supp g+ ⊂ [0, ηg+ ]×E+ for some ηg+ ∈ (0,∞), we have

suppQ+
` g

+ ⊂ [0, ηg+ ]×E+, for any ` ∈ R+.

For any a ∈ R, let C0(X ×(−∞, a]) be the space of real-valued B(X )⊗B((−∞, a])-measurable

functions h on X × (−∞, a]) such that h(·, i, ·) ∈ C0(R+ × (−∞, a]) for all i ∈ E. Let C1
0 (X ×

(−∞, a]) be the space of functions h ∈ C0(X × (−∞, a]) such that, for all i ∈ E, ∂h(·, i, ·)/∂s and

∂h(·, i, ·)/∂a exist and belong to C0(R+ × (−∞, a]).

Lemma 4.11. For any ` ∈ R and g+ ∈ C1
c (X+), F̂+(·, ·, ·, `; g+) ∈ C1

0 (X × (−∞, `]).

We are now in the position of proving (4.29). In what follows, we fix g+ ∈ C1
c (X+) with

supp g+ ⊂ [0, ηg+ ]×E+ for some ηg+ ∈ (0,∞).

We first show that, for any (s, i) ∈X , ` ∈ R+, and T ∈ (0,∞),

Ẽs,i,0
(
F̂+

(
Z1
τ̃+` ∧T

, Z2
τ̃+` ∧T

, Z3
τ̃+` ∧T

, `
))

= F̂+(s, i, 0, `). (4.32)

Let φ ∈ C1(R) with φ(a) = 1 for a ∈ (−∞, `] and lima→∞ φ(a) = 0. We extend F̂+(·, ·, ·, `) to be a

function on Z by defining

F̂+(s, i, a, `) := φ(a)
(
2F̂+(s, i, `, `)− F̂+(s, i, 2`− a, `)

)
, (s, i) ∈X , a ∈ (`,∞).

By Lemma 4.11, we now have F̂+(·, ·, ·, `) ∈ C1
0 (Z ) (with the convention that F̂+(∞, ∂,∞, `) = 0).

It follows from Lemma 4.9, (4.27), (C.10), and Lemma 4.8 that, for any (s, i) ∈X and a ∈ (−∞, `),

(
AF̂+

)
(s, i, a, `) =

∂F̂+

∂s
(s, i, a, `) +

∑
j∈E

Λs(i, j)F̂+(s, j, a, `) + v(i)
∂F̂+

∂a
(s, i, a, `)

=

(
∂

∂s

(
I+

S+

)
Q+
`−ag

+

)
(s, i) +

(̃
Λ

(
I+

S+

)
Q+
`−ag

+

)
(s, i) +

(
V
∂

∂a

(
I+

S+

)
Q+
`−ag

+

)
(s, i)

=

(((
∂

∂s
+ Λ̃

)(
I+

S+

)
− V

(
I+

S+

)
H+

)
Q+
`−ag

+

)
(s, i),
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where we note that Q+
`−ag

+ ∈ D(H+) since g+ ∈ C1
0 (X+) = D(H+). Hence, since (S+, H+) solves

(3.3), we have (
AF̂+

)
(s, i, a, `) = 0, (s, i) ∈X , a ∈ (−∞, `).

Therefore, by Dynkin’s formula (cf. [RW94, III.10]), we obtain that

Ẽs,i,0
(
F̂+

(
Z1
τ̃+` ∧T

, Z2
τ̃+` ∧T

, Z3
τ̃+` ∧T

, `
))
− F̂+(s, i, 0, `) = Ẽs,i,0

(∫ τ̃+` ∧T

0

(
AF̂+

)(
Z1
t , Z

2
t , Z

3
t , `
)
dt

)
= 0,

which completes the proof of (4.32).

By (4.32), we have

F̂+(s, i, 0, `) = Ẽs,i,0
(
F̂+

(
Z1
τ̃+`
, Z2

τ̃+`
, Z3

τ̃+`
, `
)
1{τ̃+` <T}

)
+ Ẽs,i,0

(
F̂+

(
Z1
T , Z

2
T , Z

3
T , `
)
1{τ̃+` ≥T}

)
.

From the definition of τ̃+` and the right-continuity of the sample paths of Z, we have Z3
τ̃+`

= ` on

{τ̃+` < T}. Moreover, it is clear from the construction of M̃ that Z2
t ∈ E for t ∈ R+, and, in view

of (4.10), we deduce that Z2
τ̃+`
∈ E+ on {τ̃+` < T}. Together with (4.27), (4.28), and (4.6), we

obtain that

F̂+(s, i, 0, `) = Ẽs,i,0
(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)
1{τ̃+` <T}

)
+ Ẽs,i,0

(
F̂+

(
Z1
T , Z

2
T , Z

3
T , `
)
1{τ̃+` ≥T}

)
= F+(s, i, 0, `)− Ẽs,i,0

(
g+
(
s+ τ̃+` , Z

2
τ̃+`

)
1{τ̃+` ≥T}

)
+ Ẽs,i,0

(
F̂+

(
s+ T,Z2

T , Z
3
T , `
)
1{τ̃+` ≥T}

)
. (4.33)

Therefore, in order to prove (4.29), it remains to show that the last two terms in (4.33) vanish.

Since g+ ∈ Cc(X+) (and so g+(Z1
∞, Z

2
∞) = g+(∞, ∂) = 0) with supp g+ ⊂ [0, ηg+ ]×E+, and using

the fact that Z2
τ̃+`
∈ E+ on {τ̃+` <∞}, we have, for T ∈ [ηg+ − s,∞),

g+
(
s+ τ̃+` , Z

2
τ̃+`

)
1{τ̃+` ≥T}

= g+
(
s+ τ̃+` , Z

2
τ̃+`

)
1{τ̃+` ∈[T,∞)} = 0.

Hence, the second term in (4.33) vanishes when T ∈ [ηg+ − s,∞). As for the last term in (4.33),

since supp g+ ⊂ [0, ηg+ ]×E+, Lemma 4.10 and the condition (a+)(i) ensure that supp F̂+(·, ·, ·, `) ⊂
[0, η+g ] × E × [0, `]. Hence, when T ∈ [ηg+ − s,∞), F̂+(s + T,Z2

T , Z
3
T , `) = 0 so that the last term

in (4.33) vanishes. Therefore, by choosing T ∈ [ηg+ − s,∞), we obtain (4.29) from (4.33).

The proof of the “+” part of Theorem 3.2 is complete. As mentioned earlier, the proof of the

“−” part of Theorem 3.2 proceeds in direct analogy to “+” part given above.

A Proof of Lemma 4.6

For any ε > 0, i ∈ E, and (s1, `1), (s2, `2) ∈ R2
+, without loss of generality, assume that s2 ≥ s1 and

`2 ≥ `1. Then,∣∣f+(s2, i, `2)− f+(s1, i, `1)
∣∣ ≤ ∣∣f+(s2, i, `2)− f+(s2, i, `1)

∣∣+
∣∣f+(s2, i, `1)− f+(s1, i, `1)

∣∣ (A.1)

The proof will be divided into three steps.
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Step 1. We begin by investigating the first term in (A.1). Noting that (P+
` g

+)(∞, ∂) = g+(∞, ∂) =

0, by (4.16), Corollary 4.4, and (4.14),

∣∣f+(s2, i, `2)− f+(s2, i, `1)
∣∣ =

∣∣∣∣Ẽs2,i,0(g+(Z1
τ̃+`2
, Z2

τ̃+`2

))
− Ẽs2,i,0

(
g+
(
Z1
τ̃+`1
, Z2

τ̃+`1

))∣∣∣∣
=

∣∣∣∣Ẽs2,i,0((P+
`1
g+
)(
Z1
τ̃+`2−`1

, Z2
τ̃+`2−`1

))
− Ẽs2,i,0

(
g+
(
Z1
τ̃+`1
, Z2

τ̃+`1

))∣∣∣∣
=

∣∣∣∣∣Ẽs2,i,0
(
1{τ̃+`1<∞}

(
ẼZ1

τ̃+
`1

,Z2

τ̃+
`1

,0

(
g+
(
Z1
τ̃+`2−`1

, Z2
τ̃+`2−`1

))
− g+

(
Z1
τ̃+`1
, Z2

τ̃+`1

)))∣∣∣∣∣
≤ sup

(t,j)∈X+

∣∣∣∣Ẽt,j,0(g+(Z1
τ̃+`2−`1

, Z2
τ̃+`2−`1

))
− g+(t, j)

∣∣∣∣. (A.2)

Recall that γ̃1 is the first jump time of Z2. For any (t, j) ∈X+, on the event {Z3
u =

∫ u
0 v(Z2

r )dr, ∀u ≥
0} (which has probability 1 under P̃t,j,0 in view of (4.8)), we have

γ̃1(ω̃) >
`2 − `1
v(j)

, Z0(ω̃) = (t, j, 0) ⇐⇒ Z3
γ̃1

(ω̃) > `2 − `1, Z0(ω̃) = (t, j, 0)

=⇒ τ̃+`2−`1(ω̃) =
`2 − `1
v(j)

, Z2
τ̃+`2−`1

(ω̃) = j.

Hence, by (4.6) and (D.2), for any (t, j) ∈X+,∣∣∣∣Ẽt,j,0(g+(Z1
τ̃+`2−`1

, Z2
τ̃+`2−`1

))
− g+(t, j)

∣∣∣∣ ≤ Ẽt,j,0
(∣∣∣g+(Z1

τ̃+`2−`1
, Z2

τ̃+`2−`1

)∣∣∣1{γ̃1≤(`2−`1)/v(j)})
+

∣∣∣∣Ẽt,j,0(g+(Z1
τ̃+`2−`1

, Z2
τ̃+`2−`1

)
1{γ̃1>(`2−`1)/v(j)}

)
− g+(t, j)

∣∣∣∣
≤
∥∥g+∥∥∞P̃t,j,0

(
γ̃1 ≤

`2 − `1
v(j)

)
+

∣∣∣∣Ẽt,j,0(g+(Z1
(`2−`1)/v(j), j

)
1{γ̃1>(`2−`1)/v(j)}

)
− g+(t, j)

∣∣∣∣
≤
K
∥∥g+∥∥∞
v

(`2 − `1) +

∣∣∣∣g+(t+
`2 − `1
v(j)

, j

)
P̃t,j,0

(
γ̃1 >

`2 − `1
v(j)

)
− g+(t, j)

∣∣∣∣
≤
K
∥∥g+∥∥∞
v

(`2−`1) +

∣∣∣∣g+(t+ `2−`1
v(j)

, j

)
P̃t,j,0

(
γ̃1≤

`2 − `1
v(j)

)∣∣∣∣+

∣∣∣∣g+(t+ `2−`1
v(j)

, j

)
− g+(t, j)

∣∣∣∣
≤

2K
∥∥g+∥∥∞
v

(`2 − `1) + wg+

(
`2 − `1
v

)
, (A.3)

where we recall that v = mini∈E |v(i)|, and

wg+(δ) := sup
j∈E+

sup
r,u∈R+: |r−u|∈[0,δ]

∣∣g+(r, j)− g+(u, j)
∣∣

is the modulus of continuity of g+. Combining (A.2) and (A.3) leads to

∣∣f+(s2, i, `2)− f+(s2, i, `1)
∣∣ ≤ 2K

∥∥g+∥∥∞
v

(`2 − `1) + wg+

(
`2 − `1
v

)
, (A.4)

which completes the proof in Step 1.
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Step 2. Next, we analyze the second term in (A.1) by decomposing it as∣∣f+(s1, i, `1)− f+(s2, i, `1)
∣∣ ≤ Ẽs1,i,0

(∣∣∣g+(Z1
τ̃+`1
, Z2

τ̃+`1

)
− f+(s2, i, `1)

∣∣∣1{τ̃+`1≤s2−s1}
)

+
∣∣∣Ẽs1,i,0((g+(Z1

τ̃+`1
, Z2

τ̃+`1

)
− f+(s2, i, `1)

)
1{τ̃+` >s2−s1}

)∣∣∣
=: I1 + I2. (A.5)

To estimate I1, we first note that when i ∈ E− (so that v(i) < 0), it follows from (4.8) that

P̃s1,i,0
(
γ̃1>s2−s1, τ̃+`1≤s2−s1

)
= P̃s1,i,0

(
γ̃1 > s2−s1,

∫ u

0
v
(
Z2
r

)
dr > `1 for some u ∈ [0, s2−s1]

)
= P̃s1,i,0

(
γ̃1 > s2 − s1, v(i)u > `1 for some u ∈ [0, s2 − s1]

)
= 0.

Hence, when i ∈ E−, by (4.16) and (D.2) we have

I1 = Ẽs1,i,0
(∣∣∣g+(Z1

τ̃+`1
, Z2

τ̃+`1

)
− Ẽs2,i,0

(
g+
(
Z1
τ̃+`1
, Z2

τ̃+`1

))∣∣∣1{τ̃+`1≤s2−s1,γ̃1≤s2−s1}
)

≤ 2
∥∥g+∥∥∞P̃s1,i,0

(
γ̃1 ≤ s2 − s1

)
≤ 2K

∥∥g+∥∥∞(s2 − s1). (A.6)

In what follows, assume that i ∈ E+. We further decompose I1 as

I1 ≤ Ẽs1,i,0
(∣∣∣g+(Z1

τ̃+`1
, Z2

τ̃+`1

)
− g+

(
s2, Z

2
τ̃+`1

)∣∣∣1{τ̃+`1≤s2−s1}
)

+ Ẽs1,i,0
(∣∣∣g+(s2, Z2

τ̃+`1

)
− g+(s2, i)

∣∣∣1{τ̃+`1≤s2−s1}
)

+ Ẽs1,i,0
(∣∣g+(s2, i)− f+(s2, i, `1)

∣∣1{τ̃+`1≤s2−s1}
)

=: I11 + I12 + I13. (A.7)

For I11, by (4.6), we have

I11 = Ẽs1,i,0
(∣∣∣g+(s1 + τ̃+`1 , Z

2
τ̃+`1

)
− g+

(
s2, Z

2
τ̃+`1

)∣∣∣1{τ̃+`1≤s2−s1}
)
≤ wg+(s2 − s1). (A.8)

As for I12, note that Z2
τ̃+`1

= Z2
0 on {γ̃1 > s2 − s1, τ̃+`1 ≤ s2 − s1}, and thus

Ẽs1,i,0
(∣∣∣g+(s2, Z2

τ̃+`1

)
− g+(s2, i)

∣∣∣1{γ̃1>s2−s1,τ̃+`1≤s2−s1}
)

= 0.

Hence, by (D.2), we get

I12 = Ẽs1,i,0
(∣∣∣g+(s2, Z2

τ̃+`1

)
− g+(s2, i)

∣∣∣1{τ̃+`1≤s2−s1,γ̃1≤s2−s1}
)

≤ 2
∥∥g+∥∥∞ P̃s1,i,0

(
γ̃1 ≤ s2 − s1

)
≤ 2K

∥∥g+∥∥∞(s2 − s1). (A.9)

It remains to analyze I13. Note that when `1 > v(t− s), by (4.8),

P̃s1,i,0
(
τ̃+`1 ≤ s2 − s1

)
= P̃s1,i,0

(
Z3
u > `1 for some u ∈ [0, s2 − s1]

)
= P̃s1,i,0

(∫ u

0
v
(
Z2
r

)
dr > `1 > v(s2 − s1) for some u ∈ [0, s2 − s1]

)
= 0.
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It follows from (4.17) and (A.4) that

I13 ≤
∣∣f+(s2, i, 0)− f+(s2, i, `1)

∣∣1{`1≤v(s2−s1)} ≤ sup
r1,r2∈R+

|r1−r2|≤v(s2−s1)

∣∣f+(s2, i, r1)− f+(s2, i, r2)
∣∣

≤ 2v

v
K
∥∥g+∥∥∞(s2−s1) + wg+

(
v

v
(s2 − s1)

)
, (A.10)

where we recall v = maxi∈E |v(i)|. Combining (A.7)−(A.10), we obtain that, for any i ∈ E+,

I1 ≤ 2

(
1 +

v

v

)
K
∥∥g+∥∥∞(s2 − s1) + 2wg+

(
v

v
(s2 − s1)

)
. (A.11)

Comparing (A.6) with (A.11), we see that (A.11) holds for any i ∈ E, completing the study of I1.
Next, we will investigate I2. Note that Z3

s2−s1 ≤ `1 on the event {τ̃+`1 > s2 − s1}. Hence, by

tower property of conditional expectations, Corollary 4.3, (4.12), and (4.16), we further decompose

I2 as

I2 =

∣∣∣∣Ẽs1,i,0((Ẽs2,j,0(g+(Z1
τ̃+`1−a

, Z2
τ̃+`1−a

))∣∣∣
(j,a)=

(
Z2
s2−s1

,Z3
s2−s1

) − f+(s2, i, `1)
)
1{τ̃+`1>s2−s1}

)∣∣∣∣
=
∣∣∣Ẽs1,i,0((f+(s2, Z2

s2−s1 , `1 − Z
3
s2−s1

)
− f+(s2, i, `1)

)
1{τ̃+`1>s2−s1}

)∣∣∣
≤ Ẽs1,i,0

(∣∣∣f+(s2, Z2
s2−s1 , `1 − Z

3
s2−s1

)
− f+

(
s2, i, `1 − Z3

s2−s1

)∣∣∣1{τ̃+`1>s2−s1}
)

+ Ẽs1,i,0
(∣∣∣f+(s2, i, `1 − Z3

s2−s1

)
− f+(s2, i, `1)

∣∣∣1{τ̃+`1>s2−s1}
)

=: I21 + I22. (A.12)

By (4.16) and (D.2), an argument similar to those leading to (A.9) implies that

I21 = Ẽs1,i,0
(∣∣∣f+(s2, Z2

s2−s1 , `1 − Z
3
s2−s1

)
− f+

(
s2, i, `1 − Z3

s2−s1

)∣∣∣1{τ̃+`1>s2−s1,γ̃1≤s2−s1}
)

≤ 2
∥∥g+∥∥∞ P̃s1,i,0

(
γ̃1 ≤ s2 − s1

)
≤ 2K

∥∥g+∥∥∞(s2 − s1). (A.13)

To estimate I22, note that by (4.8),

P̃s1,i,0
(∣∣Z3

s2−s1
∣∣ ≤ v(s2 − s1)

)
= P̃s1,i,0

(∣∣∣∣ ∫ s2−s1

0
v
(
Z2
u

)
du
∣∣ ≤ v(s2 − s1)

)
= 1.

Together with (A.4), we have

I22 = Ẽs1,i,0
(∣∣∣f+(s2, i, `1 − Z3

s2−s1

)
− f+(s2, i, `1)

∣∣∣1{τ̃+`1>s2−s1,|Z3
s2−s1

|≤v(s2−s1)}

)
≤ sup

r1,r2∈R+

|r1−r2|≤v(s2−s1)

∣∣f+(s2, i, r1)−f+(s2, i, r2)
∣∣ ≤ 2v

v
K
∥∥g+∥∥∞(s2−s1) + wg+

(
v

v
(s2−s1)

)
. (A.14)

Combining (A.12)−(A.14) leads to

I2 ≤ 2

(
1 +

v

v

)
K
∥∥g+∥∥∞(s2 − s1) + wg+

(
v

v
(s2 − s1)

)
. (A.15)
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Therefore, by (A.5), (A.11), and (A.15), we obtain that

∣∣f+(s1, i, `1)− f+(s2, i, `1)
∣∣ ≤ 4

(
1 +

v

v

)
K
∥∥g+∥∥∞(s2 − s1) + 3wg+

(
v

v
(s2 − s1)

)
, (A.16)

which completes the analysis in Step 2.

Step 3. By (A.1), (A.4), and (A.16), we have

∣∣f+(s1, i, `2)− f+(s2, i, `1)
∣∣ ≤ 2

v
K
∥∥g+∥∥∞(`2 − `1) + 4

(
1 +

v

v

)
K
∥∥g+∥∥∞(s2 − s1)

+ wg+

(
`2 − `1
v

)
+ 3wg+

(
v

v
(s2 − s1)

)
.

Therefore, the uniformly continuity of f+(·, i, ·) on R2
+ follows from the uniform the uniform conti-

nuity of g+(·, i) on R+, uniformly for all i ∈ E.

It remains to show that for any i ∈ E and ` ∈ R+, f(s, i, `) vanishes as s → ∞. Since

g+ ∈ C0(X+), by (4.6) and (4.16), we have

lim
s→∞

∣∣f(s, i, `)
∣∣ = lim

s→∞

∣∣∣Ẽs,i,0(g+(s+ τ̃+` , Z
2
τ̃+`

))∣∣∣ ≤ lim
s→∞

sup
(t,j)∈[s,∞)×E+

∣∣g+(t, j)
∣∣ = 0.

The last statement of Lemma 4.6 follows directly from (4.18) and (4.19).

The proof of Lemma 4.6 is complete.

B Supplemental Proofs for Section 4.3

B.1 Proof of (4.22)

In what follows, fix g+ ∈ C0(X+) and (s, i) ∈X+.

Let γ̃1 be the first jump time of Z̃2. For any ` ∈ (0,∞), by (4.14) and (D.4), we have

1

`

(
P+
` g

+(s, i)− g+(s, i)
)

=
1

`

(
Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)
1{γ̃1>`/v(i)}

)
+ Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)
1{γ̃1≤`/v(i)}

)
− g+(s, i)

)
=

1

`

(
Ẽs,i,0

(
g+
(
Z1
`/v(i), Z

2
`/v(i)

)
1{γ̃1>`/v(i)}

)
+ Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)
1{γ̃1≤`/v(i)}

)
− g+(s, i)

)
=

1

`
P̃s,i,0

(
γ̃1 >

`

v(i)

)(
g+
(
s+

`

v(i)
, i

)
− g+(s, i)

)
− 1

`
P̃s,i,0

(
γ̃1 ≤

`

v(i)

)
g+(s, i)

+
1

`
Ẽs,i,0

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)
1{γ̃1≤`/v(i)}

)
=: I1(`)− I2(`) + I3(`). (B.1)

Clearly,

lim
`→0+

I1(`) =
1

v(i)

∂g+

∂s+
(s, i) (B.2)
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if and only if g+(·, i) is right-differentiable at s. As for I2(`), (D.1) implies that

lim
`→0+

I2(`) = lim
`→0

1

`

(
1− exp

(∫ s+`/v(i)

s
Λu(i, i) du

))
g+(s, i) = −Λs(i, i)

v(i)
g+(s, i). (B.3)

It remains to analyze the limit of I3(`), as `→ 0+. By (D.5), the tower property, (4.15), (4.12),

(4.16), and since Z3
γ̃1
≤ ` on {γ̃1 ≤ τ̃+` }, we have

I3(`) =
1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i), γ̃1≤τ̃+` }

Ẽs,i,0
(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)∣∣∣F̃γ̃1

))
=

1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i), γ̃1≤τ̃+` }

ẼZ1
γ̃1
,Z2
γ̃1
,Z3
γ̃1

(
g+
(
Z1
τ̃+`
, Z2

τ̃+`

)))
=

1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i), γ̃1≤τ̃+` }

Ẽt,j,0
(
g+
(
Z1
τ̃+`−a

, Z2
τ̃+`−a

))∣∣∣
(t,j,a)=

(
Z1
γ̃1
,Z2
γ̃1
,Z3
γ̃1

))
=

1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i), γ̃1≤τ̃+` }

f+
(
Z1
γ̃1
, Z2

γ̃1
, `− Z3

γ̃1

))
=

1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i), γ̃1≤τ̃+` }

(
f+
(
Z1
γ̃1
, Z2

γ̃1
, `− Z3

γ̃1

)
− f+

(
s, Z2

γ̃1
, `
)))

+
1

`
Ẽs,i,0

(
1{γ̃1≤`/v(i)} f+

(
s, Z2

γ̃1
, `
))

=: I31(`) + I32(`). (B.4)

For I31(`), by (4.6), Lemma 4.6, and (D.2), we have

lim
`→0+

∣∣I31(`)∣∣ ≤ lim
`→0+

sup
j∈E

sup
`′∈[0,`]

|s′−s|∈[0,`/v]

∣∣f+(s′, j, `′)− f+(s, j, `)
∣∣ · 1

`
P̃s,i,0

(
γ̃1 ≤

`

v(i)

)
= 0, (B.5)

where we recall that v = mini∈E |v(i)|. To study the limit of I32(`) as ` → 0+, we first rewrite

I32(`) as

I32(`) =
1

`

∑
j∈E\{i}

P̃s,i,0
(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
= j

)
f+(s, j, `). (B.6)

Note that, for any j ∈ E \ {i}, the probability in (B.6) can be further decomposed as

P̃s,i,0
(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
= j

)
= P̃s,i,0

(
γ̃1 ≤

`

v(i)
, Z2

`/v(i) = j

)
− P̃s,i,0

(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
6= j, Z2

`/v(i) = j

)
+ P̃s,i,0

(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
= j, Z2

`/v(i) 6= j

)
. (B.7)

By (4.7), (4.2), and (2.5), for j 6= i,

lim
`→0+

1

`
P̃s,i,0

(
γ̃1 ≤

`

v(i)
, Z2

`/v(i) = j

)
= lim

`→0+

1

`
P̃s,i,0

(
Z2
`/v(i) = j

)
= lim

`→0+

1

`
Ps,(i,0)

(
Xs+`/v(i) = j

)
= lim

`→0+

1

`
P∗s,i
(
X∗s+`/v(i) = j

)
=

Λs(i, j)

v(i)
,

which, together with Lemma 4.6, gives

lim
`→0+

1

`

∑
j∈E\{i}

P̃s,i,0
(
γ̃1 ≤

`

v(i)
, Z2

`/v(i) = j

)
f+(s, j, `) =

∑
j∈E\{i}

Λs(i, j)

v(i)
f+(s, j, 0). (B.8)
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Moreover, denoting by γ̃2 the second jump time of Z̃2, then by (4.16) and (D.3), we have

lim
`→0+

∣∣∣∣1` ∑
j∈E\{i}

P̃s,i,0
(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
6= j, Z2

`/v(i) = j

)
f+(s, j, `)

∣∣∣∣
≤ lim

`→0+

1

`

∑
j∈E\{i}

P̃s,i,0
(
γ̃2≤

`

v(i)
, Z2

`/v(i)=j

)∥∥g+∥∥∞ ≤ lim
`→0+

1

`
P̃s,i,0

(
γ̃2≤

`

v(i)

)∥∥g+∥∥∞ = 0, (B.9)

and similarly,

lim
`→0+

1

`

∣∣∣∣ ∑
j∈E\{i}

P̃s,i,0
(
γ̃1 ≤

`

v(i)
, Z2

γ̃1
= j, Z2

`/v(i) 6= j

)
f+(s, j, `)

∣∣∣∣ = 0. (B.10)

Combining (B.6)−(B.10) leads to

lim
`→0+

I32(`) =
∑

j∈E\{i}

Λs(i, j)

v(i)
f+(s, j, 0) =

∑
j∈E+\{i}

Λs(i, j)

v(i)
g+(s, j) +

∑
j∈E−

Λs(i, j)

v(i)

(
J+g+

)
(s, j), (B.11)

where the last equality is due to (4.17) and (4.18).

Therefore, from (B.4), (B.5), and (B.11), we have

lim
`→0+

I3(`) =
∑

j∈E+\{i}

Λs(i, j)

v(i)
g+(s, j) +

∑
j∈E−

Λs(i, j)

v(i)

(
J+g+

)
(s, j). (B.12)

Combining (B.1)−(B.3) and (B.12), we conclude that the limit in (2.12) exists for every (s, i) ∈X+

if and only if g(·, i) is right-differentiable on R+ for each i, and that for such g+ ∈ C0(X+), (4.22)

holds true for any (s, i) ∈X+.

B.2 Proof of (4.26)

To prove (4.26), it is sufficient to consider (s, i) ∈ X− only, since both sides of (4.26) are equal to

zero for (s, i) = (∞, ∂). In view of (4.13), we will evaluate

lim
r→0+

1

r

(
Ẽs+r,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
− Ẽs,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

)))
, (s, i) ∈X−.

For any r > 0, by (4.6) and (4.16),

Ẽs+r,i,0
(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
− Ẽs,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
= Ẽs,i,0

(
f+(s+r, i, 0

)
− f+

(
s+r, Z2

r , 0
))

+ Ẽs,i,0
(
1{τ̃+0 ≤r}

(
f+
(
s+r, Z2

r , 0
)
− g+

(
s+τ̃+0 , Z

2
τ̃+0

)))
+ Ẽs,i,0

(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r , 0
)
− g+

(
Z1
τ̃+0
, Z2

τ̃+0

)))
. (B.13)

Clearly, by (4.4) and (4.17), g+(s+ τ̃+0 , Z
2
τ̃+0

) = f+(s+ τ̃+0 , Z
2
τ̃+0
, 0). Hence, the second term on the

right-hand side of (B.13) can be decomposed as

Ẽs,i,0
(
1{τ̃+0 ≤r}

(
f+
(
s+ r, Z2

r , 0
)
− g+

(
s+ τ̃+0 , Z

2
τ̃+0

)))
= Ẽs,i,0

(
1{τ̃+0 ≤r}

(
f+
(
s+ r, Z2

r , 0
)
− f+

(
s+ r, Z2

τ̃+0
, 0
)))

+ Ẽs,i,0
(
1{τ̃+0 ≤r}

(
f+

(
s+ r, Z2

τ̃+0
, 0
)
− f+

(
s+ τ̃+0 , Z

2
τ̃+0
, 0
)))

. (B.14)
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Moreover, by the tower property, (4.15), (4.12), (4.16), and (4.6), we can decompose the third term

on the-right hand side of (B.13) as

Ẽs,i,0
(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r , 0
)
− g+

(
Z1
τ̃+0
, Z2

τ̃+0

)))
= Ẽs,i,0

(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r , 0
)
− Ẽt,j,a

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))∣∣∣
(t,j,a)=

(
Z1
r ,Z

2
r ,Z

3
r

)))
= Ẽs,i,0

(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r , 0
)
− Ẽt,j,0

(
g+
(
Z1
τ̃+−a

, Z2
τ̃+−a

))∣∣∣
(t,j,a)=

(
s+r,Z2

r ,Z
3
r

)))
= Ẽs,i,0

(
1{τ̃+0 >r}

(
f+(s+ r, Z2

r , 0)− f+
(
s+ r, Z2

r ,−Z3
r

)))
. (B.15)

Hence, by combining (B.13)−(B.15), we obtain that

1

r

(
Ẽs+r,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
− Ẽs,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

)))
=

1

r
Ẽs,i,0

(
f+(s+ r, i, 0)− f+

(
s+ r, Z2

r , 0
))

+
1

r
Ẽs,i,0

(
1{τ̃+0 ≤r}

(
f+
(
s+ r, Z2

r , 0
)
− f+

(
s+ r, Z2

τ̃+0
, 0
)))

+
1

r
Ẽs,i,0

(
1{τ̃+0 ≤r}

(
f+

(
s+ r, Z2

τ̃+0
, 0
)
− f+

(
s+ τ̃+0 , Z

2
τ̃+0
, 0
)))

+
1

r
Ẽs,i,0

(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r , 0)− f+
(
s+ r, Z2

r ,−Z3
r

)))
=: J1(r) + J2(r) + J3(r) + J4(r). (B.16)

Next, we will analyze the limit of Jk(r), k = 1, 2, 3, 4, as r → 0+.

We begin with evaluating the limit of J1(r) as r → 0+. By (4.6), (4.7), and (4.2), and using

the evolution system U∗ = (U∗s,t)0≤s≤t<∞ defined as in (2.4), we have

J1(r) = −1

r

((
U∗s,s+r − I

)
f+(s, ·, 0)

)
(i) +

1

r

((
U∗s,s+r − I

)(
f+(s, ·, 0)− f+(s+ r, ·, 0)

))
(i). (B.17)

It follows immediately from (2.5) that

lim
r→0+

1

r

((
U∗s,s+r − I

)
f+(s, ·, 0)

)
(i) =

∑
j∈E

Λs(i, j)f+(s, j, 0). (B.18)

Moreover, by (2.6), [EK05, Propositon I.1.5 (a)], Assumption 2.1 (so that ‖Λ∗t ‖∞ ≤ 2K for all

t ∈ R+), Lemma 4.6, and the fact that U∗s,t is a contraction map, we have

lim
r→0+

1

r

∣∣((U∗s,s+r − I
)(
f+(s, ·, 0)− f+(s+ r, ·, 0)

))
(i)
∣∣

≤ lim
r→0+

1

r

∫ s+r

s

∥∥U∗s,t
∥∥
∞
∥∥Λ∗t

∥∥
∞dt · sup

(s,j)∈X

∣∣f+(s, j, 0)− f+(s+ r, j, 0)
∣∣ = 0. (B.19)

Combining (B.17)−(B.19) leads to

lim
r→0+

J1(r) = −
∑
j∈E

Λs(i, j) f+(s, j, 0). (B.20)
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Next, we will study the limits of J2(r) and J3(r) as r → 0+. Since i ∈ E−, Z2 must have at

least one jump to E+ before Z3 (which coincides with
∫ ·
0 v(Z2

u)du in view of (4.8)) can upcross the

level 0, i.e., P̃s,i,0(γ̃1 ≤ τ̃+0 ) = 1, where we recall that γ̃1 denotes the first jump time of Z2. Hence,

by (D.2) and Lemma 4.6,

lim
r→0+

∣∣J3(r)∣∣ = lim
r→0+

1

r

∣∣∣Ẽs,i,0(1{γ̃1≤τ̃+0 ≤r}(f+(s+ r, Z2
τ̃+0
, 0
)
− f+

(
s+ τ̃+0 , Z

2
τ̃+0
, 0
)))∣∣∣

≤ lim
r→0+

1

r
P̃s,i,0

(
γ̃1 ≤ r

)
sup

(r′,j)∈[0,r]×E

∣∣f+(s+ r′, j, 0)− f+(s, j, 0)
∣∣ = 0. (B.21)

Moreover, note that 1{τ̃+0 ≤r}
(f+(s+ r, Z2

r , 0)− f+(s+ r, Z2
τ̃+0
, 0)) does not vanish only if Z2

r 6= Z2
τ̃+0

,

so Z2 must jump at least twice before time r. Hence, by (D.3) and (4.16), we have

lim
r→0+

∣∣J2(r)∣∣ = lim
r→0+

1

r

∣∣∣Ẽs,i,0(1{τ̃+0 ≤r, γ̃2≤r}(f+(s+ r, Z2
r , 0
)
− f+

(
s+ r, Z2

τ̃+0
, 0
)))∣∣∣

≤ 2
∥∥g+∥∥∞ · lim

r→0+

1

r
P̃s,i,0

(
γ̃2 ≤ r

)
= 0, (B.22)

where we recall that γ̃2 denotes the second jump time of Z2.

Finally, we study the limit of J4(r), as r → 0+, by further decomposing J4(r) as

J4(r) =
1

r
Ẽs,i,0

(
f+
(
s+ r, Z2

r , 0
)
− f+

(
s+ r, Z2

r ,−v(i)r
))

− 1

r
Ẽs,i,0

(
1{τ̃+0 ≤r}

(
f+
(
s+ r, Z2

r , 0
)
− f+

(
s+ r, Z2

r ,−v(i)r
)))

+
1

r
Ẽs,i,0

(
1{τ̃+0 >r}

(
f+
(
s+ r, Z2

r ,−v(i)r
)
− f+

(
s+ r, Z2

r ,−Z3
r

)))
=: J41(r) + J42(r) + J43(r). (B.23)

For J41(r), by (4.6), (4.7), (4.2), and (2.4), we have

J41(r) =
1

r

(
U∗s,s+r− I

)(
f+(s+r, ·, 0)−f+(s+r, ·,−v(i)r)

)
(i)+

1

r

(
f+(s+r, i, 0)−f+(s+r, i,−v(i)r)

)
.

By Assumption 2.1, (2.6), and Lemma 4.6, a similar argument leading to (B.19) shows that

lim
r→0+

1

r

∣∣(U∗s,s+r − I
)(
f+(s+ r, ·, 0)− f+(s+ r, ·,−v(i)r)

)
(i)
∣∣ = 0.

Hence, noting that g+ ∈ C1
0 (X+) = D(G+), by (4.16) and Corollary 4.4, we have

lim
r→0+

J41(r) = − lim
r→0+

1

r

(
f+(s+ r, i,−v(i)r)− f+(s+ r, i, 0)

)
= − lim

r→0+

1

r
Ẽs,i,0

((
P+
−v(i)r g

+
)(
Z1
τ̃+0
, Z2

τ̃+0

)
− g+

(
Z1
τ̃+0
, Z2

τ̃+0

))
= v(i) Ẽs,i,0

((
G+g+

)(
Z1
τ̃+0
, Z2

τ̃+0

))
. (B.24)

Next, since P̃s,i,0(γ̃1 ≤ τ̃+0 ) = 1 for i ∈ E−, by Lemma 4.6 and (D.2),

lim
r→0+

∣∣J42(r)∣∣ ≤ lim
r→0+

1

r
Ẽs,i,0

(
1{γ̃1≤r}

∣∣f+(s+ r, Z2
r , 0
)
− f+

(
s+ r, Z2

r ,−v(i)r
)∣∣)

≤ lim
r→0+

1

r
P̃s,i,0

(
γ̃1 ≤ r

)
sup

(j,`)∈E×[0,−v(i)r]

∣∣f+(s+ r, j, 0)− f+(s+ r, j, `)
∣∣ = 0. (B.25)
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As for J43(r), since Z2
u = Z2

0 for all u ∈ [0, r] on {γ̃1 > r}, it follows from (4.8) that Z3
r =∫ r

0 v(Z2
u)du = v(i)r, P̃s,i,0−a.s. on {γ̃1 > r}, and thus

1{γ̃1>r}
(
f+
(
s+ r, Z2

r ,−v(i)r
)
− f+

(
s+ r, Z2

r ,−Z3
r

))
= 0, P̃s,i,a − a. s..

Hence, by Lemma 4.6 and (D.2), we have

lim
r→0+

∣∣J43(r)∣∣ = lim
r→0+

1

r

∣∣∣Ẽs,i,0(1{τ̃+0 >r≥γ̃1}(f+(s+ r, Z2
r ,−v(i)r

)
− f+

(
s+ r, Z2

r ,−Z3
r

)))∣∣∣
≤ lim

r→0+

1

r
P̃s,i,0

(
γ̃1 ≤ r

)
sup

j∈E, `1,`2∈[0,vr]

∣∣f+(s+ r, j, `1)− f+(s+ r, j, `2)
∣∣ = 0. (B.26)

Combining (B.23)−(B.26), we obtain that

lim
r→0+

J4(r) = v(i) Ẽs,i,0
((
G+g+

)(
Z1
τ̃+0
, Z2

τ̃+0

))
. (B.27)

Finally, in view of (4.13), (B.16), (B.20), (B.21), (B.22), and (B.27), for any g+ ∈ C1
0 (X+) and

(s, i) ∈X−, we get

∂+
∂s

(
J+g+

)
(s, i) = lim

r→0+

1

r

(
Ẽs+r,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
− Ẽs,i,0

(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

)))
= v(i) Ẽs,i,0

((
G+g+

)(
Z1
τ̃+0
, Z2

τ̃+0

))
−
∑
j∈E

Λs(i, j) Ẽs,j,0
(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
. (B.28)

Moreover, by (4.17), (4.18), and the definitions of C̃ and D̃ (cf. the end of Section 2.1)

v(i) Ẽs,i,0
((
G+g+

)(
Z1
τ̃+0
, Z2

τ̃+0

))
−
∑
j∈E

Λs(i, j) Ẽs,j,0
(
g+
(
Z1
τ̃+0
, Z2

τ̃+0

))
= v(i)

(
J+G+g+

)
(s, i)−

∑
j∈E+

Λs(i, j)g
+(s, j)−

∑
j∈E−

Λs(i, j)
(
J+g+

)
(s, j)

= v(i)
(
J+G+g+

)
(s, i)−

(
C̃ g+

)
(s, i)−

(
D̃J+g+

)
(s, i), (B.29)

Putting together (B.28) and (B.29), we deduce (4.26), which completes the proof.

C Proofs of lemmas from Section 4.4

Proof of Lemma 4.8. This is a direct consequence of [Dyn65, Chapter I, 1.2.B & 1.3.C].

Proof of Lemma 4.9. Let h ∈ C1
0 (Z ). For any (s, i, a) ∈ Z and t ∈ R+, by (4.5), we have

1

t

(
Ẽs,i,a

(
h
(
Z1
t , Z

2
t , Z

3
t

))
− h(s, i, a)

)
=

1

t
Ẽs,i,a

(
h
(
s+ t, Z2

t , Z
3
t

)
− h
(
s+ t, Z2

t , a
))

+
1

t

(
Ẽs,i,a

(
h
(
s+ t, Z2

t , a
))
− h(s+ t, i, a)

)
+

1

t

(
h(s+ t, i, a)− h(s, i, a)

)
. (C.1)
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For the first term in (C.1), routine calculation using (4.5), (4.8) and dominated convergence implies

lim
t→0+

1

t
Ẽs,i,a

(
h

(
s+ t, Z2

t , a+

∫ t

0
v
(
Z2
r

)
dr

)
− h
(
s+ t, Z2

t , a
))

= v(i)
∂h

∂a
(s, i, a). (C.2)

Next, for the second term in (C.1), routine calculation using (4.8), (4.2), (2.4), and (2.5) implies

lim
t→0+

1

t

(
Ẽs,i,a

(
h
(
s+ t, Z2

t , a
))
− h(s+ t, i, a)

)
=
(
Λs h(s, ·, a)

)
(i). (C.3)

Combining (C.1)−(C.3) leads to

lim
t→0+

1

t

(
Ẽs,i,a

(
h
(
Z1
t , Z

2
t , Z

3
t

))
− h(s, i, a)

)
= v(i)

∂

∂a
h(s, i, a) +

(
Λsh(s, ·, a)

)
(i) +

∂h

∂s
(s, i, a).

Since the semigroup induced by M̃ is Feller, by [BSW13, Theorem 1.33], the above pointwise limit

is uniform for all (s, i, a) ∈ Z and h ∈ D(A), which completes the proof of the lemma.

To proceed with the proof of Lemma 4.10, we first state the following auxiliary result, whose

proof is a straightforward application of contraction mapping theorem and can be obtained from

the authors upon request.

Lemma C.1. For any λ ∈ R+ and h+ ∈ C0(X+) with supph+ ⊂ [0, ηh+ ] × E+, for some ηh+ ∈
(0,∞), there exists a unique solution Φ ∈ C0(X+) to Φ(s, i) =

∫ ηh+

s

(((
Ã− λV+ + B̃S+

)
Φ
)
(t, i) +

(
V+h+

)
(t, i)

)
dt, (s, i) ∈ [0, ηh+)×E+,

Φ(s, i) = 0, (s, i) ∈
(
[ηh+ ,∞)×E+

)
∪ {(∞, ∂)},

(C.4)

and furthermore, Φ ∈ C1
c (X+).

Moreover, for any λ ∈ R+, Φ ∈ C1
0 (X+) is a solution to (C.4) if and only if Φ ∈ C1

0 (X+) solves(
λ−H+

)
Φ = h+ (C.5)

subject to Φ = 0 on ([ηh+ ,∞) × E+) ∪ {(∞, ∂)}. Consequently, there exists a unique solution

Φ ∈ C1
0 (X+) to (C.5) subject to Φ = 0 on ([ηh+ ,∞)×E+) ∪ {(∞, ∂)}.

Proof of Lemma 4.10. Let g+ ∈ Cc(X+) with supp g+ ⊂ [0, ηg+ ]× E+ for some ηg+ ∈ (0,∞). For

any λ ∈ R+, define Rλ on C0(X+) by

Rλh
+ :=

∫ ∞
0

e−λ`Q+
` h

+ d`, h+ ∈ C0(X+).

The integral on the right-hand side above is well defined since Q+
` is a contraction mapping, for

any ` ∈ R+. In order to prove that suppQ`g+ ⊂ [0, ηg+ ] × E+, for any ` ∈ R+, it is sufficient to

show that suppRλg
+ ⊂ [0, ηg+ ]×E+, for any λ ∈ (0,∞). Indeed, if the later is true, then for any

(s, i) ∈ [ηg+ ,∞)×E+, ∫ ∞
0

e−λ`
(
Q+
` g

+
)
(s, i) d` = 0, for all λ ∈ (0,∞),
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which implies that (cf. [Dyn65, Lemma 1.1]), (Q+
` g

+)(s, i) = 0 for almost every ` ∈ R+. Since

(Q+
· g

+)(s, i) is continuous on R+, we have (Q+
` g

+)(s, i) = 0 for all ` ∈ R+.

By [EK05, Proposition I.2.1]), for any λ ∈ (0,∞), the operator (λ−H+) : C1
0 (X+)→ C0(X+)

is invertible and (λ −H+)−1 = Rλ (so that Rλ is the resolvent at λ of H+). Hence, the equation

(C.5) has a unique solution Φλ = Rλg
+ = (λ − H+)−1g+ ∈ C1

0 (X+). On the other hand, by

Lemma C.1, (C.5) (with h+ replaced by g+) has a unique solution in C1
0 (X+) which vanishes in

[ηg+ ,∞)×E+. Therefore, suppRλg
+ ⊂ [0, ηg+ ]×E+, which completes the proof of the lemma.

The proof of Lemma 4.11 requires the following additional lemma.

Lemma C.2. For any g+ ∈ Cc(X+) with supp g+ ⊂ [0, ηg+ ] × E+ for some ηg+ ∈ (0,∞),

lim`→∞ ‖Q+
` g

+‖∞ = 0.

Proof. By Lemma C.1, when λ = 0, (C.5) (or equivalently, (C.4)) has a unique solution Φ0 ∈
C1
0 (X+) subject to supp Φ0 ⊂ [0, ηg+ ] × E+. Note that this does NOT imply the invertibility of

H+ (or equivalently, the existence of 0-resolvent of H+).

We first show that limλ→0+ ‖Φλ−Φ0‖∞ = 0. From the proof of Lemma 4.10, for any λ ∈ (0,∞),

Φλ = Rλg
+ ∈ C1

0 (X+) is the unique solution to (C.5) with supp Φλ ⊂ [0, ηg+ ]×E+. It follows from

Lemma C.1 that Φλ is the unique solution to (C.4). Hence, for any s ∈ [0, ηg+ ], we have

sup
(t,i)∈X +

s

∣∣(Φλ − Φ0)(t, i)
∣∣ = sup

(t,i)∈X +
s

∣∣∣∣ ∫ ηg+

t

((
Ã− λV+ + B̃S+

)
(Φλ − Φ0) + λV+Φ0

)
(r, i) dr

∣∣∣∣,
where we define X +

s := [s,∞) × E+ and X +
0 = X+. In addition, we note that for any (r, j) ∈

[0, ηg+ ]×E−, by the conditions imposed on S+ and invoking Riesz-Markov-Kakutani representation

theorem for the the functional g+ 7→ S+g+(r, j), we have∣∣(S+(Φλ − Φ0)
)
(r, j)

∣∣ ≤ ‖S+‖∞ sup
(u,k)∈X +

r

∣∣(Φλ − Φ0)(u, k)
∣∣.

Therefore, for any s ∈ [0, ηg+ ], we have

sup
(t,i)∈X +

s

∣∣(Φλ − Φ0)(t, i)
∣∣ ≤ λ‖V+‖∞‖Φ0‖∞

(
ηg+ − s

)
+Mλ

∫ ηg+

s
sup

(u,k)∈X +
r

∣∣(Φλ − Φ0)(u, k)
∣∣dr,

where Mλ := ‖Ã‖∞ + λ‖V+‖∞ + ‖B̃‖∞‖S+‖∞. By Gronwall inequality, we obtain that

‖Φλ − Φ0‖∞ = sup
(t,i)∈X +

0

∣∣(Φλ − Φ0)(t, i)
∣∣ ≤ λ‖V+‖∞‖Φ0‖∞ηg+e

Mληg+ → 0, as λ→ 0 + .

Next, we will show that lim`→∞ ‖Q+
` g

+‖∞ = 0. Without loss of generality, we assume that g+

is nonnegative. Otherwise, we can prove the above statement for the positive and negative part of

g+, denoted by g+p and g+n respectively. Then, ‖Q+
` g

+‖∞ ≤ ‖Q+
` g

+
p ‖∞+‖Q+

` g
+
n ‖∞ → 0, as `→∞.

Note that when g+ is nonnegative, since Q+
` is positive, we have Q+

` g
+ ≥ 0 for any ` ∈ R+.

To begin with, since limλ→0+ ‖Φλ − Φ0‖∞ = 0 and ‖Φ0‖∞ <∞. Hence, for any (s, i) ∈X+,

∞ > |Φ0(s, i)| = lim
λ→0+

|Φλ(s, i)| = lim
λ→0+

∫ ∞
0

e−λ`
(
Q+
` g

+
)
(s, i) d` =

∫ ∞
0

(
Q+
` g

+
)
(s, i) d`, (C.6)
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where we have used the monotone convergence in the last equality.

Suppose that lim sup`→∞ ‖Q+
` g

+‖∞ > 0, then there exists ε0 > 0 and (sn, in, `n) ∈ X+ × R+,

n ∈ N, with limn→∞ `n = ∞, such that (Q+
`n
g+)(sn, in) ≥ ε0 for any n ∈ N. Without loss of

generality, we can assume that `n+1 − `n > 1 and in = i0 ∈ E+ for all n ∈ N. Moreover, by

part (i), suppQ+
`n
g+ ⊂ [0, ηg+ ], and so (sn)n∈N ⊂ [0, ηg+ ], and hence we may also assume that

limn→∞ sn = s0 for some s0 ∈ [0, ηg+ ].

Since (Q+
` )`∈R+ is a strongly continuous contraction semigroup on C0(X+), for any b > 0,∥∥Q+

`+bg
+ −Q+

` g
+
∥∥
∞ =

∥∥Q+
`

(
Q+
b g

+ − g+
)∥∥
∞ ≤

∥∥Q+
b g

+ − g+
∥∥
∞.

In particular, (Q+
· g

+)(s, i) is uniformly continuous on R+, uniformly for all (s, i) ∈ X+. Thus,

there exists a universal constant δ0 ∈ (0, 1), such that for any b ∈ [0, δ0], (Q+
`n+b

g+)(sn, i0) > ε0/2,

for all n ∈ N, which implies that∫ `n+δ0

`n

(
Q+
` g

+
)
(sn, i0) d` >

δ0ε0
2
. (C.7)

On the other hand, by [EK05, Propositon I.1.5 (a)],
∫ δ0
0 Q

+
` g

+d` ∈ D(H+) = C1
0 (X+), so that by

[EK05, Propositon I.1.5 (b)]) and [Dyn65, 1.2.B],∫ `n+δ0

`n

Q+
` g

+ d` =

∫ δ0

0
Q+
`n

(
Q+
` g

+
)
d` = Q+

`n

∫ δ0

0
Q+
` g

+ d` ∈ D(H+).

Hence, by (3.5) and [EK05, Propositon I.1.5 (a) & (b)]), and since (Q+
` )`∈R+ is a contraction

semigroup,∥∥∥∥ ∂∂s
∫ `n+δ0

`n

Q+
` g

+ d`

∥∥∥∥
∞

=

∥∥∥∥(V+H+ − Ã− B̃S+
) ∫ `n+δ0

`n

Q+
` g

+ d`

∥∥∥∥
∞

≤ ‖V+‖∞
∥∥∥∥H+

∫ δ0

0
Q+
` g

+d`

∥∥∥∥
∞

+
∥∥Ã + B̃S+

∥∥
∞

∥∥∥∥∫ δ0

0
Q+
` g

+d`

∥∥∥∥
∞

=: M ∈ (0,∞). (C.8)

Combining (C.7) and (C.8), for any r ∈ (−δ0ε0/(4M), δ0ε0/(4M)), we have∫ `n+δ0

`n

(
Q+
` g

+
)
(sn + r, i0) d` >

δ0ε0
4
, for all n ∈ N. (C.9)

Let N ∈ N be large enough so that s0 ∈ (sn − δ0ε0/(4M), sn + δ0ε0/(4M)) for all n ≥ N . Since

`n+1 − `n > 0 and δ0 ∈ (0, 1), the intervals (`n, `n + δ0), n ∈ N, are non-overlapping. Therefore, we

obtain from (C.9) that∫ ∞
0

(
Q+
` g

+
)
(s0, i0) d` ≥

∞∑
n=N

∫ `n+δ0

`n

(
Q+
` g

+
)
(s0, i0) d` =∞,

which clearly contradicts (C.6). The proof of the lemma is now complete.

Proof of Lemma 4.11. Let g+ ∈ C1
c (X+) with supp g+ ⊂ [0, ηg+ ]×E+ for some ηg+ ∈ (0,∞), and

fix ` ∈ R. Recall that F̂+ is defined as in (4.27).
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We first show that F̂+(·, ·, ·, `) ∈ C0(X × (−∞, `]). For any i ∈ E+, s, s′ ∈ R+, and a, a′ ∈
(−∞, `], we have∣∣∣(Q+

`−ag
+
)
(s, i)−

(
Q+
`−a′g

+
)
(s′, i)

∣∣∣ ≤ ∣∣∣(Q+
`−ag

+
)
(s, i)−

(
Q+
`−ag

+
)
(s′, i)

∣∣∣+
∥∥Q+

`−ag
+ −Q+

`−a′g
+
∥∥
∞.

Since Q+
`−ag

+ ∈ C0(X+) and Q+
`−·g

+ is strongly continuous on (−∞, `], we see that (Q+
`−·g

+)(·, i)
is jointly continuous on R+ × (−∞, `]. Moreover, for any i ∈ E−,∣∣∣(S+Q+

`−ag
+
)
(s, i)−

(
S+Q+

`−a′g
+
)
(s′, i)

∣∣∣
≤
∣∣∣(S+Q+

`−ag
+
)
(s, i)−

(
S+Q+

`−ag
+
)
(s′, i)

∣∣∣+ ‖S+‖∞
∥∥Q+

`−ag
+ −Q+

`−a′g
+
∥∥
∞.

Since Q+
`−ag

+ ∈ C0(X+), the condition (a+)(i) implies that S+Q+
`−ag

+ ∈ C0(X−). Together

with the strong continuity of Q+
`−·g

+ on (−∞, `] as well as the boundedness of S+, we obtain

that (S+Q+
`−·g

+)(·, i) is jointly continuous on R+ × (−∞, `]. In view of (4.27), we obtain that

F̂+(·, i, ·, `) is jointly continuous on R+× (−∞, `] for any i ∈ E. It remains to show that F̂+(·, i, ·, `)
vanishes at infinity for any i ∈ E. By Lemma 4.10, suppQ+

`−ag
+ ⊂ [0, ηg+ ] × E+, and the con-

dition (a+)(i) implies that suppS+Q+
`−ag

+ ⊂ [0, ηg+ ] × E−, so that supp F̂+(·, i, a, `) ⊂ [0, ηg+ ].

Moreover, by Lemma C.2, lima→−∞Q+
`−ag

+ = 0 strongly, and since ‖S+‖∞ < ∞, we also have

lima→−∞ S
+Q+

`−ag
+ = 0 strongly. Hence, F̂+(·, i, ·, `) vanishes at infinity for any i ∈ E, and

therefore, F̂+(·, ·, ·, `) ∈ C0(X × (−∞, `]).
Next, we will show that ∂F̂+(·, ·, ·, `)/∂a exists and belongs to C0(X × (−∞, `]). Since g+ ∈

C1
0 (X+) = D(H+), for any a ∈ (−∞, `], by [EK05, Proposition I.1.5 (b)], we have Q+

`−ag
+ ∈

D(H+), and

d

da
Q+
`−ag

+ = −Q+
`−aH

+g+ = −H+Q+
`−ag

+. (C.10)

Together with Lemma 4.8, we obtain that ∂F̂+(·, ·, a, `)/∂a at any a ∈ (−∞, `], and

∂

∂a
F̂+(·, ·, a, `) = −

(
Q+
`−aH

+g+

S+Q+
`−aH

+g+

)
(·, ·).

Moreover, by (3.5) and the condition (a+)(i), we have H+g+ ∈ C0(X+) with suppH+g+ ⊂
[0, ηg+ ] × E+. Using arguments similar to those leading to F̂+(·, ·, ·, `) ∈ C0(X × (−∞, `]) above,

we conclude that ∂F̂+(·, ·, ·, `)/∂a ∈ C0(X × (−∞, `]).
Finally, we will show that ∂F̂+(·, ·, ·, `)/∂s exists and belongs to C0(X × (−∞, `]). For any

a ∈ (−∞, `], since Q+
`−ag

+ ∈ C1
0 (X+) = D(H+), by (3.3), we have

V−1
(
∂

∂s
+ Λ̃

)(
I+

S+

)
Q`−ag+ =

(
I+

S+

)
H+Q`−ag+.

Consequently, in view of (4.27), ∂F̂+(s, i, a, `)/∂s exists at any (s, i, a) ∈X × (−∞, `], and

∂F̂+

∂s
(s, i, a, `) =


∂

∂s

(
Q+
`−ag

+
)

∂

∂s

(
S+Q+

`−ag
+
)
 (s, i) =

 V+Q+
`−aH

+g+ −
(
Ã + B̃S+

)
Q+
`−ag

+

V−S+Q+
`−aH

+g+ +
(
C̃ + D̃S+

)
Q+
`−ag

+

 (s, i).

With similar technique as before, the right-hand sides above, as a function of (s, i, a), belongs to

C0(X × (−∞, `]).
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D Two additional technical lemmas

In this section, we establish two additional technical lemmas that are used in the proofs of our

main theorems. We begin with a lemma regarding the distributions of the first and second jump

time of Z2 (see also [RSST99, Section 8.4.2]).

Lemma D.1. Let γ̃1 and γ̃2 be the first and the second jump time of Z2, respectively. Then, for

any (s, i, a) ∈ Z and r ∈ R+,

P̃s,i,a
(
γ̃1 > r

)
= exp

(∫ s+r

s
Λu(i, i) du

)
. (D.1)

In particular,

P̃s,i,a
(
γ̃1 ≤ r

)
≤ Kr, (D.2)

P̃s,i,a
(
γ̃2 ≤ r

)
≤ K2r2. (D.3)

Proof. For any (s, i, a) ∈ Z and r ∈ R+, by (4.7) and (4.2),

P̃s,i,a
(
γ̃1 > r

)
= P̃s,i,a

(
inf
{
t ∈ R+ : Z2

t 6= Z2
t−
}
> r
)

= exp

(∫ s+r

s
Λu(i, i) du

)
.

Hence, by Assumption 2.1 (i),

P̃s,i,a
(
γ̃1 ≤ r

)
= 1− exp

(∫ s+r

s
Λu(i, i) du

)
≤ 1− e−Kr ≤ Kr.

Moreover, for any ω̃ ∈ Ω̃,

γ̃2(ω̃) = inf
{
t∈ [γ̃1(ω̃),∞] : Z2

t (ω̃) 6=Z2
t−(ω̃)

}
= γ̃1(ω̃)+inf

{
t ∈ R+ : Z2

(γ̃1(ω̃)+t)−(ω̃) 6=Z2
γ̃1(ω̃)+t

(ω̃)
}

= γ̃1(ω̃) + inf
{
t ∈ R+ : Z2

t−
(
θγ̃1(ω̃)ω̃

)
6= Z2

t

(
θγ̃1(ω̃)ω̃

)}
= γ̃1(ω̃) +

(
γ̃1 ◦ θγ̃1

)
(ω̃),

and thus (
Z1
γ̃1
◦ θγ̃1

)
(ω̃) = Z1

γ̃1◦ θγ̃1 (ω̃)
(
θγ̃1(ω̃)ω̃

)
= Z1

(γ̃1+γ̃1◦ θγ̃1 )(ω̃)
(ω̃) = Z1

γ̃2
(ω̃).

Therefore, by (4.6), the strong Markov property of M̃ (cf. [RW94, Theorem III.9.4]), and (D.2),

P̃s,i,a
(
γ̃2 ≤ r

)
= P̃s,i,a

(
Z1
γ̃2
∈ [s, s+ r]

)
= P̃s,i,a

(
Z1
γ̃1
∈ [s, s+ r], Z1

γ̃2
∈ [s, s+ r]

)
= P̃s,i,a

(
Z1
γ̃1
∈ [s, s+ r], Z1

γ̃1
◦ θγ̃1 ∈ [s, s+ r]

)
= Ẽs,i,a

(
1{

Z1
γ̃1
∈[s,s+r]

} P̃s,i,a(Z1
γ̃1
◦ θγ̃1 ∈ [s, s+ r]

∣∣∣F̃γ̃1

))
= Ẽs,i,a

(
1{

Z1
γ̃1
∈[s,s+r]

} P̃Z1
γ̃1
,Z2
γ̃1
,Z3
γ̃1

(
Z1
γ̃1
∈ [s, s+ r]

))
≤ Kr P̃s,i,a

(
Z1
γ̃1
∈ [s, s+ r]

)
= Kr P̃s,i,a (γ̃1 ≤ r) ≤ K2r2,

which completes the proof of the lemma.
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The next lemma establishes some relationship between γ̃1 and τ̃+` .

Lemma D.2. For any (s, i) ∈X+, a ∈ R, and h ∈ (0,∞),

1{γ̃1>h/v(i)} = 1{γ̃1>h/v(i)}1{τ̃+a+h=h/v(i)}
P̃s,i,a − a.s. , (D.4)

1{γ̃1≤h/v(i)} = 1{γ̃1≤h/v(i)}1{γ̃1≤τ̃+a+h}
P̃s,i,a − a.s. . (D.5)

Proof. For any (s, i) ∈X+, a ∈ R, and h ∈ (0,∞),{
Z3
t = a+

∫ t

0
v
(
Z2
u

)
du, for all t ∈ R+

}⋂{
γ̃1 >

h

v(i)

}
=

{
Z3
t = a+

∫ t

0
v
(
Z2
u

)
du, for all t ∈ R+

}⋂{
γ̃1>

h

v(i)

}⋂{
Z3
t = a+v(i)t, for all t ∈ [0, γ̃1]

}
⊂
{
Z3
t < a+ h, for all t ∈

[
0,

h

v(i)

)
; Z3

h/v(i) = a+ h; Z3
t > a+ h, for all t ∈

(
h

v(i)
, γ̃1

]}
⊂
{
τ̃+a+h =

h

v(i)

}
,

and{
Z3
t = a+

∫ t

0
v
(
Z2
u

)
du, for all t ∈ R+

}⋂{
γ̃1 ≤

h

v(i)

}
=

{
Z3
t = a+

∫ t

0
v
(
Z2
u

)
du, for all t ∈ R+

}⋂{
γ̃1 ≤

h

v(i)

}⋂{
Z3
t ≤ a+ h, for all t ∈ [0, γ̃1]

}
⊂
{
Z3
t ≤ a+ h, for all t ∈ [0, γ̃1]

}
⊂
{
γ̃1 ≤ τ̃+a+h

}
.

Then, (D.4) and (D.5) follow from (4.8).
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struction, approximation and sample path properties. Lecture Notes in Math., Vol. 2009,

Springer, 2013.

[Dyn65] E. B. Dynkin. Markov processes, Vol. 1. Springer-Verlag Berlin Heidelberg, Germany,

1965.

[EK05] S. N. Ethier and T. G. Kurtz. Markov processes characterization and convergence. John

Wiley & Sons, Inc, Hoboken, NJ, USA, 2005.

[GS04] I. I. Gikhman and A. V. Skorokhod. The theory of stochastic processes, Vol. II. Springer-

Verlag Berlin Heidelberg, Germany, 2004.

[JS03] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes. Springer-Verlag Berlin

Heidelberg, Germany, 2003.

[KS98] I. Karatzas and S. E. Shreve. Brownian motion and stochasitc calculus, 2nd Edition. Grad.

Texts in Math., Vol. 113, Springer, New York, NY, USA, 1998.

[KW90] J. Kennedy and D. Williams. Probabilistic factorization of a quadratic matrix polynomial.

Math. Proc. Cambridge Philos. Soc., 107(3):591−600, 1990.
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