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ABSTRACT: This work contributes to the theory of Wiener-Hopf type factorization for finite Markov
chains. This theory originated in the seminal paper [BRW80], which treated the case
of finite time-homogeneous Markov chains. Since then, several works extended the
results of [BRWS80] in many directions. However, all these extensions were dealing with
time-homogeneous Markov case. The first work dealing with the time-inhomogeneous
situation was [BCGH19], where Wiener-Hopf type factorization for time-inhomogeneous
finite Markov chain with piecewise constant generator matrix function was derived. In
the present paper we go further: we derive and study Wiener-Hopf type factorization
for time-inhomogeneous finite Markov chain with the generator matrix function being
a fairly general matrix valued function of time.
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1 Introduction

The main goal of this paper is to develop a Wiener-Hopf type factorization for finite time-inhomo-
geneous Markov chains. In order to motivate this goal, we first provide a brief account of the
Wiener-Hopf factorization for time-homogeneous Markov chains based on [BRW80)].

Towards this end, consider a finite state space E with cardinality m, and let A be a sub-
Markovian generator matrix of dimension m x m, that is, A(,j) > 0, i # j, and E]EE A(i,j) <0.
Next, let v be a real valued function on E, such that v(i) # 0 for all ¢ € E, and define

Ei:={icE: +v(i) > 0}.
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We also denote by my cardinality of Ex, and we let V := diag{v(7) : i € E} be the diagonal matrix
of dimension m x m. Finally, let | and I* denote the identity matrices of dimensions m x m and
m4 X my, respectively. Using probabilistic methods, the following result was proved in [BRWS&0).

Theorem 1.1 ([BRW80, Theorem I|). For any ¢ > 0, there exists a unique pair of matrices
(NF,N7) of dimensions m— x my and m4 X m_ respectively, such that the matriz

I+ n;
S‘(nj |)

1s invertible and the following factorization holds true

VI(A—el) =S (Qg QO_> 51, (1.1)

where QF are m4 xm+ sub-Markovian generator matrices. Moreover, NF are strictly substochastic.

The right-hand side of (1.1) is said to constitute the Wiener-Hopf factorization of the matrix
V=I(A — ¢cl). While the factorization (1.1) is algebraic in its nature, it admits a very important
probabilistic interpretation, which leads to very efficient computation of some useful expectations.
More precisely, let X be a time-homogeneous Markov chain taking values in E U 9, where 0 is a
coffin state, with generator A. For t > 0, we define the additive functional

and two stopping times
5 =inf{u>0: +¢(u) > t}.

Theorem 1.2 ([BRW80, Theorem II]). For any i € Ex and j € E4,
+
E<€—0’Fg 1, (Xo - z) = N3, ). (1.2)
{Xfoi*ﬂ}
For anyi,j € Ex andt >0,
+ +
E(e_”t 1 i ’Xo —i) =t (4, ). (1.3)
{Xftifﬂ}

Both Theorems 1.1 and 1.2 have been studied for more general classes of Markov process, as well
as for various types of stopping times, that naturally occur in applications (cf. [KW90], [APU03],
[Wil08], [MP11], and references therein). However, in all these studies the Markov processes have
been assumed to be time-homogeneous.

As it turns out, the time-inhomogeneous case is more intricate, and direct (naive) generalizations
or applications of the time-homogenous case to the non-homogenous case can not be done in
principle. Specifically, let now X be a finite state time-inhomogeneous Markov chain taking values
in EU 0, with generator function Ag, s > 0. The first observation that one needs to make is that
the Wiener-Hopf factorization of the matrix V™1(As — cl) can be done for each s > 0 separately,



exactly as described in Theorem 1.1. However, the resulting matrices MF(s) and QF(s), s > 0, are
not useful for computing the expectations of the form

+
E<€—0‘Ft ()1 - ’Xs _2'>,
{Xrti(s)*J}

where
stu
7 (s) := inf {u > s :I:/ v(X,)dr > t} :

This makes the study of the time-inhomogeneous case a highly nontrivial and novel enterprise. As
it will be seen from the discussion presented below, an entirely new theory needs to be put forth
for this purpose. The research effort in this direction has been originated in [BCGH19]. This work
contributes to the continuation of the research endeavor in this direction.

2 Setup and the main goal of the paper

2.1 Preliminaries

Throughout this paper we let E be a finite set, with |E| = m > 1. We define E := E U {3}, where
0 denotes the coffin state isolated from E. Let (A)ger, , where Ry :=[0,00), be a family of m x m
generator matrices, i.e., their off-diagonal elements are non-negative, and the entries in their rows
sum to zero. We additionally define Ay, := 0, the m x m matrix with all entries equal to zero.

We make the following standing assumption:

Assumption 2.1.

(i) There exists a universal constant K € (0,00), such that |As(i,j)| < K, for alli,j € E and
S € R+.

(ii) (As)ser,, considered as a mapping from Ry to the set of m X m generator matrices, is
continuous with respect to s.

Let v : E — R with v(i) # 0 for any i € E and v(9) = 0, V := diag{v(i) : i € E}, v :=
max;eg |v(7)|, and v := min;eg |v(7)|. We will use the following partition of the set E

Ei={icE:v() >0} and E_:={icE: v(i) <0}.

We assume that both E; and E_ are non-empty, and that the indices of the first my = |E4|
(respectively, last m_ = |E_|) rows and columns of any m x m matrix correspond to the elements
in E; (respectively, E_). Accordingly, we write As and V in the block form

E, E_ E, E_

Ay = Er (A B , V= Er (Ve 0) (2.1)

E_\C, D, E \0 V_
In what follows we let 2" := Ry XxE, and 27 := Ry XxEL. The Borel o-field on 2 (respectively,
Z7) is denoted by B(Z) := B(R}) ® 2F (respectively, B(Z+) := B(Ry) ® 2E+). Accordingly, we



let 27 := 2 U (4+00,0) (respectively, 2% := 24 U (+00,9)) be the one-point completion of 2~
(respectively, 27%), and let B(2") := o(B(2") U {(c0,0)}) (respectively, B(Zx) := o(B(2%) U
{(00,0)})). A pair (s,i) € 2 consists of the time variable s and the space variable i.

We will also use the following notations for various spaces of real-valued functions:

e L°°(Z) is the space of B(2Z )-measurable, and bounded functions f on 27, with f(+00,9) =
0.

e Co(Z) is the space of functions f € L°°(2) such that f(-,i) € Co(R,) for all i € E, where
Co(Ry) is the space of functions vanishing at infinity.

o C.(Z) is the space of functions f € L>(.Z) such that f(-,i) € C.(Ry) for all i € E, where
C.(R4) is the space of functions with compact support.

e CH(Z) is the space of functions f € Cy(2") such that, for any i € E, 9f(-,1)/0s exists and
belongs to Cy(R) (for convenience, we stipulate that df (oo, d)/ds = 0).

e C}(Z) is the space of functions f € C.(Z") such that, for any i € E, 9f(-,i)/0s exists (for
convenience, we stipulate that df(co,d)/0s = 0).

Sometimes .2~ will be replaced by .2 or Z_ when the functions are defined on these spaces,
in which case the set E will be replaced by E or E_, respectively, in the above definitions. Note
that each function on 2 can be viewed as a time-dependent vector of size m, which can be split
into a time-dependent vector of size m, (a function on £7) and a time-dependent vector of size
m_ (a function on 2_).

We conclude this section by introducing some more notations, this time for operators:

o A: L®(Z) — L®(Z) is the multiplication operator associated with (As)ser +» defined by

(Kg)(svi) = (As 9(37 ))(Z)> (37i) S (2'2)

e Similarly, we define multiplication operators A : L>®(Zy) — L™(Z7,), B : L>®(2) —
L®(Z)), C: L®(2) — L®(Z2_),and D : L>®(2_) — L>(Z_), associated with the blocks
(As)ser, > (Bs)sery, (Cs)ser,, and (Dy)ser, given in (2.1), respectively.

Given the above, for any' g = (¢, 97)7 € L®(Z"), where g* € L>(Z%), we have

~ Agt +Bg
Ag=(=7, T29 ). (2.3)
Cg +Dg

2.2 A time-inhomogeneous Markov family corresponding to (A,)scr, and related

passage times

We start with introducing a time-inhomogeneous Markov Family corresponding to (As)ser, . Then,
we proceed with a study of some passage times related to this family.

!The superscript T will be used to denote the transpose of a vector or matrix.



2.2.1 A time-inhomogeneous Markov family M* corresponding to (A;).cr,

We take Q* as the collection of E-valued functions w* on Ry, and .#* := o{ X}, t € R, }, where
X is the coordinate mapping X*(w*) := w*(-). Sometimes we may need the value of w* € Q* at
infinity, and in such case we set X* (w*) = w*(0c0) = 9, for any w* € Q*. We endow the space
(Q*, Z*) with a family of filtrations F* := {#,", t € [s,00]}, s € Ry, where, for s € Ry,

T = m o(Xy, u€ls,r]), te[s,00); FIF:= 0< U fts’*>7
r>t t>s
and Z55" = {0,Q*}. We denote by
M = (0, T (XD ooy Po) (5,7) € 2}
a canonical time-inhomogeneous Markov family. That is,
e P}, is a probability measure on (Q*,.7%") for (s,i) € 2;
e the function P* : 2" x R, x oF _, [0, 1] defined for 0 < s <t < o0 as
P*(s,i,t, B) := P% (X} € B)
is measurable with respect to i for any fixed s <t and B € 2E;
o P7(X;=1)=1forany (s,i) € X
e for any (s,i) € 2, s<t<r<o0,and B € QE, it holds that
Py, (X; € B|.F") =P x:(X; € B), P;;—as.
Let U* := (U} ;)o<s<t<co be the evolution system (cf. [Bot14]) corresponding to M* defined by
UL, f() == B3, (F(X})), 0<s<t<oo, icE, (24)

for all functions (column vectors) f : E — R.? We assume that
1
lim - (U f9) = £0) = Auf Q). for any (s,i) € 2, (2.5)

forall f: E — R.

It is well known that a standard version of the Markov family M* (cf. [GS04, Definition 1.6.6])
can be constructed. This is done by first constructing via Peano-Baker series the evolution system
U* = (U5 t)o<s<t<oo that solves

dug,
dt
Since A; is a generator matrix, Ug, is positive preserving and contracting with Ug;1, = 1,,. In
addition, due to Assumption 2.1-(i) and (2.6), it holds for any 0 < s < t and r € (0,¢ — s) that

[Us e = Usall o = Ve (Ui = 1), < Cy

2Note that for t € Ry, X; takes values in E.

=N\ U Uss =1, 0<s<t<oo. (2.6)

sty




and

o H(I - :,S-H") U:-&-T,tHOO < CT?

for some positive constant C', so that Uy, is strongly continuous in s and ¢. The above, together with

* *
HUS-I—r,t T Vst

the finiteness of the state space, implies that U* is a Feller evolution system. The corresponding
standard version can then be constructed (cf. [GS04, Theorem 1.6.3]).

In view of the above, we will consider the standard version of M™* in what follows, and, for
simplicity, we will preserve the notation M* = {(Q*, 7", F;, (X{)i>s, P ;), (s,1) € 2}, in which
2" is restricted to the collection of E-valued cadlag functions w* on Ry with w*(oc0) = 0.

2.2.2 Passage times related to M*

For any s € R, we define an additive functional ¢*(s) as

o7 (s) ::/ v(X))du, tE€ s, o0,

and we stipulate ¢*_(s,w*) = oo for every w* € Q*. In addition, for any s € R, and £ € R, we
define associated passage times

TZ“*(S) :=inf {t € [s,00] : ¢;(s) >} and 7,7 (s):=inf{t e [s,00]: ¢f(s) < —L}.

Both TZ— "(s) and 7, " (s) are Fi-stopping times since, ¢*(s) is Fi-adapted, has continuous sample
paths, and F? is right-continuous (cf. [JS03, Proposition 1.28]). For notational convenience, if no
confusion arises, we will omit the parameter s in ¢;(s) and Tg:t *(s).

The following result is an immediate consequence of the setup above and therefore its proof is
omitted.

w*) € Ex U{0}. In

Lemma 2.2. For any s € Ry, £ € Ry, and w* € Q° we have in,*(s)(
4

particular, if Tf’*(s,w*) < 00, then X:i'*(s) (w*) € Ex.
4

2.3 The main goal of the paper

Our main interest is to derive a Wiener-Hopf type method for computing expectations of the
following form

ES.i (gi (TZ'E X;},*» (2.7)

for g* € L>®(2%), £ € Ry, and (s,i) € 2. In view of Lemma 2.2, it is enough to compute
the expectation in (2.7) for g* € L*(Z%) in order to compute the analogous expectation for
g€ L®Z).

The Wiener-Hopf type method derived in this paper generalizes the Wiener-Hopf type method
of [BRWS80] that was developed for the time-homogeneous Markov chains.

Remark 2.3. The time-homogeneous version of the problem of computing the expectation of the
type given in (2.7) appears frequently in time-homogeneous fluid models (see e.g. [Rog94| and the
references therein). Time inhomogeneous extensions of such models is important and natural due
to temporal (seasonal) effect, for example. This is one practical motivation for the study presented
in this paper.



In order to proceed, we introduce the following operators:

o JT:LX(Zy) — L®(Z_) is defined as

(JTg")(s,4) :=EL, (g+ (TJ’*7X:;,*>>, (s,i) € Z_. (2.8)

Clearly, for any g* € L>®(Z7), [(JTgT)(s,i)] < 197N ooz < 00 for any (s,i) € 2-, and
(JTg™)(o0,0) =0, so that JTgT € L=(27).

o J: L®(Z_) = L®(ZY}) is defined as,

(J_g_)(s,i) =Eg, (g_ (Tg’*,X;kO_,*>), (s,i) € 2. (2.9)
e For any £ € Ry, P, : L®(Z) — L>®(Z) is defined as

(Pfg* =K, ( X*+ *)> (s,i) € Z4. (2.10)

e For any £ € Ry, P, : L%(22) — L>(2_) is defined as,
(P g )(s,i) :=E (

(7 XL D). e (2.11)
e For any (s,i) € 27, we define

1 + .+ N+ .
[_E(?_J'_E(PZ g (S’Z) ) (87’[’))7 (212)

(GTg™)(s,i) ==
for any g+ € Co(Z7,) such that the limit in (2.12) exists and is finite.

e For any (s,i) € 2_, we define

(G_g_)(s,z’) = e£%1+ E(Pe g (s,i) — g_(s,i)), (2.13)

for all g~ € Co(Z1) such that the above limit in (2.13) exists and is finite.

Remark 2.4. For g* € L>®(Z,), £ € (0,00), and (s,4) € 2, it can be shown that
E*. + +,% X* . — J+'P+ + " ) 214
s,z(g (Te ) 7.;7 )) ( Y4 g )(S Z) ( )
Similarly, for g~ € L®(2_), £ € (0,00), and (s,i) € 2, we have
E (g (7" X" L)) =(J"P,g7)(s,i). 2.15
s, <g <Tg o >> ( ¢ 9 )(5 Z) ( )

The identity (2.14) will be verified in Remark 4.5 below, while (2.15) can be proved in an analogous
way with v replaced by —v.

In view of (2.8)—(2.11) and (2.14)—(2.15), the expectation of the form (2.7) for any g €
L®(Z%), £ € Ry, and (s,4) € 27, can be represented in terms of the operators J* and 73;5.



3 Main Results

We now state the main results of this paper, Theorem 3.1 and Theorem 3.2. Theorem 3.1 is
analytical in nature, and it provides the Wiener-Hopf factorization for the generator V=1(9/ 83—1—7\).
This factorization is given in terms of operators (S*, H",S~, H~) showing in the statement of the
theorem. Theorem 3.2 is probabilistic in nature, and provides the probabilistic interpretation of the
operators (ST, H", S~ H™), which is key for various applications of our Wiener-Hopf factorization.

Theorem 3.1. Let (As)ser, be a family of m x m generator matrices satisfying Assumption 2.1,
and let N\ be the associated multiplication operator defined as in (2.2). Letv: E — R with v(i) # 0
for any i € E, v(0) =0, and V = diag{v(i) : © € E}. Then, there exists a unique quadruple of
operators (ST, Ht, S~ H™) which solves the following operator equation

v—l(aiJrK) (; ?-) (zj> = (éi f-) <}g+ _;_> (if) 9o € CGy(Z), (31)

subject to the conditions below:
(a®) ST : Co(2%) — Co(2%) is a bounded operator such that

(i) for any g* € Co(2+) with supp g* C [0,m,+] x Ex for some constant n,« € (0,00), we
have supp STg* C [0,7y+] x Ex;

(ii) for any g* € CH(Z%), we have S*g* € CH(2%).

(bi) H* is the strong generator of a strongly continuous positive contraction semigroup (ta)gE]R+
on Co(2+) with domain P(H*) = CH(2%).

Theorem 3.2. For any g* € Co(2), we have
Stgt = JF¢t  and Qeigi = Pgigi, for any £ € Ry,

where J* and (P})gel& are defined in (2.8)—(2.11). Moreover, Gt given in (2.12) is the (strong)
generator of (P )0 with D(GT) = CH(Z +), and G~ given in (2.13) is the (strong) generator of
('Pe_)gzo with ’D(Gf) = C&(y_)

The proofs of these two theorems is deferred to Section 4.

By Theorems 3.1 and 3.2, we are able to compute J*g* and Peigi, for any gt € Ci(Z%) and
¢ € R, by solving equation (3.1) subject to the conditions (a®) and (b*). In view of Remark 2.4,
these functions lead to the expectation of the form (2.7) for any g= € C}(27%). In particular, for
any ¢ > 0 and j € E4, by taking gji € C}(27%) with

gji(s,i) =e (i), (s4) € 2%, (3.2)

we obtain the following Laplace transform for (7'2t - X:t*)
14

E* ) 6707'2:’*]]_
X {X*i,*Zj} )
e



for any ¢ € (0,00), £ € Ry, and (s,7) € 2. We then perform the inverse Laplace transform with

respect to ¢ to obtain the joint distribution of (th . X:i,*) under P
4

+ ;» which enables us to compute

the expectations (2.7) for any g% € L>(2%).
Note that the equation (3.1) can be decomposed into the following two uncoupled equations

v (2 LA Yo (7)) gt teckzy) (3.3)
Os S+ g = S+ y g 0 +/y .

V—1<§S+K) (é) gt =— (é) H g, g €CMZD). (3.4)

Hence, one can compute J g™ and G*g" (and thus P, g") separately from J~ g~ and G~¢g~ (and
thus P, g~) by solving (3.3) and (3.4) subject to (a™) and (b"), and (a~) and (b™), respectively.

Remark 3.3. By (2.1), (2.3), and Theorems 3.1 and 3.2, we see that (J*, G™) is the unique solution,
subject to (a™) and (b"), to the following two operator equations,

NV .

(V¥ 1<3S+A+BS*>9+=H+ T (3.5)
_ 0 ~ ~

(V) 1(({)85%—i—C—i—DSJr>g+ =StH g™, (3.6)

where gt € C}(Z;). By plugging (3.5) into (3.6), we obtain the operator Riccati equation of the

form
—13 10 | % -1 0 \-1x
<s+(v+) B 5 4+ 5+ (V) <8S +A> ~ ) (88 i D>S+ ~ W) c> 7 =0,

Hence, in order to compute (J,GT) from (3.3), one needs first to compute J* by solving the
above operator equation subject to (a™), and then G is given in terms of J* by (3.5). Similarly,
one can compute (J~,G7) from (3.4) in an analogous way.

Remark 3.4. The operator

. (5: i) L Co(T) = Co(T)

is the counterpart of the matrix S given in Theorem 1.1. It can be shown that the operator ¥
is injective. However, unlike the matrix S which is invertible, the operator ¥ is not invertible in
general. In fact, the surjectivity of ¥ may fail, even when restricted to C’é (Z) (recall the condition
(a™)(ii)). Nevertheless, the potential lack of invertibility of ¥ does not affect the existence and
uniqueness of our Wiener-Hopf factorization. It only affects the form of equality (3.1), with S*
replaced with J*.

Remark 3.5. When the Markov family M* is time-homogeneous, namely, A; = A for all s € R,
where A is an m x m generator matrix, the equation (3.1) reduces to the time-homogeneous Wiener-
Hopf factorization (1.1), which, in light of the invertibility of S, can be rewritten as

VLA — cl) <||1++ T) - <||1++ T) (Ci; c?) (3.7)
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In what follows, we will only check the “+” part of the above equality.
Towards this end, for any ¢ € (0,00) and j € E, take g;-r € C}(275) asin (3.2). Since (J*,GT)
is the unique solution to (3.3) subject to (a¥) and (b*), we have

9 It It
% <as - /\> <J+> g = <J+> Gyt (3.8)

Since M* is a time-homogeneous Markov family, for any s,/ € R, and ¢ € E, the distribution of

(TZ_ *(s) —s, XT+,*(S)) under P? . is the same as that of (TZ_’*<O), X +,*(0)) under P ;. Hence, for any
L ’ Ty ;

s € Ry and ¢ € E4, we have

. .1 . . 1/ o _ertis .
(G+g;,L) (s,1) = 61_13& 7 ((P;gj) (s, z)—g;-r(s, z)) _el—l>%l+ 7 (E -(e 0 ( )]1{X*+’*( ):j}> —]l{j}(z)>
Te S

— tim (R (e O 1)) = e QL
Am — <E0,1< ¢ ]l{ +*<0_j}) ﬂ{g}(l)) e” Q7 (i, 7), (3.9)

where we recall that the matrix QF is defined in (1.3). Similarly, for any s € Ry and i € E_,

(J+gj+)(s,i) —E, ( g ( +*(s),X:;,*(s))) =E;; (gcﬁ»*(s)]l{X*M( ):j})
s
om0 L) =) (310)
where the matrix I} is defined by (1.2), and
(7767 ef) (1) = B3 ( (€75, )< X)) =B (TR (X))
B TR ) =Y B O )it
0

keE,

= e > N (i, k) QF (k,j) = e (N Q) (i, ). (3.11)

keE4

By plugging (3.9)—(3.11) into (3.8), we obtain

V— 0 A I* —cs t+ I +aot
as M) \me )¢ Ty ) Qe

where eJ is the j-th m,-dimensional unit column vector. Finally, by evaluating the derivative and

taking s = 0 on the left-hand side above, we deduce that
1 I+
via—e) (. ) = n+ Ql,

Remark 3.6. From the discussion in Remark 3.5, for each ¢ > 0, solving the time-homogeneous

which is the “4+” part of (3.7).

Wiener-Hopf equation (1.1) for the matrices (M, QF) is equivalent to solving the time-inhomogeneous
Wiener-Hopf equation (3.1), subject to the conditions (a*) and (b*), for the operators (J*, G¥)



11

with g= € C}(Z%) of the form (3.2). Therefore, for each ¢ € (0, 00), the uniqueness of (MF, QF)
as a solution to (1.1) corresponds to the uniqueness of (J*, GF) as a solution to (3.1), subject to
(a*) and (b*), when g7 is restricted to the subclasses of C}(27%) of the form (3.2).

When ¢ = 0, the functions g* of the form (3.2) do not belong to C3(2%) anymore. Hence, our
uniqueness result does not contradict the non-uniqueness of (I'Iat, Qgt) that was shown in [BRWS0)].

4 Proofs of the main results

In this section we prove Theorems 3.1 and 3.2. We will only give the proofs of the “4+” case in both

“_»

theorems, as the case can be proved in an analogous way with v replaced by —v.

4.1 Auxiliary Markov families

In this subsection, we introduce an auxiliary time-inhomogenous Markov family M and an auxiliary
time-homogenous Markov family M. We start by introducing some more notations of spaces and o-
fields. Let # := E x R, and the Borel o-field on % is denoted by B(#) := 2B ® B(R). Accordingly,
let = & U {(0,0)} be the one-point completion of %, and B(%) := o(B(#) U {(9,0)}).
Moreover, we set 2 =R, x % = 2 xR and Z := 2 U {(c0,0,00)}.

Let © be the set of cadlag functions w on Ry taking values in %'. We define w(oo) := (0, 00)
for every w € 2. One can construct a standard canonical time-inhomogeneous Markov family (cf.
[GS04, Definition 1.6.6])

M = {(Qvﬁ7Fsa (Xta (pt)te[s,oo]vps,(i,a))v (s,i,a) € ?}

with transition function P given by

P(s,(i,a),t,A) == IP’;Z-((X;‘, a+ /Stv(X;) du> € A), (4.1)

where (s,i,a) € Z,t € [s,00], and A € B(#). Indeed, a routine check verifies that P is a transition
function associated with a Feller semigroup, this allows us to apply [GS04, Theorem 1.6.3] in order
to prove existence of such M. Furthermore, by investigating the finite dimensional distribution of
(X, ) under P, ; ;) and invoking their right continuous sample paths, it can be shown that M has
the following properties:?

(i) for any (s,i,a) € Z,

the law of X under Py ;) = the law of X™ under P ; (4.2)

8,09

(i) for any (s,i,a) € 2,

t
Py (i,a) <<pt =a +/ v(Xy)du, for allt € [s, oo)) =1 (4.3)

3The details of construction of the family M and its properties take much space, and therefore are not given here.
They can be obtained from the authors upon request.
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Considering the standard Markov family M, for any s,¢ € R, we define
7, (s) :==1inf {t € [s,00] : ¢ > {},

which is an F¢-stopping time in light of the continuity of ¢ and the right-continuity of the filtration
Fs. By similar arguments as in the proof of Lemma 2.2, for any (s,i,a) € 2 and / € [a, 00),

Ps,(i,a) (XT;(S) eE U {8}) =1 (4.4)

Moreover, it follows from (4.3) that, for any (s,i,a) € 2,

t
7,/ (s) = inf {t > s a+/s v(Xy) du > E}, Py i,0) — a.s..

If no confusion arise, we will omit the s in 7,7 (s).

The next proposition is an immediate consequence of (4.2) and (4.3), so its proof is skipped.

Proposition 4.1. For any gt € L>*(27), (s,i,a) € Z, and { € [a,0),
Buiio (07 (7 X)) = a0 (20X )).

Proposition 4.1 provides a useful representation of the expectation E ; <g+ (TZ:Z, X;,*)). We
l—a

will need still another representation of this expectation. Towards this end, we will first transform
the time-inhomogeneous Markov family M into a time-homogeneous Markov family

M={(0.Z.F,(Z)z, . O)rer, . P.).2 € Z}

following the setup in [Bot14]. The construction of M proceeds as follows.

o We let Q := Ry x © be the new sample space, with elements & = (s,w), where s € Ry and
w € Q. On 2 we consider the o-field

ff::{gCﬁ:gs€9soforany.9€@+},

where A, :={w e Q: (s,w) € A} and .Z2, is the last element in Fy (the filtration in M).

e Welet Z = 2 U{(c0,0,00)} to be the new state space, where 2 = R x % = 2" x R, with
elements z = (s,4,a). On £ we consider the o-field

B(Z):= {ECZ)}”: B, € B(¥) foranys€R+},

where By := {(i,a) € ¥ : (s,i,a) € B}. Let B(Z) := a(B(Z) U{(c0,d,00)}).

e We consider a family of probability measures (P,), _z, where, for z = (s,7,a) € Z,

P, (A) = ]P)s,i,a (12() = Ps,(i,a) (ZS), Ae ﬁ: (45)
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e We consider the process Z := (Zt)te@+ on (§~2, %, where, for t € R,
Zy(@) = (s +t, Xopt (), pse(@)), @ = (s,w) € Q. (4.6)
Hereafter, we denote the three components of Z by Z', Z2, and Z3, respectively.

e On (1, %’ we define F := (%)teﬁy where .7, := G\ (with the convention Gy = gzo), and
() teR, is the completion of the natural filtration generated by (Z4) tek, With respect to the
set of probability measures {P,,z € Z} (cf. [GS04, Chapter I]).

e Finally, for any » € R, we consider the shift operator 6, : Q — Q defined by
0,0 = (u+rwir), ©=uw)e”l
It follows that Z; o 6, = Z;y,, for any t,r € R,.
For z = (s,i,a) € Z,t € R,, and Be g(?), we define the transition function P by
(21, B) = F.(2 € B).
In view of (4.5), we have

P(z,t, B) =P, i) ((XHS, Girs) € ESH) = P(s,(i,a), s+t Beps). (4.7)

Since the transition function P, defined in (4.1), is associated with a Feller semigroup, so that P is
a Feller transition function. This and [Bot14, Theorem 3.2] imply that P is also a Feller transition
function. In light of the right continuity of the sample paths, and invoking [GS04, Theorem 1.4.7],
we conclude that M is a time-homogeneous strong Markov family.

For any ¢ € R, we define

7 =inf{t e Ry : z3 > (}.

Note that 7~'£+ is an ﬁ—stopping time since Z3 has continuous sample paths and F is right-continuous.
In light of (4.3), (4.5), and (4.6), for any (s,i,a) € 2, we have

. t
Psia (Z,? =a+ / v(Z}) du, for all t € R+) =1 (4.8)
0

Consequently, for any (s,i) € 25 and £ € R,

Pse(7,7=0) =1. (4.9)
Moreover, by (4.4) and (4.8), for any (s,i,a) € 2 and { € [a,o0), we have
P,i0 (272_+ €E, U {8}) — 1. (4.10)
£

By Proposition 4.1, (4.5) and (4.6), for any gt € L>(27), (s,i,a) € Z, and { € [a,0),

E:, (g+ <Tj_f;, X:;_,*>> = Eyia (g+ (Z%, Z%)), (4.11)
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which, in particular, implies that

Es,iﬂ(f(Z%,Z%)) = Eoio(g (Z~+ 22 ). (4.12)

Te—a
Consequently, the operators J* and 73; , 0 € Ry, defined by (2.8) and (2.10), can be written as
(T6%) (5,0) = s (9% (224,72 )). g7 € L¥(25), (s,i) € 22, (4.13)
To To
(Prg™)(s,0) = Buio (97 (220, 22))), gt € LX(T0), (s,0) € 2. (4.14)
4 £

We conclude this section with the following key lemma, which will be crucial in the proofs of
the main results.

Lemma 4.2. Let T be any ﬁ—stoppmg time, and g* € L>(Z). Then, for any (s,i,a) € Z and
l € [a,00), we have

= + 1 2 T\ _ ™ + 1 2
H{K;;}ESM(g (ZF;,Z;;)‘%)_1{%;;}1@@2;@(9 (Zﬁ,z;;)), Pyio—a.s., (4.15)

where we clarify that IEZ%’Z;@ (gfr (Z%, Z%)) reads E21722723 <gJr <Z%+, Z%)) ‘(z1722733):(2%7Z§7Z§) .

Proof. Note that if (s,i,a) = (00, d,00), then both sides of (4.15) are zero. Hence, without loss of
generality, assume that (s,i,a) € 2 and {7 < 7'} # 0. Note that for any £ € Rand @ € {7 < 7,'},

7 (0:(@)) = inf {t € Ry : Z7(02(@)) > £} = inf {t € Ry : Z} + (@) > £}
=inf{t >7(@) : Z}(@) > (} - 7(@) =7/ (@) — 7(@),

and thus
(Z?; 09?)( ) = Zzk (0- @) (0=(@)) = Zzt @) @) (Or@)®) = Z+ ().
Therefore, for any (s,i,a) € 2 and ¢ € [a, 00),
E.. (ot (7Y, 72.\|.Z-) = E. . (7l oo 72 op-)\| Z-
H{Fg?j} Esﬂu& <g <Z7-Z+v Z;Zr) ’ﬁ7> = Es,z,a (ﬂ{y_g;;} g (Z?j o 0=, Z‘T’j o 97) cg‘\T

~ 1 2
= Vs Bz 22,28 (g . (Z?f I ) ) ’

where we used the fact that {7 < 7,7} € Fz (cf. [KS98, Lemma 1.2.16]) in the first and third
equality, and the strong Markov property of Z (cf. [RW94, Theorem I11.9.4]) in the last equality. [

Corollary 4.3. Under the assumptions of Lemma 4.2,

Busa(Lparn 7 (5122 ) ) = Buia(Lperny Bz (97 (5. 22 )) )
Proof. This is a direct consequence of (4.15) and the fact that {7 <7} € F. O

Corollary 4.4. For any gt € L>®(Z,), (s,i,a) € Z, £ € [a,0), and h € (0, 0),

Es,i,a( (Z~+ s ZEJr >> = ~sza<(P ) (Z}+,Zg+>>
Toevn Totn T T,
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Proof. Since gt € L*®(Zy) and 7,5, > 7,7, J“(Z;Jr ,Z;r ) = g (00,0) = 0 on {7, = oo}, so
+h 0+h
that Ezl Z2 Z3 (97(ZL, ,Z%, ) =0on {7,/ = co}. Moreover, Z3, = ¢ on {7,/ < co}. Thus,
Tern Totn Ty
using Corollary 4 3, (4.12), (4.14), and (4.4), we obtain that

i L 22 )) = Baia( 1) B (2, %,))

ES,Z,(I( (Z Z’»h7ZTé:h>> Esﬂ,&( {7-;<oo} EZ;;,Z;;,K g Zah7ZTZ;rh

Es,i,a (]l{?z'<oo} Ezi_HZE_‘_,O (g+ (Z%'L*‘v Z%")))
TZ TZ

= IAEfs,i,a ((,P}—:_ng) (Z%H Z%Jr))’

where the last equality is due to the fact that (P} g")(c0,d) = 0. O

Remark 4.5. We now verify (2.14) using the strong Markov family M. Indeed, by (4.11) and
Corollary 4.4, for any gt € L®(Z), (s,i) € Z_, and £ € (0, 00),

B2 (" (" X0 ) ) = Buao (97 (22 22 ) ) = Buao(PF9™) (2L 220 ) ) = (7P g7) (s0).

4.2 A regularity lemma
Fix gt € Co(Z), and define f, : 2 x Ry — R by

Fi(s,i,0) :=Eyy0 (g+ (Z;;, Z%)). (4.16)

In particular, in view of (4.9), we have

fi(s,4,0) = g7 (s,i), (s,i) € 2. (4.17)
Moreover, by (4.13), (4.14), and (4.16),

Jtgt(s,i) = fi(s,i,0), (s,i) € 2., (4.18)
Pz_g—i_(svi) - f+(87i7€)7 (Sai) € %+7 te R-‘r' (419)

The following lemma addresses the continuity of f with respect to different variables. In particular,
due to (4.18) and (4.19), for any gt € Co(Z7), the continuity of J*¢T(-,4), and PFg*(-,4), with
respect to each individual variable, is established as special cases of f.

Recall that, by Assumption 2.1, K is a constant such that supseg, ; jeg [As(4,J)| < K. Addi-
tionally, recall that v = min;cg |v(7)| and ¥ = max;eg |v(i)].

Lemma 4.6. For any g© € Co(Zy), f+(-,i,-) is uniformly continuous on R2, uniformly for all
i € E. That is, for any € > 0, there exists § = 6(g, K, ||g" || o0, v, D) > 0 such that

Sub Sup ‘f+(827i7€2)_f+(5172.7€1)} < €.
i€E (s1,01),(s2,2) R :
|so—s1|+|la—£1]<5

Moreover, for any i € E and £ € Ry, f(-,i,¢) € Co(Ry). In particular, J*gt € Co(2_) and
Pyt € Co(27).

The proof of this lemma is deferred to Appendix A.
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4.3 Existence of the Wiener-Hopf factorization

This section is devoted to the proof of the “4” portion of Theorem 3.1. We do this by demonstrating
the existence of solution to (3.3) subject to conditions (a*) and (b™). Recall that J* and (P, )ser,
are defined as in (2.8) and (2.10), and have the respective representations (4.13) and (4.14) in terms
of the time-homogencous Markov family M; G is defined as in (2.12) with respect to (P;/)ser, -
We will show that (J,G") is a solution to (3.3) (which is equivalent to (3.5)—(3.6)) subject to
(a™) and (b*). The proof is divided into four steps.

Step 1. In this step show that J* satisfies the condition (a™)(i).

Let gt € Co(2%). By Lemma 4.6, we have J g™ € Co(2_). Moreover, if supp g™ C [0,7,+] x
E, for some 1,+ € (0,00), we have (JtgT)(s,i) = Eg;0(97 (s + T+,Z~+)) = 0, for any (s,i) €
[Ng+,00) x E_, which completes the proof in Step 1.

Step 2. Here we will show that (PlfF )eer, is a strongly continuous positive contraction semigroup
on Co(Z7), and thus a Feller semigroup.

Let g™ € Co(2%) and ¢ € R;. By Lemma 4.6, we have P,/ g* € Co(Z%). The positivity and
contraction property of 77; follow immediately from its definition. Hence, it remains to show that
(7757F )eer, is a strongly continuous semigroup.

To this end, we fix any (s,i) € 25. By (4.17) and (4.19), we first have (P g")(s,i) =
f+(s,1,0) = g7 (s,4). Moreover, for any £ € Ry and h > 0, by (4.14) and Corollary 4.4, we have

(Pfipg™) (s,0) = I~Es7i70< (Z~+ 72, )) = Eyi0 ((73 )(Z;;, Z%)) — (P P}g")(s,1), (4.20)

To+n” Teth

Hence, (P, )¢cr, is a semigroup on Co(27).
Finally, for any £ € Ry and g* € Co(27), by (4.19) and Lemma 4.6, we have

lim sup |[(Pfg")(s,9) — g7 (s,i)| = lim sup |fi(s,i,0) — fi(s,4,0)] =0,
€_>0+(s,i)€7+|( ¢ ) } £_>0+(sz)€f ‘ + + ‘

which shows the strong continuity of (732r )eer., , and thus completes the proof in Step 2.

Step 3. We will show here that G is the strong generator of (P, )secr, with domain C}(27),
and that

a0 = -
Grgt=(vh) (83 +A+ Bﬁ)gi g" € Co(27), (4.21)

which corresponds to (3.5).

Using Lemma 4.2 and Lemma 4.6 one can show (see Appendix B.1 for the detailed argument)
that for any gt € Co(Z7,), the pointwise limit in (2.12) exists for every (s,i) € 27, if and only if
g(+,4) is right-differentiable on Ry for each i € E. Moreover, for such g*, we have

i (PF 00~

= 1<<9+9 s, Z Ns(is3)g™ (s, 7) + Z /\s(’i,j)(J'i‘g-i')(s’j))’ (s,i) € 2. (4.22)

’U(l) JjeEEL jeEE_

Note that when (s,7) = (00, ), then (4.22) is trivial since both sides of the equality are equal to

Zero.
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We now show that 2(GT) = C}(27). Toward this end we define
L(GT):={g" € Co(Z7%) : the limit in (2.12) exists for all (s,i) € 25 and GTg" € Co(27)}.

Since (P, )ser, is a Feller semigroup on Co(Z5) (cf. Step 2), it follows from [BSW13, Theorem
1.33] that G is the strong generator of (P, )ser, with 2(G1) =.2(GT). Hence, we only need to
show that £ (G*) = C}(27).

We first show that Z(G1) € C}(27). For any g™ € £(G™"), it was shown in Step 3 (i) that

(G+g+)(s,z’) 1 <8+g —i—Z/\ i,5)97(s,7)+ ZAs(i,j)(J+g+)(s,j)>, (s,i)€ 2y, (4.23)

( ) jeE4 JjEE_

where the right-hand side, as a function of (s, i), belongs to Co(Z%). By Lemma 4.6, we have
Jtgt € Co(27). This, together with Assumption 2.1 (ii), ensures that

> Aslis)g + > NG (Tt (s, (4.24)

JjEEL JjEE_

as a function of (s,i) € 27, belongs to Co(Z%). Thus, we must have ;g /0s exists at any
(s,i) € X4, 0491 (00,0)/0s = 0, and 04 g+ /0s € Cy(Z7). Therefore, dgT /s exists and belongs
to Co(27), ie., g7 € CH(ZL).

To show C}(25) C Z(GY), we first note that for g € C}(27), Step 3 (i) shows that the
limit in (2.12) exists for every (s,i) € 2, and that (4.23) holds true. Since g* € Co(Z7), the
same argument as above implies that (4.24), as a function of (s,7), belongs to Co(27). Hence,
GTgT € Co(Z7). The proof in Step 3 is now complete.

Step 4. In this step we will show that J* satisfies the condition (a™)(ii), that is for any g* €
C(Z5) we have JTgt € CH(ZZ). We will also show that

d -~ - .
5:(Tg") = (- C=DJT VT ITGY) gt g" € Co(Z5), (4.25)
which corresponds to (3.6).

We fix g© € C}(27) for the rest of the proof, and we claim that in order to prove Jtg* €
C3(Z7) and (4.25), it is sufficient to show that

g;ﬁf = (- C-DJT+V-JtGH) gt (4.26)
In fact, since g* € C}(Z275), Step 3 shows that GTg™ € Cy(25). Hence, by Lemma 4.6, we
have Jtgt € Co(Z2) and JTGTgt € Co(Z_). Given the definition of C and D and invoking
Assumption 2.1, we conclude that (—C — DJ* + V~JTGT)gt € Co(Z_). Thus, indeed, (4.26)
implies that J* g™ € C}(2_) and that (4.25) holds.

The proof of (4.26) relies on Lemma 4.2, Lemma 4.6 and the result of Step 3. It is deferred to
Appendix B.2.
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4.4 Uniqueness of the Wiener-Hopf factorization

In this section we prove the “+” part of Theorem 3.2. Specifically, we will show that, if (ST, HT)
solves (3.3) subject to (a¥) and (b"), then, for any gt € Co(275), STg™ = Jtg" and Qf g™ =
PZF g", £ € R,. This also guarantees the uniqueness of G, since two strongly continuous con-
traction semigroup coincide if and only if their generators coincide (cf. [Dyn65, Theorem 1.2]).
Throughout this subsection, we assume that (ST, H") satisfies (3.3) (or equivalently, (3.5) and
(3.6)) and the conditions (a*) and (bT).

To begin with, we will show a sufficient condition of what we would like to prove. For any
gt € Co(275), (s,i,a) € Z, and L € [a,0), we define

~ It
Fo(s,ia lig") = (( >QZ ag>< i), (4.27)

Fy(s,i,a,l;g%) = ]]557i70 <g+ (Z%:a, Z%Ea)) (4.28)
When no confusion arises, we will omit g+ in ﬁr(s,i, a,l;g%) and Fy(s,i,a,l;g7).
Proposition 4.7. Suppose that
ﬁ+(s,i,0,€;g+) = F,(s,i,0,0;97), (s,i)€ 2, LeR,, g¢g"ecCHZ}). (4.29)
Then, for any gt € Co(Z),
Stgt =Jtgt, Qf¢t =Pg", (R,

Proof. Let gt € C}(27). By Corollary 4.4, for any (s,i) € 2" and £ € Ry,

; + i + .+ 1 2 It + .+ ;
F+($,2,0,€;g ) = Es,i,O((Pg g )(Z;.(;HZ;J)) = J+ Pz g (8,2).

This, together with (4.29), implies that, for any ¢ € R,
Qfgt =PSgt, STOQfgt=JTPSgT, (4.30)

and thus STPS gt = JTP;g". Since (P, )ser, is a strongly continuous semigroup, and S* and
J* are bounded operators, we have

Stgt = 11r(1)1+5+73+ gt = hm JtTPfgt =JTg" (4.31)

so that STg™ = JtgT. Alternatively, this equality can be obtained by letting £ = 0 in (4.29).
Finally, since C}(27) is dense in Cy(Z7), and S*, J*, and P, are bounded operators, both
(4.30) and (4.31) hold true for any g+ € Co(Z), which completes the proof of the proposition. [

Proposition 4.7 states that if (4.29) is satisfied then the “4” part of Theorem 3.2 holds true.
Thus, to conclude the proof of the “+” part of Theorem 3.2, and therefore the proof of uniqueness
of our Wiener-Hopf factorization, it remains to prove that (4.29) holds. The rest of this section is
devoted to this task.

We need the following three technical lemmas, whose proofs are deferred to Appendix C.
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Lemma 4.8. For any g+ € C}(Zy) and (s,i) € 2, (STQFg")(s,4) is differentiable on R, and

%((S@Zg*)(s,i)) = (STHTQ/g")(s,).

Let Cyp(Z) be the space of real-valued B(%)-measurable functions h on Z such that h(oco, 9, 00) =
0, and that h(-,i,-) € Co(Ry x R) for all i € E. Let C3(Z) be the space of functions h € Co(Z)
such that, for all ¢ € E, Oh(-,4,-)/0s and Oh(-,1,-)/0a exist and belong to Cyh(Ry x R).

Lemma 4.9. Let A be the strong generator of the Feller semigroup associated with the Markov
family M. Then, C}(Z) C 2(A), and for any h € C}(Z),

(Ah)(s,i,a) = Z(Z(s,i,a) + Z/\S(i,j)h(s,j, a) + v(i)gZ(s,i,a), (s,i,a) € Z.

JEE

Lemma 4.10. For any g € Co(Z5) with supp g™ C [0,n,+] x E4 for some n,+ € (0,00), we have
supp QF g C [0,n,+] x E4, for any { € R,

For any a € R, let Cy(Z" x (—00, a]) be the space of real-valued B(:Z") ® B((—o0, a])-measurable
functions h on 2 x (—00,a]) such that h(-,i,-) € Co(Ry X (—00,a]) for all i € E. Let C}(2 x
(—o0,a]) be the space of functions h € Cy(Z" x (—00,al) such that, for all : € E, Oh(-,4,-)/ds and
Oh(-,1,-)/0a exist and belong to Cy(R4 x (—o0,al).

Lemma 4.11. For any { € R and gt € CH(Z7), Fi (-, L;97) € ONZ x (—00,1]).

We are now in the position of proving (4.29). In what follows, we fix gt € C}(27) with
supp g™ C [0,7,+] x E for some 1+ € (0,00).
We first show that, for any (s,i) € 27, £ € Ry, and T € (0, 0),

IEs,i,(] (FJr (Z;lélr/\Ta Z%Jr/\Ta Z$+AT7 Z)) = F+(S, 2,0, E) (432)

I3

Let ¢ € CH(R) with ¢(a) =1 for a € (—00, ] and limg_se ¢(a) = 0. We extend Fy (-, -, £) to be a
function on Z by defining

ﬁr(s,i,a,ﬂ) = ¢(a) (2ﬁ+(s,i,€, 0) — ﬁ+(s,i,2€ - a,ﬁ)), (s,i) € Z',a € (£,00).

By Lemma 4.11, we now have }/7\+(-, o+ 0) € C(Z) (with the convention that F\J,_(OO, 0,00,0) =0).
It follows from Lemma 4.9, (4.27), (C.10), and Lemma 4.8 that, for any (s,i) € 2" and a € (—o0,{),

~ . oF, , . P OF
(AFL)(s,0,0,0) = (5,400 + Y T A(i ) Fa (s, .a,0) + o(i) 5
jeE

(5ot )+ (5 (1ot o) v (£ )t ) e
(G () (5 e oo

(s,i,a,/)
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where we note that QF gt € Z(H™) since gt € C3(27) = Z(H™"). Hence, since (ST, H') solves
(3.3), we have

(AF\JF)(S,’L',(I,Z) =0, (s,0)e X2, ac(—o0,l).
Therefore, by Dynkin’s formula (cf. [RW94, I11.10]), we obtain that

=+
~ ~ ~ ~ T, AT
E.. 0 (F+ (Z%AT, Z% . Z§+AT,£)> — Fi(s,i,0,0) = By ( /0 (AF,) (2}, 22, 22, €)dt) —0,

[ Te

which completes the proof of (4.32).
By (4.32), we have

Fi(s,i,0,0) = Eq (E <Z%+, Z2, Z%,E) 1 {?X<T}> + B0 (E (2%, 72, 73, 0)1 {%;ZT}>-

From the definition of 7~'e+ and the right-continuity of the sample paths of Z, we have Z§+ =/{ on
4

{7”:5+ < T}. Moreover, it is clear from the construction of M that Z2 € E for t € R, and, in view
of (4.10), we deduce that Z% € E; on {77 < T}. Together with (4.27), (4.28), and (4.6), we
obtain that 4

Fi(5,3,0,0) = Exig (g+ (Z%f’ Z%*) 1{??<T}> +Eaio (E(Z%’ 21, 21, {) l{F?zT}>
= FJr(Sa i> Oa g) - ]Es,i,(] <g+ (5 + 7A:é+, Z;_;) H{FZ—ZT}>
+ Boio (B (s+ 7,28, 23,01 oy ). (4.33)

Therefore, in order to prove (4.29), it remains to show that the last two terms in (4.33) vanish.
Since g € Co(Zy) (and so gt (2L, Z%) = gT (o0, 8) = 0) with supp g* C [0,7,+] x E4, and using
the fact that Z; € E; on {7, < oo}, we have, for T € [n,+ — s,00),

£

+ ~t 72 _ =+ 72 —
g (8 + 7 aZ;;)ﬂ{szT} =9 (3 T ’Z?;)H{FIG[T,oo)} =0

Hence, the second term in (4.33) vanishes when T' € [+ — 5,00). As for the last term in (4.33),
since supp gt C [0,7,+] x E, Lemma 4.10 and the condition (a™)(i) ensure that supp Fi(0) C
[0,75] x E x [0,£]. Hence, when T € [ny+ — s,00), Fi(s+T, Z2.,73,¢) = 0 so that the last term
in (4.33) vanishes. Therefore, by choosing T" € [n,+ — s,00), we obtain (4.29) from (4.33).

The proof of the “+” part of Theorem 3.2 is complete. As mentioned earlier, the proof of the

“_»

part of Theorem 3.2 proceeds in direct analogy to “+” part given above.

A  Proof of Lemma 4.6

For any ¢ > 0, i € E, and (s1, (1), (52, {2) € R, without loss of generality, assume that so > s and
52 Z 61. Then,

’f+(827/i7€2) - f—‘r(slaiagl)‘ S ’f-‘r(527i7€2) - f+(52)i7£l)} + ‘f+(52aia€1) - f+(81,i,€1)| (Al)

The proof will be divided into three steps.
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Step 1. We begin by investigating the first term in (A.1). Noting that (P, g7)(c0,d) = g7 (00, d) =
0, by (4.16), Corollary 4.4, and (4.14),

| F4(52,4,02) = fi(s2,4,01)| =

Esmo (g+ (Z%2 , Z%; )) - INESQ,Z;O ( <Z~+ 22, )) '

E = (1 2
82’2’0<(P )<Z72 — Zﬁg 41>> _ESQ’Z’()(g (Z?Z’Z‘?Z))‘

ot (B (25 ) -0 (22) )|

1

IEt,j,o( (Z~+ 22, )) — gt (t,7)|

=
Teg—ty la—€1

< sup
(tJ)eZy

(A.2)

Recall that 7 is the first jump time of Z2. For any (¢, j) € 27, on the event {Z3 = fo v(Z2)dr,Yu >
0} (which has probability 1 under Pt,j,o in view of (4.8)), we have

3@ > L @) = (43.0) = 7, > b= b1, @) = (43,0
o b= -
= Fa @) = S 2 @)=y

Hence, by (4.6) and (D.2), for any (¢,7) € 27,

INEt,j,O( (Z~+2 » V22 )) —g+(t>]’)‘ <Et,j,0<‘g (Z~+ 22y )‘h%g(@—@@(j)})

Teg—ty

e Tty
+ [Erjo(g (Z~; . Z%M)1{%>(ez—el>/v<j>}> 9+(tvﬂ')'

< H9+HOO]I~Dt,j,O <% < fﬂ(—j)&) + |Eejo0 <9+ (Z(lfzfél)/v(j)ﬂj)ﬂ{%>(égf€1)/v(j)}) - 9+(t7j)’

< KHg:H"O(Ez —l)+|g <t+ b (jf J)ﬁ’t,j,o (’71 > Zi}(_]fl> - 9+(t=j)’

< KHT“O@(@—&H g*( gi(_jil,j>ﬁt,], ('n K("U(_]fl)‘Jr g+<t+£i(_jf1 j) —g'(t, J)‘

< M“‘(f”m(zg —01) +wyr <£2;€1> (A.3)

where we recall that v = mincg |v(7)|, and

wg+ () = sup sup 9" (r,5) — g™ (u,5)]
JEEL rueRy: [r—ul€(0,d]

is the modulus of continuity of g*. Combining (A.2) and (A.3) leads to

2K||lgT _
| [ (s2,0,02) — fr(s2,1,01)] < HZHOO(@ —01) + wg+ <M)a (A.4)

v

which completes the proof in Step 1.
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Step 2. Next, we analyze the second term in (A.1) by decomposing it as
}f+($1,i,€1) - f+(327i7£1)‘ < E517i70 <‘g+ (Z;Z; ’ Z%t) - f+(327i7£1)‘]1{ﬁ§<5251}>

Es, .0 ( <9+ (Z;l;l ; Z%) — J+ (52,1, 51)) 1{?j>327s1}> ‘

=T +1Is. <A5)

+

To estimate Z;, we first note that when i € E_ (so that v(i) < 0), it follows from (4.8) that

u
Pshi,o(&/l>52_5177’:21_§32_51) = Psl,i,o (f’?l > S9—Sq, / U(Zg) dr > f1 for some u € [O, 82—81])
0
=P, .0 (1 > s2 — 51, v(i)u > {4 for some u € [0, s2 — s1]) = 0.

Hence, when ¢ € E_, by (4.16) and (D.2) we have

— T . +( 71 2\ _mw . +( 71 2
Il—EsmO(‘g <Z@+1’Z;;l) E@,z,o(g (Z;;;Z@ﬁ))‘1{;g<32_51m<82—81}>

< 2H9+HOOIF’51,1',0(% < sp—s1) <2K ]!g+]\oo(82 — 51). (A.6)

In what follows, assume that i € E;. We further decompose Z; as
= + 1 2 _ o+ 2
7, < Esl,z,()(‘g (Z7~_£+1)Z7~_2> g (82’ZFZ>‘]1{FZSS2_SI}>
i + 2 + ;
+E51,i,0<)g <82’ZFZ;) -9 (82)2)‘]]-{;2;§3251}>
+ Eslvizo(‘g—‘r(SQ’ /L) - f+(827 ll/’g]‘)’]]_{?z; §52_81}>

=711 +Zi2+ 113. (A.7)

For 7,1, by (4.6), we have

Ill = Esl,i,O (‘g+ (81 + ?Z, Z%;) — g+ (82, Z;;) ’]1{7_2- <52—51}> < wg+ (82 — 81). (AS)
1 1 1=

As for 712, note that Z;r =72 on {31 > s9 — 31,?2; < s9 — 51}, and thus
£

o™ + 2 _ 4t 4 =
Eslﬂ»o(‘g (82>Z;:2;) g (52,7’)‘1{§1>82—S1,?2;§32—31}> = 0.

Hence, by (D.2), we get

Typ = IE817%’,0 (‘QJF <327 Z%;) - g+(52’i) ]l{ﬁ; Sszs1ﬁ1§szs1}>
<2 HQJFHOO]TDSIJ,O(% < sp—s1) <2K ”9+Hw(32 — 51). (A.9)

It remains to analyze Z;3. Note that when ¢; > T(t — s), by (4.8),

Py, .0 (?er < 89 — 31) =P, 0 <ZS > (1 for some u € [0, sg — sﬂ)

= Psu‘@(/ v(Zf) dr > 01 > v(sg — s1) for some u € [0, sg — 51]> =0.
0
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It follows from (4.17) and (A.4) that

Tiz < | f1(s2,5,0) = fi(s2,%,01) | Lo, <t(so—s1)} < sup | [ (s2,0,71) = fy(s2,0,72)]
T1,T2€R+
|1‘177’2‘§U(52751)
2U v
S ?K“g+“w($2—81) —|—’u}g+<v(82 —81)>, (AlO)

where we recall 7 = max;eg |v(7)|. Combining (A.7)—(A.10), we obtain that, for any i € E,,

v v
Il < 2(1 + Q}>I( Hg—i_Hoo(SQ — 81) + 2wg+ (U(82 — 51)> . (A.ll)
Comparing (A.6) with (A.11), we see that (A.11) holds for any i € E, completing the study of Z;.
Next, we will investigate Zo. Note that Z§’2_81 < {1 on the event {7~'€+1 > s9 — s1}. Hence, by
tower property of conditional expectations, Corollary 4.3, (4.12), and (4.16), we further decompose
I as

T, =

Esl’i’o <(E52’j’0 (ng (Z;Z}E’ Z%L)) ‘(j,a)(ZQ 7)) = felsasd, El)) 1{71”281}) ‘

=177 s2—s]

Esl,i,0(<f+ (827 Z2 b — Z§’2_31) — f1(s2,1, f1)> 11{;;; >82_81}>}

< Es1,i,0 <‘f+ ('92’ Z?z—sﬂél - Z§2—51> - f+ (527i’€1 - Z§2—81) ’]l{ﬁ§>52—51}>

+ Esl,i,0<‘f+ (827i)€1 - Z§2751> - f+(827i7€1)’]l{?22>5251}>

=: To1 + Toa. (A.12)

By (4.16) and (D.2), an argument similar to those leading to (A.9) implies that

o1 = Esiio <‘f+ (S% 232731761 B Zi*sl) — I+ (82’ il — Z:832*81> )]1{?2; >52—51ﬁl<52—s1}>
<2||g" || Porio(r < 82— 1) <2K [|g7|| (52— s1). (A.13)
To estimate Zsg, note that by (4.8),

» s2—s81
Psl,i,(J(}ZgQ_sl‘ < T(sg — 81)) =P, .0 (’ / v(Z2) du| < B(s2 — 31)) =1
0

Together with (A.4), we have

Iy = ESl,i,O (‘f+ (527ia£1 - Zgg—sl) - f+(82>i7£1)‘]]'{FZ>52_51’|Z3 SU(SZ—Sl)}>

$2—951

. . 2v v
< sup }f+(52,z,r1)—f+(52,2,7"2)’ < —K HngHOO(SQ—Sl) —I—wg+<(52—sl)>. (A.14)
r1,m2€R4 v v
‘7‘1—7’2|§5(52—51)

Combining (A.12)—(A.14) leads to

Ig§2<1+

< | <
ISEIST

)l o2 =0 s (2= ) ). a)
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Therefore, by (A.5), (A.11), and (A.15), we obtain that

|f+(81,’i,€1) — f+(82,i,€1)‘ <4 <1 + Z>K Hg"‘HOO(SQ — 81) + 3wg+ ( (82 — 81)), (A.lﬁ)

< | <

which completes the analysis in Step 2.

Step 3. By (A.1), (A.4), and (A.16), we have

5 _
| f(s1,0,02) — fr(s2,1,01)] < K g™ (la — 1) +4 (1 + Z)K g7 (s2 = s1)

by — ¥ T
+wg+< 2 - 1> +3wg+<2(32—51)>.

Therefore, the uniformly continuity of fi(-,4,-) on R2 follows from the uniform the uniform conti-

nuity of g7 (-,7) on R, uniformly for all i € E.
It remains to show that for any ¢ € E and ¢ € R, f(s,4,f) vanishes as s — oo. Since
gt € Co(Z4), by (4.6) and (4.16), we have

Es.io (g+ (s + 7~'e+> Z%))’ < lim sup ‘ng(t,j)‘ =0.

lim |f(s,i,0)] = lim
5700 (t,5)€[s,00) X By

5§—00 5—00

The last statement of Lemma 4.6 follows directly from (4.18) and (4.19).

The proof of Lemma 4.6 is complete.

B Supplemental Proofs for Section 4.3

B.1 Proof of (4.22)
In what follows, fix g* € Co(27%) and (s,i) € 2.

Let 41 be the first jump time of Z2. For any ¢ € (0,00), by (4.14) and (D.4), we have
(Pjg—i_(sa 7’) - g+(8, Z))

= % (Es,i,() <9+ (Z;l;a Z%j) ]l{%>e/v(i)}) +Eqio (g+ (Z%, Z%) ]lmg/v(i)}) gt (s, Z-)>

= % <Es,i,0 <9+ (Zﬁl/v(i)’ Zzg/v(i)> L, >€/v(i)}) +E, ;0 <g+ (Z%, Z%%) LNe gé/v(i)}) — g7 (s, i))

_ %ﬁs’m <§1 S vé)) (g+ <S . Ué)z) — g (s, i)) _ %R,m (% < Ué)>g+(s,i)

15 1 2
o (‘ﬁ (Z%fv Z?j) ﬂ{%se/v@')})
=: I, (¢) — Z2(4) + Z3(4). (B.1)

|-

Clearly,

. 1 9g*
el—l>%l+ T = v(i) Os+ i
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if and only if g7 (-,1) is right-differentiable at s. As for Zy(¢), (D.1) implies that
1 s+L/v(3) /\s(i Z)
lim Zy(f) = lim —( 1 — exp / Ay(iyi)du | ) gt (s,i) = ————22g"(s,4). (B.3)
=0/ s v(i)

It remains to analyze the limit of Z3(¢), as £ — 0+. By (D.5), the tower property, (4.15), (4.12),
(4.16), and since Z§ < lon {1 <7}, we have

L Bonle (7))
%E&%O(ﬂ{w/m w*}EZl 2,20 (%4:2%)))
EES’“O(]I{WQ/U (@)1 <7 }Et’j’o( (Z~+ 7Z7~2—1’+a>)’(t,j,a):(Z%l,Z%I,Z%1)>
%ES*”(ﬂ{wﬁ/vz <7} f+(Z71,Z$1,€ 23 ))

%Es,z,(]( Gh<t/oli), wgﬁ}(ﬁ(z,;,zﬁl,z Z3) = fi(s, Z,Yl,ﬁ)))

—_

ts Es,i,o(l{%sz/vu)} I+ (s, wa))
=: 1.31(6) +I32<€) (B4)

[

For Z31(¢), by (4.6), Lemma 4.6, and (D.2), we have

1~ ¢

lim |T. < i i, D] -Poiolmi<——)=0, (B5

g&!sl 0)] [ sup - sup, | f+(s'3.07) = f+(s,5,0))| ; ,,o(% U(Z)> (B.5)
|s"—s]€[0,¢/v]

where we recall that v = min;eg |v(7)|. To study the limit of Z32(¢) as £ — 0+, we first rewrite
132(5) as
Tyn(t) = Boio(m < oo, 22 = N B
32(£) = 7 Z ss0\ NS Ty B = f+(s,4,0). (B.6)
JEE\{i}
Note that, for any j € E\ {i}, the probability in (B.6) can be further decomposed as

=~ ~ K 2 _ -\ _m ~ E 2 . g ~ E 2 . 2 .
]P)s,i,O <’71 < 7@(@) 5 Z% = ]) = IEDs,i,O <71 < ’U(l) ) Zé/v(z) - ]> B Ps,i,O <'Yl =< ’U(Z) ) Z’~Y1 7& )5 Zf/v(l) =J
= ~ 14 2 . 2 .

+ Ps,i,o (’Yl < @a Z% =1 Ze/u(i) # J) . (B'7)
By (4.7), (4.2), and (2.5), for j # i,

. 1~ _ 14 1 . .
lim —Pgi0 (’Yl < ZF iy = ) = lim PSZO(ZZQ/U(i) =j) = lim P (6:0) (Xsre/00) = J)

Jm U() 00+ ¢ 00+ 0
1 N Ns(iyg)
= Jim g P (X =9) = 5

which, together with Lemma 4.6, gives

1 ~ 14 . . As (i, 5) ,
Jm ) | IP’s,z,o(’Yl @)’ Ziro(i) = J>f+(8a9af) | > o0 f+(5,3,0) (B.8)
JEE\{i} JeB\{i}




26

Moreover, denoting by 72 the second jump time of Z2, then by (4.16) and (D.3), we have

% > Paio (51 < v(i')’ Z2 # 3y Zi =j> f+(57j7f)’

JeBE\{i}

<im LY F AO(% L g )ng < lm 1P 0( 5)\\9+H 0, (BY)
IRyt RO = v(i) o

and similarly,

lim
1—0+

1 ~ E
3 _ § . ~ < — — = U. .
JEE\{i}
Combining (B.6)—(B.10) leads to
lim Too(£) — 2: As (i, ) : _ E As(is g E TgT ] B
11n 32( )_ . f—‘r(sa.]aO) - S .7 —+ J )(&])7 ( 11)
—0+ , . v(7) , , v(z)
JEE\{i} JEEL\{i} JEE-

where the last equality is due to (4.17) and (4.18).
Therefore, from (B.4), (B.5), and (B.11), we have

im () = S MO0 e gy 5 D ) (B.12)

=0+ e v(i) = v(1)

Combining (B.1)—(B.3) and (B.12), we conclude that the limit in (2.12) exists for every (s,i) € 2
if and only if g(, ) is right-differentiable on R for each 4, and that for such g* € Co(Z7), (4.22)
holds true for any (s,i) € Z7.

B.2 Proof of (4.26)

To prove (4.26), it is sufficient to consider (s,i) € 2_ only, since both sides of (4.26) are equal to
zero for (s,i) = (c0,d). In view of (4.13), we will evaluate

.1/ ~ .
Jlim (Ew,w (07 (22 22 ) ) = Baso (9" (22, Z%))) L (si)ean.
For any r > 0, by (4.6) and (4.16),
Betrio (57 (230 21) ) —Buso (o7 (234 2 ))
= Es0 <f+(5+7“a i,0) — fr(s+r, 22, 0)) + Ko <]1{?0+§7~} (f+ (s+7,22,0) —g" <8+?5r7 Z%)))
™ 2 + 1 2
n Es,i,()(]l{;obr} (f+(s 41, 22,0) — g (ZFJ, Z;J))). (B.13)

Clearly, by (4.4) and (4.17), g" (s + 7o Z~+) f+(s+ 7", Z%,,0). Hence, the second term on the
To
right-hand side of (B.13) can be decomposed as

Boio( Ly (F1 (s + 7. 22,0) —g* (s + 75,22, )))
= IEs,z‘,O (H{;(jgr} <f+ (S +r, 27, O) —f+ (8 T Z‘TQ'(T’ 0)))
Bt (1 (o4 200) 1 (4 20)) g
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Moreover, by the tower property, (4.15), (4.12), (4.16), and (4.6), we can decompose the third term
on the-right hand side of (B.13) as

Baio(Lgspony (F4 (s +7.22,0) = g7 (72, 22,)))
. 2 +( 71 2
= oo (1{?3”"} <f+(s+r’z’" ) E”“<g (Z?J’Z~+>>’ (tja)= (z;z&z?)))
— T . 2
= Boo (1{%* >} (f +(s 57 2:,0) E”O( (ZN* D ))‘ 7J7CL):(S+T,Z3,Z§)>)

- ]Es,i,o (]]‘{7':3'>r} (f-i-(s + r, ZE: 0) - f+ (8 + r, Zr ) _ZE))) . (B15)
Hence, by combining (B.13)—(B.15), we obtain that
1/~ ~
- <Es+r,i,o (67 (220, 22))) — Boso (o™ (22, 22 ) ))
T 0 0 0 0

= %Es,i,[)(f-i-(s +7,4,0) — fr(s+r, 2370))

1~
+ ;Es,z’,o (]1{;()+§r}(f+(3 +7,22,0) = fr(s+r, Z%,O)))
1~ 2 ~ 2
(i) 1 7.5.0)
1~
+ ;Es,i,O(l{;a‘>r}(f+(5 +r, Zzao) - f+(3 +r, ZE? _Zg)))
=: J1(r) + Jo(r) + T3(r) + Ja(r). (B.16)

Next, we will analyze the limit of Jx(r), k =1,2,3,4, as r — 0+.
We begin with evaluating the limit of Ji(r) as r — 0+. By (4.6), (4.7), and (4.2), and using
the evolution system U* = (U} ;)o<s<i<oo defined as in (2.4), we have

jl(r):_%(( s,s+r )f+( ))() ((U:s-i—r )(f+($,',0)—f+(8+7“,',0)))(i). (B17)

It follows immediately from (2.5) that

lim 1(( ss+r_ )f+( (Z) = ZAS(ZaJ)f-l-(Sa]aO) (BlS)

r—0+ 71
jEE

Moreover, by (2.6), [EK05, Propositon 1.1.5 (a)], Assumption 2.1 (so that ||[Af]c < 2K for all
t € Ry), Lemma 4.6, and the fact that Ug,: is a contraction map, we have

lim = [(Ugapr = 1) (f3 (50 0) = s +7-,0))) 0)

r—=0+ 71
1ot . .
Srlggglw/ U2l \\’\f\\oodt'(s?g%\f+(87j,0)—f+(8+7°,],0)\:0- (B.19)

Combining (B.17)—(B.19) leads to

lim Jip(r Z/\ (i,7) f+(s,7,0). (B.20)

r—0+
JjEE
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Next, we will study the limits of J2(r) and J3(r) as r — 0+. Since i € E_, Z? must have at
least one jump to E before Z* (which coincides with [jv(Z2)du in view of (4.8)) can upcross the
level 0, i.e., ﬁs,i,0(§1 <7y) =1, where we recall that 71 denotes the first jump time of Z?. Hence,
by (D.2) and Lemma 4.6,

1~ 2 ~+ 52
T e O RS X))
< lim ]P)Slﬂ(fyl < T) sSup |f+(S+T/,], ) f+ S jv ’ =0. (B21)
Tt (1 ,5)€l0,r] xE

Moreover, note that :H.{?{)FST}(f_’_(S +7,Z2,0) — fr(s+m, Z%, 0)) does not vanish only if Z2 # Z%r,

so Z? must jump at least twice before time 7. Hence, by (D.3) and (4.16), we have

11~
Jim, | Ta(r)] = Jim ~ E5,1,0<]l{;5r§rﬁ2§r} (f+(s+722,0) — fr(s+, Z7~2_0+, 0))) ‘
N - ~
<2||g*]|, - TE%L - Psio(32 < 1) =0, (B.22)

where we recall that 75 denotes the second jump time of Z2.
Finally, we study the limit of J4(r), as  — 0+, by further decomposing J4(r) as

Tur) = 3 Buso(fs s+ 7, 22,0) = o (s + 1,22, —0(0)r)

_ %ES%O< {?+<r}(f+(s+r Z2,0) — fr(s+r 22, —v(i )r)))
+ 1]Eszo(]l{7+>r}(f+(s+r 22 —o(i)r) = fi(s + 1,22, - 27)))
=: I (r) + Ja2(r) + Jas(r). (B.23)

For j41(7") by (4.6), (4.7), (4.2), and (2.4), we have

j41( ) (U: s+r )(f+(s+7“,-,O)—f.,.(s—i—r,-,—1)(2‘)7"))(@’)—1—%(}”_;_(3—1—7“,i,O)—f_,_(s—H“,i,—1)(2')7")).

By Assumption 2.1, (2.6), and Lemma 4.6, a similar argument leading to (B.19) shows that

i (Ul ser = ) (Fi(5 4+ 700.0) — fiuls + 7 —0(i)r) (5)] = 0.

r—0+ 71

Hence, noting that g* € C}(25) = 2(GT), by (4.16) and Corollary 4.4, we have

lim J41(r) = — lim (f+(s+r,z, v(i)r) — f(s+7,4,0))

r—0+ r—=0+ 1
_ + 1 2 + 1 2
= Baao((PE o, 07) (24 22,) — o7 (75,22
= v(i) Es 10 ((G+g+) <Zl+, ZE+>). (B.24)
To To

Next, since }FIV”S,LO(% <7y)=1forie€ E_, by Lemma 4.6 and (D.2),

.1 .
Tg& | Ta2(r)] < T1_1>I(I)l+ - Es,i,o(l{%gr}|f+ (s+722,0) = fr(s+r 22, —v(i)r) D
1~

< lim *Ps,i,O(a/l ST) sup |f+(8+7"7j,0)—f+(5+’r,j,€)’ = 0. (B25)

r—0+ 7 (4.£)EEX[0,—v(3)r]
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As for Ju3(r), since Z2 = Zg for all u € [0,7] on {§1 > r}, it follows from (4.8) that Z3 =
Jo v(Z2)du = v(i)r, Ps;0—a.s. on {31 > r}, and thus

Lz, (f (s 47, Z2, —v(i)yr) — fy(s+r 22, -2Z2)) =0, Pyiq — a.s..

Hence, by Lemma 4.6 and (D.2), we have

1)~ 3
T1_1)%1+‘j43 |_rl—l>r(])ﬂ+;ESio(l{?ﬁ>r>7y1}(f+(3+rZ v(ir) = fr(s + 727, Z’")))‘
< lim Pszo(% <r) sup |f+(s+7.4.00) = f(s+7,j,l2)| =0. (B.26)
ro0e T JEE, £1,62€(0,57]

Combining (B.23)—(B.26), we obtain that

lim Ji(r) = v(i) ~5,z,0<(G+ ) (Z%,Z%)). (B.27)

r—0-+

Finally, in view of (4.13), (B.16), (B.20), (B.21), (B.22), and (B.27), for any g% € C3(Z) and
(s,i) € Z_, we get

0 ) 1/~ ~
35 Ug")(0) = lim = <ES+M’0 (7 (25 22 ) ~ Baio (f (7 Z%)))

= 0(0) Boio ((6707) (25 22 ) ) = DO MG i) B (97 (24 22 ). (B.28)

jEE

Moreover, by (4.17), (4.18), and the definitions of C and D (cf. the end of Section 2.1)

o) Esio((G797) (2%72%» - Z’\s”’ﬂﬁwﬁ (5" (% 2))

=v(i)(JTGtg") Z Ns(i,9)g Z As(i,5) (T Tg™)(s,5)
JjeEEL JjeEE_
(TG (5,) — (Cg7)(5r1) — (BT (5,9, (B.29)

Putting together (B.28) and (B.29), we deduce (4.26), which completes the proof.

C Proofs of lemmas from Section 4.4

Proof of Lemma 4.8. This is a direct consequence of [Dyn65, Chapter I, 1.2.B & 1.3.C]. O

Proof of Lemma 4.9. Let h € C}(Z). For any (s,i,a) € 2 and t € Ry, by (4.5), we have
%(Esm(h(ztl, 22, 75)) = W(s,i.0)) = < Boia(h(s + 1, 22, Z5) = h(s + £, 22, 0) )

%E
+ %(Es,w (h(s +t, Zf, a)) — h(s+t,1, a))
1
t

+ = (h(s +t,i,a) — h(s,i,a)). (C.1)
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For the first term in (C.1), routine calculation using (4.5), (4.8) and dominated convergence implies

L1 2 Lo 2 N
tl—l>r(§l+tEs’i’“<h<s+t’Zt’a+/0 U(Zr)dr> —h(s+t,2;,a) :v(z)%(s,z,a). (C.2)

Next, for the second term in (C.1), routine calculation using (4.8), (4.2), (2.4), and (2.5) implies

Jlim % (Ew(h(s +1,22,a)) — h(s + 1,1, a)) = (Ash(s, - a))(i). (C.3)

Combining (C.1)—(C.3) leads to

1/~ h
tl—i>r(])ﬂ+ ;(Esﬂ',a (h(Ztl, Z2, Zf’)) — h(s,1i, a)) = v(i)(jah(s, i,a) + (Ash(s,-, a)) (i) + gs(s,i,a).
Since the semigroup induced by M is Feller, by [BSW13, Theorem 1.33], the above pointwise limit

is uniform for all (s,4,a) € 2 and h € Z(A), which completes the proof of the lemma. O

To proceed with the proof of Lemma 4.10, we first state the following auxiliary result, whose
proof is a straightforward application of contraction mapping theorem and can be obtained from
the authors upon request.

Lemma C.1. For any A € Ry and ht € Co(27,) with supph™ C [0,m,+] x Ey, for some nu+ €
(0,00), there exists a unique solution ® € Co(Z5) to

(s, i) = /T'h+ (A =2V +BST)®)(00) + (VFRT) (1) )b, (5.) € [0.mye) x By,
®(s,i) =0, (s,i) € (s, 00) x Ey) U{(o0,0)},

(C.4)

and furthermore, ® € CL(Z7,).
Moreover, for any A € Ry, ® € C}(27) is a solution to (C.4) if and only if ® € C}(27) solves

(A\—H")® =ht (C.5)

subject to ® = 0 on ([np+,00) x Ex) U {(c0,0)}. Consequently, there exists a unique solution
® € CH(Z5) to (C.5) subject to ® =0 on ([np+,00) x E4) U {(00,0)}.

Proof of Lemma 4.10. Let g* € C.(27%) with suppgt C [0,n,+] x E4 for some n,+ € (0,00). For
any A € R, define Ry on Co(275) by

Ryht ::/ e MOt dl,  hT e Co(Z).
0

The integral on the right-hand side above is well defined since QZ is a contraction mapping, for
any £ € Ry. In order to prove that supp Qug" C [0,m4+] x Ey, for any £ € Ry, it is sufficient to
show that supp Ryg™ C [0, ng+] x Ey, for any A € (0,00). Indeed, if the later is true, then for any
(5,3) € [y+, 50) x By,

| Qg ) s ipar =0, forall Ac (0,00,
0
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which implies that (cf. [Dyn65, Lemma 1.1]), (Qfg")(s,i) = 0 for almost every ¢ € Ry. Since
(QFg™)(s,4) is continuous on R, we have (Q) g")(s,i) =0 for all £ € R;.

By [EKO05, Proposition 1.2.1]), for any A € (0,0), the operator (A — H¥) : C(275) — Co(275)
is invertible and (A — H*)~! = Ry (so that R, is the resolvent at A of H'). Hence, the equation
(C.5) has a unique solution ®) = Ryg™ = (A — H")"lg™ € CL(Z}). On the other hand, by
Lemma C.1, (C.5) (with h* replaced by g*) has a unique solution in C§(Z7) which vanishes in
[Ng+,00) x E;. Therefore, supp Ryg™ C |0, ng+] x E4, which completes the proof of the lemma. [

The proof of Lemma 4.11 requires the following additional lemma.

Lemma C.2. For any g© € Co(Zy) with suppg™ C [0,m,+] x Ey for some n, € (0,00),
limg o0 [| Q) g [l = 0.

Proof. By Lemma C.1, when A = 0, (C.5) (or equivalently, (C.4)) has a unique solution ®( €
C3(Zy) subject to supp ®g C [0,7,+] x Ex. Note that this does NOT imply the invertibility of
H™ (or equivalently, the existence of 0-resolvent of H™).

We first show that limy_,04 || Py — Pol/cc = 0. From the proof of Lemma 4.10, for any A € (0, c0),
®) = Rygt € Cj(27%) is the unique solution to (C.5) with supp ®x C [0,7,+] x E4. It follows from
Lemma C.1 that @) is the unique solution to (C.4). Hence, for any s € [0,7,+], we have

sup ‘(CD)\ — <I>0)(t,z')‘ = sup
(ti)eZst (ti)eZst

Nyt , - .
/ <(A — AVF £ BSH) (@) — @) + Av+<1>0) (r,7) dr|,
t

where we define 2,7 := [s,00) x E; and 2" = 27. In addition, we note that for any (r,j) €
[0,m4+] x E_, by the conditions imposed on S and invoking Riesz-Markov-Kakutani representation
theorem for the the functional g™ — STg*(r,j), we have

[(ST(@r = @0)) (1 )| < STl sup (22 — o) (u, k)|
(u,k)e2+

Therefore, for any s € [0,7,+], we have

‘ Mg+
sup [(@x = @0) (¢, )] < AV lloo [ @olloc (ng+ — 5) + My / sup  |(@x — ) (u, k)| dr.
(ti)eZs s (u,k)e 2+

where My, := ||Allso + AVt [loo + |Blso|lS T [|co. By Gronwall inequality, we obtain that

1@ = Bolloo = sup_|(Br = @0)(t,7)] < AV o[ Polloctiys €™+ =0, a5 A0+
(t,1)eZ,

Next, we will show that limy_, . HQZ 9" |loo = 0. Without loss of generality, we assume that g™
is nonnegative. Otherwise, we can prove the above statement for the positive and negative part of
g™, denoted by g, and g, respectively. Then, [|Q) g% [loc < 1Q) g5 lloc + |27 6if lloo — 0, as £ — .

Note that when g* is nonnegative, since Q; is positive, we have Qg™ > 0 for any ¢ € R..
To begin with, since limy_ o4 ||®x — Poljcc = 0 and [|Pp||cc < co. Hence, for any (s,i) € 2%,

00 > |@0(s,0)| = lim |@a(s,1)| = lim | e M(Qf ") (s.4) dt = /0 (Q/g")(s,i)dt,  (C.6)
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where we have used the monotone convergence in the last equality.

Suppose that limsup,_, ||QF g7 |l > 0, then there exists g > 0 and (s, in,ln) € 275 X Ry,
n € N, with lim,, .o £, = 00, such that (Qag+)(sn,in) > &g for any n € N. Without loss of
generality, we can assume that ¢,.1 — ¢, > 1 and i, = ig € E; for all n € N. Moreover, by
part (i), supp QZ;gJr C [0,ny+], and so (sp)nen C [0,7,+], and hence we may also assume that
limy, 00 8, = o for some sg € [0,7,+].

Since (QZ)ZGR . is a strongly continuous contraction semigroup on Cj (Zy), for any b > 0,

1909" = g™l = 127 (29" =gl <[ Q9" — gl

In particular, (QF¢g")(s,4) is uniformly continuous on R, uniformly for all (s,i) € 2%. Thus,
there exists a universal constant dy € (0, 1), such that for any b € [0, do], (QZL+I;9+)(5”7 i9) > €0/2,
for all n € N, which implies that

en+50 6
/ (0 ™) (snio) dt > ©°. )
ln

On the other hand, by [EK05, Propositon 1.1.5 (a)], 060 Qfgtdl € 2(H') = C{(Z%), so that by
[EKO05, Propositon 1.1.5 (b)]) and [Dyn65, 1.2.B],

Un+00 ) )
/ Qf g dl = / O (Qfg)dt=09f | QfgTdle 2(HY).
ln 0 0

Hence, by (3.5) and [EK05, Propositon 1.1.5 (a) & (b)]), and since (Q))ser, is a contraction

semigroup,

en+60
lo: . et

— — €n+60
= = H(V+H+—A—BS+)/ Qfg* deH
9s Ju, tn
Combining (C.7) and (C.8), for any r € (—dpeo/(4M), doco/(4M)), we have

[e.9] oo

do . 00
< ||v+||OOHH+/ erngdEH + HA~|—BS+HOOH/ Q;g+dzH =: M € (0,00). (C.8)
0 %) 0

o0

/ (Q)g") (sn +1,d0) dl > R for all n e N. (C.9)
ln

Let N € N be large enough so that sp € (s, — doco/(4M), sp, + doeo/(4M)) for all n > N. Since
lp+1 —€n > 0and & € (0,1), the intervals (¢,,, ¢, + dp), n € N, are non-overlapping. Therefore, we
obtain from (C.9) that

én+60

/0 (Qfg") (s0,i0)dl > > /g (QF g™ (s0,i0) dl = oo,
n=N """

which clearly contradicts (C.6). The proof of the lemma is now complete. O

Proof of Lemma 4.11. Let g* € C(27) with supp g™ C [0,7,+] x E4 for some n,+ € (0,00), and
fix £ € R. Recall that F; is defined as in (4.27).
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We first show that ﬁ+(~,-,‘,€) € Co(Z x (—o00,f]). For any i € Ey, s,s € Ry, and a,d’ €
(—00, ¢], we have

(048" (5,9) = (QF ") ()| < [(Qa8™) (5,9) — (@0 ™) ()| + [ Qag™ — Q9"

Since QF gt € Co(Zy) and Q g* is strongly continuous on (—oc, ], we see that (Q} g¥)(-, )
is jointly continuous on R X (—oo, ¢]. Moreover, for any i € E_,

(570 1) (5) — (5% Q¢ ") (1)
< |(57QF9)(5:0) = (S7QL,g%) (840)| + 157 ]| Q™ = Q8™ |

Since Qf gt € Co(Z}), the condition (a¥)(i) implies that STQ} g7 € Co(Z-). Together
with the strong continuity of Q) ¢ on (—o0,/] as well as the boundedness of ST, we obtain
that (STQ/) ¢7)(-,4) is jointly continuous on Ry x (—oc,f]. In view of (4.27), we obtain that
ﬁr(-, i,-,¢) is jointly continuous on R4 x (—o0, ¢] for any ¢ € E. It remains to show that ﬁr(-, iy, 0)
vanishes at infinity for any ¢ € E. By Lemma 4.10, supp QZ_ 97 C [0,74+] x Ey, and the con-
dition (a*)(é) implies that supp STQ;" g* C [0,7,+] x E_, so that supp Fi(-ia,0) C [0, mg+]-
Moreover, by Lemma C.2, lim,—,_ Q; ,¢* = 0 strongly, and since [|ST || < o0, we also have
limg——0e STQF g7 = 0 strongly. Hence, F(-,i,-,¢) vanishes at infinity for any i € E, and
therefore, Fy (-, -,-,£) € Co(Z x (—00,4]).

Next, we will show that 8ﬁ+(-, -+, 0)/da exists and belongs to Cy( 2 x (—o0,£]). Since g+ €
CH{Zy) = 9(HT), for any a € (—o0,(], by [EK05, Proposition 1.1.5 (b)], we have Qf ¢ €
P(H™"), and

d
%Qétag'*' = —QZLGH+g+ = —H+Q2;ag+. (C.10)

Together with Lemma 4.8, we obtain that 8ﬁ+(‘, ya,l)/da at any a € (—o0, /], and
O ~ Q—l- H+g+
—F. (.- ab)=— l—a 2.
da +( y 1y ) <S+QZ_QH+‘(]+ ( ) )

Moreover, by (3.5) and the condition (a¥)(i), we have Htg* € Co(27) with supp Htgt C
[0,m4+] x E4. Using arguments similar to those leading to Fy(,-,0) € Co(Z x (—o0,]) above,
we conclude that OFY (-, -, -, ¢)/0a € Co(Z x (—o0,]).

Finally, we will show that 81:1(-, -+, £)/0s exists and belongs to Cy(Z x (—o0,f]). For any
a € (—o0,], since Q) g" € C{(Zy) = 2(HT), by (3.3), we have

0 ~ It It
-1
V <85 + /\> <S+> Qéfang - <S+> HJFQZfang'

Consequently, in view of (4.27), 6ﬁ+(s,i,a,€)/8s exists at any (s,i,a) € 2 X (—o0, (], and

o I
oF 95 (9at”) VQL HY gt — (A+BSY)Q) 9
a—;(s,i,a,é) = (s,i) = o (s,7).
2 (570t ") VISQEH g+ (C+DST)Qf o*
S a

With similar technique as before, the right-hand sides above, as a function of (s,i,a), belongs to
Co(,% X (—OO,E]). ]
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D Two additional technical lemmas

In this section, we establish two additional technical lemmas that are used in the proofs of our
main theorems. We begin with a lemma regarding the distributions of the first and second jump
time of Z2 (see also [RSST99, Section 8.4.2]).

Lemma D.1. Let 5 and 72 be the first and the second jump time of Z?, respectively. Then, for
any (s,i,a) € Z andr € Ry,

- s+r
Psia (% > 7“) = exp (/ A (i,7) du). (D.1)
S
In particular,
ﬁs,i,a (?1 S 'I’) S KT, (D2)
ﬁ&i@ (;?2 S 7’) S K2T2. (D?))

Proof. For any (s,i,a) € Z and r € Ry, by (4.7) and (4.2),

- - s+r
Psia(>r1) = Ps,i,a<inf {teRy 22 #2722} > r) = exp ( / N (i, ) du).
S

Hence, by Assumption 2.1 (i),

s+r
Ps,i,a (:?1 < T) =1—exp </ /\u(ZJ) du) <1- e KT < Kr.
Moreover, for any & € €,
To(@) = inf{t € [51(@), o0 Zf@#zf_@)} =51 (@) +int{t € Ry: 2%, o)1) (@) # 2, 0)14(@) }
—51(@) +inf {t € Ry 1 22 (65,0®) # Z2(05,0)3) } = 11(@) + (G 0 05,) @),

and thus

1 ~ 1 ~ 1 ~ 1 /1~

(25, 005) (@) = Z5,00. @) (05.0)9) = Z(5, 151005, (@) (@) = Z5,(®).

Therefore, by (4.6), the strong Markov property of M (cf. [RW94, Theorem II1.9.4]), and (D.2),

]P)s,i,a(% < r) = ]I~Ds7i7a (Zl € [s,s+ r]) = ﬁsﬂ,a (Z%1 € [s,s+7], Z%Q € [s,s+ r])

P, ( € [s,s+r], Z%loégle[s,s—l—r])
Byia(1 (2 i) 3y Buia (2 085, € [s547] 7))
1
( {Z~ €ls, s—H“]} Z%I (Zﬁl = [S,S—}—T]))
< KMP’S,W (Z% € [s,s+ r]) = Krﬁ”s’,;,a (M <r< K?r?,

which completes the proof of the lemma. O
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The next lemma establishes some relationship between 4 and ?j .

Lemma D.2. For any (s,i) € Z4, a € R, and h € (0,00),

L@sn/y = Lasnmn Lz, =iy Poia —as., (D.-4)

Lsicni)y = Lamsnpmy L <ty Poia —a.s.. (D.5)

Proof. For any (s,i) € 25, a € R, and h € (0, 00),

t h
{Zt3 —a+/0 ’U(ZZ) du, for allt€R+}m{'yl > v(z}
t
= {Zf’ = a+/ v(Z2) du, for all t € R+} { } {Zt3 =a+v(i)t, for all t € [0,?1]}
0
ClZ}<a+h,forall te |0 L T S Z3>a+h, forall t e N on
’ IOV ’ ’ v(i)’

c{ra- i}

and

t
:{zf:a+/ v(Z2) du, for allteR+}ﬂ{%§vZ_)}m{Zf§a+h, for allte[()ﬁl]}
0
< Tt

c{Z} <a+h forateom]}c {7

Then, (D.4) and (D.5) follow from (4.8). O
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