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Abstract. An optimal investment problem is considered for a continuous-time market

consisting of the usual bank account, a rolling horizon bond, and a discount bond whose

maturity coincides with the planning horizon. Two economic factors, namely, the short

rate and the risk-free yield of some fixed maturity, are modeled as Gaussian processes.

For the problem of maximizing expected HARA utility of terminal wealth, the optimal

portfolio is obtained through a Bellman equation. The results are noteworthy because the

discount bond, which is the riskless asset for the investor, causes a degeneracy due to its

zero volatility at the planning horizon. Indeed, this delicate matter is treated rigorously

for what seems to be the first time, and it is shown that there exists an optimal, admissible

(but unbounded) trading strategy.
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§1. Introduction

We suppose there is a security market with two economic factors given by the following:





r(t) = the (risk-free) short interest rate at time t,

ρ(t) = risk-free yield for some fixed maturity T̂ (say, 10 years),

i.e., the yield over [t, t + T̂ ] of a zero-coupon bond maturing at t + T̂ .

We also suppose this security market has three interest rate based assets:
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• A bank account whose price process is denoted by S0(·).
• A rolling horizon bond whose price process is denoted by S1(·); this is a certain type

of fixed income asset having an infinite life.

• A zero-coupon discount bond whose price process is denoted by S2(·); this is risk-free

and maturing at some fixed time T < ∞.

Note carefully that the maturity time T < ∞ for the discount bond coincides precisely with

the planning horizon associated with the investor’s optimal portfolio problem. Moreover,

T can be either small than, equal to, or bigger than T̂ .

In this paper we describe the two interest rates by a Gaussian process and model the

three fixed income assets in terms of these underlying factors. We then address and solve

the optimal portfolio problem of maximizing expected HARA utility of wealth at the fixed,

finite planning horizon T . The most important feature of our model is the fact that one

of the assets is a zero-coupon, discount bond whose maturity coincides with the investor’s

planning horizon. This kind of asset is significant for at least two reasons. First, since

interest rates are stochastic, it is this asset, not the usual bank account, which serves as the

riskless asset for the investor. Having a riskless asset is essential for many kinds of portfolio

management problems. Second, because the volatility of this asset goes to zero as the time

to maturity for this asset goes to zero, the usual Bellman equation has a degeneracy when

time coincides with the maturity date, that is, with the planning horizon. In other words,

the volatility matrix corresponding to the assets is singular at the planning horizon, and

by usual methods this implies any optimal strategy will entail unbounded positions in at

least two of the assets. The main contribution of this paper is that it provides what seems

to be the first mathematically rigorous treatment of an optimal portfolio problem for this

kind of market, that is, a market where interest rates are stochastic and one asset is a

zero-coupon, discount bond that matures at or before the planning horizon.

Only a few papers in the literature have studied portfolio optimization problems that

include a zero coupon, discount bond as one of the assets. Apparently working indepen-

dently, Bajeux-Besnainou, Jordan, and Portait [1], Deelstra, Grasselli, and Koehl [5], Liu

[9], and Sorensen [15] assumed one factor is the short rate having either Vasicek [16] or Cox,

Ingersoll, and Ross [4] dynamics. In some cases there is also a second factor and/or a third

asset that is taken to be a stock. All four studies focused on the problem of maximizing

expected utility of wealth at a finite planning horizon T , where the utility function is of

the form u(v) = vγ/γ and γ < 1 is a risk aversion parameter. For γ = 0 one actually has
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as a special limiting case u(v) = ln(v), giving rise to what is sometimes called the growth

optimal or numeraire portfolio (a term that we use below).

The Bajeux-Besnainou, Jordan, and Portait [1], Deelstra, Grasselli, and Koehl [5],

and Sorensen [15] studies are especially pertinent because, just like we do in this paper,

they specifically fixed the maturity of the zero coupon bond equal to the planning horizon

T . Using the risk neutral computational approach introduced by Pliska [13], all three

studies derived the same general form for the optimal trading strategy: at every point in

time hold a fixed fraction of one’s wealth in the growth optimal portfolio and invest the

rest in the zero coupon bond. But their growth optimal portfolios call for proportions of

wealth in the discount bond that are unbounded in every neighborhood of the planning

horizon T . This unboundedness is the result of the degeneracy issue that was raised above.

Unfortunately, however, and with one exception, they ignored the unboundedness of their

trading strategies. The exception is the paper by Deelstra, Grasselli, and Koehl [5]. They

did recognize the degeneracy problem and attempted to overcome it by making a judicious

choice of the class of admissible trading strategies. But it appears their specification of

this class is flawed for it involves the solution to the associated SDE which is supposed to

be satisfied by the wealth process, resulting in what seems to be a circular argument.

In summary, there are only a few studies of continuous time, portfolio optimization

problems where interest rates are stochastic and where one of the assets is a zero coupon,

discount bond. But none of these papers satisfactorily addressed the degeneracy problem.

They left unanswered some troublesome questions about whether their optimal strategies

are meaningful, whether corresponding portfolio value processes are well-defined stochastic

processes, whether optimal objective values are finite, and so forth. The main contribution

of this paper is to carefully answer questions like these.

We now shift our discussion to another asset in our model, the rolling horizon bond.

While the bank account and discount bond are well-known securities, the rolling horizon

bond is a new concept that was recently developed in a rigorous manner by Rutkowski

[14]. Such financial instruments are theoretical constructs which resemble the so-called

Constant Maturity Treasuries (CMT’s). They can be thought of as mutual funds where

discount bonds having a fixed maturity (say ten years) are continuously rolled over in

a self-financing manner. The rolling horizon bond plays a secondary role in our model.

We include it in order to develop a more interesting and richer model. In particular, by

including this asset we can include two underlying factors, namely, the two exogenous

interest rates, and yet have a model that is complete.
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The rest of the paper is organized as follows. In Section 2 we formulate our securities

market and specify our optimal portfolio problem. There considerable emphasis is placed

on the dynamics of the assets, making sure these assets are modeled in a logical, rigor-

ous, and consistent manner in terms of the underlying interest rate processes. Attention

is also given to conditions that guarantee the market is complete and free of arbitrage

opportunities. Section 3 is devoted to the well-posedness of the state equations, for which

some estimates on the economic factor processes have to be established. Here we precisely

specify the admissible trading strategies and show that for each the corresponding value of

the portfolio is a well-defined stochastic process. In Section 4 we study the feasibility and

accessibility of our optimal portfolio problem. In particular, here we develop conditions

under which the corresponding market is arbitrage-free and, moreover, the optimal objec-

tive value is finite. Finally, in Section 5 we look at the corresponding Bellman equation

for our problem and construct optimal portfolios. Under still another condition we show

that there exists a unique solution to our optimal portfolio problem, and we specify the

optimal trading strategy. An appendix has some technical results pertaining to Section 2.

From the standpoint of financial economics it is interesting to note that our optimal

trading strategies call for unbounded positions in the discount bond in every neighborhood

of the planning horizon, just like in some of the studies cited above. Since our derivation

of this result is mathematically rigorous, one well might wonder about the economic im-

plications. In particular, one might wonder whether our optimal strategy is an arbitrage

opportunity, perhaps in some kind of asymptotic sense. But the answer is clear. While the

position in the discount bond is unbounded, so is the position in the bank account, with

the sum of these two proportions having a finite limit as time approaches maturity. Since

the rates of return for the two assets converge to the same quantity, namely, the short rate,

as time approaches maturity, there is no arbitrage opportunity.

§2. Formulation of the Problem

We denote the factor process by X(t) ∆=(r(t), ρ(t))T and suppose that it is governed

by the following SDE:

(2.1)

{
dX(t) = [AX(t) + a]dt + DdW (t), t ≥ 0,

X(0) = x.

where A,D ∈ lR2×2, a ∈ lR2, and W (·) is a two-dimensional standard Brownian motion

defined on some complete filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual
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conditions (see Yong and Zhou [19]) such that {Ft}t≥0 is the natural filtration of W (·)
augmented by all the P-null sets. We assume that the three assets S0(·), S1(·) and S2(·)
satisfy the following:

(2.2)





dS0(t)
S0(t)

= r(t)dt,

dS1(t)
S1(t)

=
[ 〈 c, X(t) 〉+c0

]
dt + 〈σ, dW (t) 〉,

dS2(t)
S2(t)

=
[ 〈µ(t), X(t) 〉+µ0(t)

]
dt + 〈 ν(t), dW (t) 〉,

where c0 ∈ lR, c
∆=(c1, c2)T ∈ lR2, and σ = (σ1, σ2)T ∈ lR2 are some suitable parameters

and where µ0(·), µ(·) ∆=(µ1(·), µ2(·))T and ν(·) ∆=(ν1(·), ν2(·))T , with µi, νj : [0,∞) → lR,

i = 0, 1, 2, j = 1, 2. For a justification of the dynamics for S1(·) see Section 5 in Bielecki

and Pliska [2]. A discussion of the dynamics for S2(·) is provided in Section 2.2 below.

Note that (2.1) has ten scalar parameters and (2.2) has an additional five scalar param-

eters plus five deterministic functions. In order for the resulting market to be arbitrage-free

and complete, these twenty objects must be properly inter-related. In the following few

sub-sections we will develop these relationships. For expositional purposes, it is advisable

(for the time being, at least) to suppose the ten interest rate parameters in (2.1) and the

three rolling horizon bond appreciation rate parameters c and c0 are exogenously cho-

sen (suppose, for instance, they are calibrated from market data) and then focus on the

implications for the remaining asset parameters and functions in (2.2).

§2.1. The market price of risk and no-arbitrage

Our first requirement is that there cannot exist any arbitrage opportunities in our

securities market. It is well known (e.g., see Harrison and Pliska [7]) that arbitrage op-

portunities will not exist for the market (2.1)–(2.2) if there exists at least one equivalent

martingale measure for this market. We shall now provide a sufficient condition for the

existence of such a measure. It follows from Theorem 4.2 in Karatzas and Shreve [8] that

an equivalent martingale measure will exist for the market (2.1)–(2.2) (considered over the

time interval [0, T ]) if there exists a progressively measurable, two-dimensional process,

say θ(·), that satisfies the following two conditions:

(2.3)
( 〈 c,X(t) 〉
〈µ(t), X(t) 〉

)
+

(
c0

µ0(t)

)
−

(
r(t)
r(t)

)
=

(
σT

ν(t)T

)
θ(t), P–a.s.
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for almost all t in the interval [0, T ], and

(2.4) E
[
e
−

∫ T

0
〈 θ(t),dW (t) 〉− 1

2

∫ T

0
|θ(t)|2dt

]
= 1.

Such a process θ(·) is commonly called a market price of risk process. In order to be

sure that there are no arbitrage opportunities, we therefore will require the existence of a

market price of risk process, that is, a process θ(·) satisfying (2.3) and (2.4).

Now knowing, at least implicitly, the market price of risk process, we know the dy-

namics of the factor process X(·) under the equivalent martingale measure, and from this

we know, at least in principle (see, e.g., Musiela and Rutkowski [11]), considerably about

the real world dynamics (2.2) of the securities. However, for tractability it is useful to make

a simplifying assumption: we assume that the market price of risk is an affine function of

the factors. In other words, we assume θ(·) has the form:

(2.5) θ(t) = GX(t) + g, t ≥ 0,

where g ∈ lR2 is a constant vector and G ∈ lR2×2 is a constant matrix. Note that with this

assumption the factor process under the equivalent martingale measure will have exactly

the same form as in (2.1), that is, it will be Gaussian with a drift coefficient that is an

affine function of the level of the factors.

Note that by introducing G and g in (2.5) we have introduced six new parameters.

However, we can now start establishing some relationships between the various parameters

in our model. If we substitute (2.5) into (2.3), then

(2.6)
(

cT − eT
1 − σT G

µ(t)T − eT
1 − ν(t)T G

)
X(t) +

(
c0 − σT g

µ0(t)− ν(t)T g

)
= 0,

where we introduced the notation cT for the transpose of c and e1
∆=(1, 0)T . Now (2.6)

must be true for all values of the factor process X(·), so (2.6) immediately implies

(2.7)

{
c = GT σ + e1, c0 = gT σ,

µ(t) = GT ν(t) + e1, µ0(t) = gT ν(t).

In other words, the eleven scalars in G, g, c, c0, and σ and the five deterministic functions in

ν(·), µ(·), and µ0(·) must satisfy these six scalar-valued equations. Moreover, the expression

for the rolling horizon bond’s volatility σ actually follows directly and immediately from
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Rutkowski [14] (see also Bielecki and Pliska [2]), namely, σ = −T̂DT e2. In view of (2.7)
we thus have

(2.8)





σ = −T̂DT e2,

c = −T̂GT DT e2 + e1,

c0 = −T̂ gT DT e2.

To proceed with the analysis of the relationships between the parameters of our model,
it is necessary to delve deeply into some theory of interest rate models, the subject of the
next subsection. But first we shall pause here to comment on condition (2.4). In view
of Novikov’s criterion, condition (2.4) will be satisfied if the following sufficient condition
holds

(2.9) E
[
e
1/2

∫ T

0
|θ(t)|2dt

]
< ∞.

But in view of (2.5), condition (2.9) will be satisfied if

(2.10) E
[
e
β(G,g)

∫ T

0
|X(t)|2dt

]
< ∞,

where β(G, g) is a constant (depending upon G and g). We demonstrate below (c.f. Corol-
lary 3.2) that (2.10) holds provided that β(G, g) satisfies (3.14).

§2.2. The Duffie-Kan type model and consistency of the market

Using some ideas from Duffie and Kan [6] and Ma and Yong [10], we can determine
the discount bond’s volatility ν(·). A detailed proof will be provided in Appendix A. Here
we briefly present the main ideas.

Suppose the risk premium θ(·) exists in the form given by (2.5) satisfying (2.3)–(2.4).
By defining

(2.11) dP̃ = e
− 1

2

∫ T

0
|θ(s)|2ds−

∫ T

0
〈 θ(s),dW (s) 〉

dP,

we know that

(2.12) W̃ (t) ∆= W (t) +
∫ t

0

θ(s)ds, t ∈ [0, T ],

is a standard Brownian motion under P̃. This is an equivalent martingale measure for the
market, and so the discounted versions of the processes S1(·) and S2(·) are P̃-martingales.
Further, the economic factor process X(·) satisfies the following (note (2.1) and (2.5)):

(2.13)

{
dX(t) =

[
BX(t) + b

]
dt + DdW̃ (t),

X(0) = x,
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where we have defined

(2.14) B := A−DG, b := a−Dg.

Now consider a zero-coupon, discount bond such as S2(·) maturing at a fixed time

T > 0 and whose price process is denoted by Y (·). And suppose the locally riskless short

interest rate is R(X(t)) for some function R. Then Y (·) satisfies the following backward

stochastic differential equation (BSDE, for short):

(2.15)

{
dY (t) = R(X(t))Y (t)dt + 〈Z(t), dW̃ (t) 〉,
Y (T ) = 1.

If (Y (·), Z(·)) is the adapted solution of (2.15), then

(2.16) Y (t) = E
P̃

[
e
−

∫ T

t
R(X(s))ds

∣∣∣ Ft

]
, t ∈ [0, T ].

Using an idea of Ma and Yong [10], one can show that

(2.17) Y (t) = u(t,X(t)), t ∈ [0, T ],

with u(· , ·) being the solution of the following:

(2.18)





ut(t, x) + 〈ux(t, x), Bx + b 〉+1
2
tr

[
uxx(t, x)DDT

]−R(x) = 0,

u(T, x) = 1.

Duffie and Kan [5] suggested that

(2.19) u(t, x) = eη(t)+〈 ξ(t),x 〉, (t, x) ∈ [0,∞)× lR2,

for some deterministic functions ξ(·) and η(·). This can be the case if and only if ξ(·) and

η(·) satisfy the following:

(2.20)

{
ξ̇(t) = −BT ξ(t) + e1,

ξ(T ) = 0,

and

(2.21)





η̇(t) = −〈 b, ξ(t) 〉−1
2
|DT ξ(t)|2,

η(T ) = 0.
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Further, the following constraints hold (recall T̂ is the maturity corresponding to the yield

ρ(·)):

(2.22) η(T − T̂ ) = 0, ξ(T − T̂ ) = −T̂ eT
2 ,

where e2 = (0, 1)T ; these constraints will be used in the next subsection. Finally, based

on the above, we are able to prove (see Appendix A and (2.7)) that

(2.23)





ν(t) = DT ξ(t),

µ(t) = GT DT ξ(t) + e1,

µ0(t) = gT DT ξ(t).

To summarize matters at this point, the coefficients c, c0, and σ for the rolling bond

price process in (2.2) must satisfy (2.8), and the discount bond functions µ0(·), µ(·), and

ν(·) in (2.2) are specified by (2.23). It is not hard to see from (2.8), (2.14), (2.20), and

(2.23) that if the parameters A, a,D, G, g, c, and c0 (a total of 19 real numbers) are specified

so as to satisfy (2.8), then the model will be specified in a consistent manner that is free

of arbitrage opportunities. For instance, if the ten economic factor parameters (A, a, D)

of (2.1) and the three rolling horizon bond parameters c and c0 are specified exogenously

(e.g., calibrated from data), then σ is specified by (2.8) and one is left to specify the six

real numbers in G and g. However, as shown in the next subsection, some additional

constraints need to be imposed, and from these will follow some additional relationships

between these parameters.

§2.3. Completeness of the market

We define (note (2.22) and (2.23))

(2.24) N(t) :=
(

σT

ν(t)T

)
=

(
−T̂ eT

2

ξ(t)T

)
D, t ∈ lR.

By (2.20) we have

(2.25) ξ(t) = −
∫ T

t

eBT (s−t)e1ds = −
∫ T−t

0

eBT se1ds, t ≤ T.

Consequently,

(2.26) det N(t) = T̂ (det D)eT
1 ξ(t) = −T̂ (detD)

∫ T−t

0

eT
1 eBT se1ds, t ∈ lR.
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From (2.26) and Theorem 6.6 in Karatzas and Shreve [8] we see that the market (2.1)–(2.2)

is complete if and only if

(2.27) det D 6= 0

and

(2.28)
∫ t

0

eT
1 eBT se1ds 6= 0, for almost every t ∈ [0, T ].

Note that t 7→ ∫ t

0
eT
1 eBT se1ds is analytic and is not identical to zero. Thus (2.28) always

holds. On the other hand, (2.27) means that the diffusion appearing in (2.1) has to be

nondegenerate. Hereafter, we will keep assumption (2.27).

By (2.14), we see that (2.8) and (2.23) become

(2.29)

{
σ = −T̂DT e2, c = −T̂ (A−B)T e2 + e1, c0 = −T̂ (a− b)e2,

ν(t) = DT ξ(t), µ(t) = (A−B)T ξ(t) + e1, µ0(t) = (a− b)T ξ(t).

Hence, by (2.25), we know that it suffices for us to determine B and b satisfying these

equations (assuming that a,A,D, c and c0 are specified). To this end, we first note that

the solution η(·) of (2.21) is given by

(2.30)

η(t) = −
∫ T

t

[ 〈 b, ξ(s) 〉+1
2
|DT ξ(s)|2]ds,

=
∫ T

t

[ 〈 b,
∫ T−s

0

eBT τe1dτ 〉−1
2
|DT

∫ T−s

0

eBT τe1dτ |2]ds,

=
∫ T−t

0

[ 〈 b,
∫ s

0

eBT τe1dτ 〉−1
2
|DT

∫ s

0

eBT τe1dτ |2]ds, t ≤ T.

Thus, by (2.25) and (2.30), we see that the two conditions in (2.22) are equivalent to the

following, respectively:

(2.31)
∫ T̂

0

eBT se1ds = T̂ e2

and

(2.32) bT

∫ T̂

0

∫ t

0

eBT se1dsdt =
1
2

∫ T̂

0

|DT

∫ t

0

eBT se1ds|2dt.
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Note that the equation for c0 in (2.29) gives the second component of b, while the first

component of b should be determined from (2.32). Thus if B is obtained and if we want

to determine the first component of b through (2.32) uniquely, then we need (note (2.31))

(2.33)
0 6= eT

1

∫ T̂

0

∫ t

0

eBT se1dsdt =
∫ T̂

0

(T̂ − s)eT
1 eBT se1ds

= −
∫ T̂

0

seT
1 eBT se1ds.

From the above, one sees that our model is properly and fully specified if one can

choose B to be a solution of the following equations (note the first equation here is the

same as the one for c in (2.29)):

(2.34)





T̂BT e2 = c + T̂AT e2 − e1,

∫ T̂

0

eBT se1ds = T̂ e2,

while simultaneously satisfying the following constraint:

(2.35)
∫ T̂

0

seT
1 eBT se1ds 6= 0.

The unknown B contains four scalar elements, whereas (2.34) consists of exactly four

equations. Thus, roughly speaking, there should be a unique solution solving (2.34). But

by adding constraint (2.35), the problem of finding B seems to be over-determined. It is

by no means obvious that (2.34)–(2.35) admits a solution. In Appendix B, we will discuss

some of the cases for which we do have solutions to (2.34)–(2.35). We note that solving

(2.34)–(2.35) is not the main goal of the present paper. Although we do not know whether

(2.34)–(2.35) has solutions for every combination of the parameters A, a, D, c, and c0, we

are content knowing solutions exist for at least some combinations of these parameters.

Hence hereafter we shall assume that there is a B solving (2.34)–(2.35).

To summarize, once B is determined from (2.34)–(2.35), we can determine b from

(2.29)and (2.32); determine ξ(·) by (2.25), and finally determine σ and (ν(·), µ(·), µ0(·))
from (2.29). We may also determine (G, g) from (2.14), since D is required to be invertible.

Hence, once A, a, D, c, c0, T, T̂ are specified (with det D 6= 0), and once we have solved

(2.34)-(2.35) for a matrix B, all the parameters of the market will be determined (possibly

non-uniquely) so that the market is arbitrage-free and complete, as long as (2.4) holds for

the risk premium θ(·) defined by (2.5) (this issue was discussed at the end of Section 2.1).
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§2.4. Trading strategies and wealth processes

We now turn to the wealth (or value) process, which will be denoted by V (·) and will

have the initial endowment V (0) = v > 0. Let hi(t) be the proportion of V (t) in the i-th

asset, so h0(t)+h1(t)+h2(t) = 1. We point out here that since short-selling and borrowing

from the bank are allowed, h0(·), h1(·), and h2(·) are not necessarily non-negative, nor are

they necessarily bounded.

Under the commonly used self-financing assumption, it is standard that V (t) satisfies:

(2.36)

dV (t)
V (t)

= h0(t)r(t)dt + h1(t)
[
(〈 c,X(t) 〉+c0)dt + 〈σ, dW (t) 〉 ]

+ h2(t)
[
(〈µ(t), X(t) 〉+µ0(t))dt + 〈 ν(t), dW (t) 〉 ]

=
{
r(t) + 〈h(t), N(t)[GX(t) + g] 〉}dt + 〈h(t), N(t)dW (t) 〉,

where

h(·) ∆=
(

h1(·)
h2(·)

)
,

and we have used the fact that (note (2.24))

(2.37)





(
cT − eT

1

µ(t)T − eT
1

)
=

(
−T̂ eT

2 (A−B)
ξ(t)T (A−B)

)
=

(
σT G

ν(t)T G

)
= N(t)G,

(
c0

µ0(t)

)
=

(
−T̂ eT

2 (a− b)
ξ(t)T (a− b)

)
=

(
σT g

ν(t)T g

)
= N(t)g.

Note that the above are all analytic in t and therefore uniformly bounded on [0, T ]. By

putting equations (2.1) and (2.36) together, we then obtain the following state equation:

(2.38)





dX(t) = [AX(t) + a]dt + DdW (t),

dV (t) = V (t)
{[

r(t) + 〈N(t)T h(t), GX(t) + g 〉 ]dt + 〈N(t)T h(t), dW (t) 〉},

X(0) = x, V (0) = v.

The process h(·) appearing in (2.38) is called a trading strategy; it specifies trades in

underlying assets in terms of fractions of available capital. Let us denote by H[0, T ] the

class of (admissible) trading strategies h(·) (on [0, T ]) for which, for any (x, v) ∈ lR3, the

state equation (2.38) admits a unique strong solution satisfying some additional technical

conditions to be specified in Section 3 below. In Section 3 we shall discuss well-posedness

of this state equation and we shall specify the class H[0, T ]. It will be convenient to use the

following notation: for every (x, v) ∈ lR3 and for every h(·) ∈ H[0, T ] the corresponding

unique solution of (2.38) is denoted as (X(·; x, v, h(·)), V (·;x, v, h(·))).
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§2.5. Utility functions and optimality criteria

The utility function that we are interested in is the so-called HARA utility:

(2.39) U(v; γ) ∆=





1
γ

vγ , v ≥ 0,

−∞, v < 0,

where γ < 1 and γ 6= 0 is a fixed parameter. For γ = 0, we define

(2.40) U(v; 0) ∆=

{
ln v, v > 0,

−∞, v ≤ 0.

We introduce the following payoff functions corresponding to admissible trading strategies

h(·) and π(·):

(2.41) Jγ(x, v; h(·)) ∆=E
[
U

(
V (T ; x, v, h(·)); γ)]

.

Note again that the above T coincides with the maturity of the discount bond so it, and

not the bank account, is the riskless asset for the investor.

Our primary intention is to investigate the following control problem:

Problem (Hγ). For given (x, v) ∈ lR3, find an h(·) ∈ H[0, T ] such that

(2.42) Jγ(x, v;h(·)) = max
h(·)∈H[0,T ]

Jγ(x, v;h(·)).

Any h(·) ∈ H[0, T ] satisfying (2.42) is called an optimal trading strategy (or optimal port-

folio) for Problem (Hγ).

Let us make an observation. Suppose that C is an appropriately integrable non-

negative random variable. Then, for γ 6= 0, we have

(2.43)
U−1

[
E

{
U

(
C; γ

)}]
=

[
E{Cγ}

] 1
γ

= 1 + E
{
ln C

}
+

γ

2
Var

{
ln C

}
+ · · · ,

where the dots “. . .” denote the parts of the expansions that depend on the higher order

moments of C and on powers of γ of order 2 and higher. Suppose now that γ ≤ 0, in which

case both U and the inverse function U−1 are monotonically increasing. Then random

variables C that make bigger the value of U−1
[
E

{
U

(
C

)}]
also make bigger the value of

13



E
{

U
(
C

)}
, and vice versa. Moreover, in view of (2.43), solving Problem (Hγ) for γ negative

and close to zero leads to approximate solutions of related dynamic Markowitz problems

for the terminal date T . Recall that the dynamic Markowitz problems associated with

the utility U amount to maximizing the terminal mean-variance criteria of the (quadratic)

form

(2.44) E
{
ln(Y (T ; x, y, h(·)))} +

γ

2
Var

{
ln

[
Y (T ;x, y, h(·))]}.

It is known that solving the above dynamic Markowitz problems is inherently difficult,

and, typically, only necessary conditions for optimality can be stated. It is our belief that

solving Problem (Hγ) is simpler. Thus the results of this paper may be helpful for solving

the dynamic Markowitz problems stated above.

§3. Well-Posedness of the State Equation

The purpose of this section is to establish the well-posedness of the state equation

(2.38). By well-posedness we mean that for any initial state (x, v) ∈ lR2×lR and admissible

control h(·) ∈ H[0, T ], the state equation (2.38) admits a unique (strong) solution (which

belongs to some Banach space) having continuous dependence on the initial state and the

control. In our framework, the well-posedness is by no means obvious. To see this, let

us make some observations. First, recall that (2.1) admits a unique strong solution X(·)
which is given by the following:

(3.1) X(t) = eAtx +
∫ t

0

eA(t−s)ads +
∫ t

0

eA(t−s)DdW (s), t ∈ [0, T ].

It is known that the following holds:

(3.2) E
[

sup
t∈[0,T ]

|X(t)|2k
] ≤ Ck(1 + |x|2k), ∀k ≥ 1,

for some constant Ck depending on k. On the other hand, it is not hard to see from (3.1)

that X(·) is uniformly bounded if and only if D = 0, which makes our problem virtually

uninteresting. On the other hand, when D 6= 0, process X(·) is unbounded, in which case

so might be r(·) (a component of X(·)). Now if we take h(·) = 0 (which means that all the

money is put in the bank), then the corresponding solution V (·) of the second equation in

(2.38) is given by

(3.3) V (t) = e

∫ t

0
r(τ)dτ

v, t ∈ [0, T ].
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A natural space to which the process V (·) belongs should be Lp
F (0, T ; lR) for some p > 0,

where

Lp
F (0, T ; lR) ∆={ϕ : [0, T ]× Ω → lR

∣∣ϕ(·) is {Ft}t≥0-adapted,E
∫ T

0

|ϕ(t)|dt < ∞}.

Also, since we will consider the utility function given by (2.39) (or (2.40)), we might only
need V (T )γ to be integrable for some γ < 1. That is why we should at least require
V (·) ∈ Lp

F (0, T ; lR) for some p > 0 (instead of p ≥ 1). From (3.3), we see that it is very
natural to request the following type of estimate:

(3.4) E
[
e
β
∫ t

0
r(τ)dτ ]

< ∞,

for certain values of β ∈ lR. When r(·) is unbounded, estimate (3.4) is not obvious. The
goal of the following subsection is to establish such kinds of estimates. More general
situations can be found in Yong [18].

§3.1. Some estimates.

We have the following result.

Lemma 3.1. Let Φ(· , ·) ∈ L∞(0, T ; L2(0, T ; lR2×2)). Then

(3.5) E
[
e
β
∫ T

0

∣∣ ∫ t

0
Φ(t,s)dW (s)

∣∣δ
dt

]
< ∞, ∀β > 0, δ ∈ [0, 2).

Furthermore, the above holds for δ = 2, provided the following holds for β > 0:

(3.6) 2βT esssup
t∈[0,T ]

∫ t

0

|Φ(t, s)|2ds < 1.

Proof. By induction, we can show that

(3.7) E
∣∣∣
∫ t

0

Φ(t, s)dW (s)
∣∣∣
2m

≤ (2m)!
2mm!

( ∫ t

0

|Φ(t, s)|2ds
)m

, ∀t ∈ [0, T ], m ≥ 1.

Thus, for any β > 0 and δ ∈ [0, 2), we have

(3.8)

E
[
e
β
∫ T

0

∣∣ ∫ t

0
Φ(t,s)dW (s)

∣∣δ
dt] =

∞∑
m=0

βm

m!
E

{ ∫ T

0

∣∣∣
∫ t

0

Φ(t, s)dW (s)
∣∣∣
δ

dt
}m

≤ 1 +
∞∑

m=1

βm

m!
E

{
Tm−1

∫ T

0

∣∣∣
∫ t

0

Φ(t, s)dW (s)
∣∣∣
δm

dt
}

≤ 1 +
∞∑

m=1

βmTm−1

m!

∫ T

0

{
E

∣∣∣
∫ t

0

Φ(t, s)dW (s)
∣∣∣
2m} δ

2
dt

≤ 1 +
∞∑

m=1

βmTm−1

m!

∫ T

0

{ (2m)!
2mm!

( ∫ t

0

|Φ(t, s)|2ds
)m} δ

2
dt

≤ 1 +
∞∑

m=1

(βT )m

T (m!)1−
δ
2

{ (2m)!
2m(m!)2

(
esssup
t∈[0,T ]

∫ t

0

|Φ(t, s)|2ds
)m} δ

2
.

15



Let us recall Stirling’s formula:

(3.9) lim
m→∞

m!em

mm
√

2πm
= 1.

Using this formula, we have

(3.10)
(2m)!
(m!)2

∼ (2m)2m
√

4πme2m

e2mm2m2πm
=

4m

√
πm

, m À 1.

Thus the convergence of the series on the right hand side of (3.8) is equivalent to the

following:

(3.11)
∞∑

m=1

1

(m!)1−
δ
2

{
2

δ
2 βT

[
esssup
t∈[0,T ]

∫ t

0

|Φ(t, s)|2ds
] δ

2
}m( 1√

πm

) δ
2

< ∞,

which is true for any t ∈ [0, T ], δ ∈ [0, 2) and β > 0, proving (3.5).

Now if δ = 2 and β > 0, then (3.11) becomes

(3.12)
∞∑

m=1

{
2βT

[
esssup
t∈[0,T ]

∫ t

0

|Φ(t, s)|2ds
]}m( 1√

πm

)
< ∞,

which is the case when (3.6) holds. This completes the proof.

Corollary 3.2. Let X(·) ∆=(r(·), ρ(·)) be the solution of (2.1). Then

(3.13) E
[
e
β
∫ T

0
|X(t)|δdt]

< ∞, ∀β > 0, δ ∈ [0, 2).

Furthermore, the above holds for δ = 2, provided the following holds for β > 0:

(3.14) 2βT

∫ T

0

|eAtD|2dt < 1.

Proof. Note that

(3.15)
|X(t)|δ =

∣∣∣eAtx +
∫ t

0

eA(t−s)ads +
∫ t

0

eA(t−s)DdW (s)
∣∣∣
δ

≤ 2(δ−1)+
∣∣∣eAtx +

∫ t

0

eA(t−s)ads
∣∣∣
δ

+ 2(δ−1)+
∣∣∣
∫ t

0

eA(t−s)DdW (s)
∣∣∣
δ

.

Thus if we define

(3.16) Φ(t, s) = eA(t−s)D, (t, s) ∈ [0, T ]2,
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then Φ(· , ·) ∈ L∞(0, T ; L2(0, T ; lR2×2)) and

(3.17) esssup
t∈[0,T ]

∫ t

0

|Φ(t, s)|2ds =
∫ T

0

|eAsD|2ds.

Applying Lemma 3.1, we obtain our conclusions of this corollary immediately.

§3.2. Well-posedness of state equation (2.38).

Now we look at the well-posedness of state equation (2.38). For any v > 0 and

h(·) ∈ H[0, T ] (to be defined below), suppose V (·) is a solution of the second equation in

(2.38), and suppose the two integrals defined in (3.19) below are well-defined. Then by

Itô’s formula we have

(3.18)
d
[
lnV (t)

]
=

[
r(t) + 〈N(t)T h(t), GX(t) + g 〉−1

2
|N(t)T h(t)|2]dt

+ 〈N(t)T h(t), dW (t) 〉 .

This implies

(3.19) V (t) = ve

∫ t

0

[
r(s)+〈N(s)T h(s),GX(s)+g 〉− 1

2 |N(s)T h(s)|2
]
ds+

∫ t

0
〈N(s)T h(s),dW (s) 〉

,

which is a well-defined {Ft}t≥0-adapted process. Conversely, if (3.19) is well-defined, then

V (·) will be a solution of the second equation in (2.38).

Furthermore, from (3.19), we see that if V (·) is the strong solution of the second

equation in (2.38) corresponding to v > 0, then the following holds:

(3.20) V (t;x, v, h(·)) > 0, ∀t ≥ 0, a.s.

Thus, as a minimal requirement, we hope that for some q ∈ lR (we assume q 6= 0, since

otherwise it is trivial) there exists a constant Cq > 0 such that the following holds:

(3.21) E
[
V (t; x, v, h(·))q

] ≤ Cqv
q, ∀t ∈ [0, T ], v ≥ 0.

To ensure (3.21), let us take

(3.22) p0, p1, p2, p3 > 1,
1
p0

+
1
p1

+
1
p2

+
1
p3

= 1.
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Then, by Corollary 3.2,

(3.23)

E
[
V (t; x, v, h(·)))q

]
= vqE

[
e

∫ t

0
q
[
r(s)+〈N(s)T h(s),GX(s)+g 〉− 1

2 |N(s)T h(s)|2
]
ds

· e
∫ t

0
q 〈N(s)T h(s),dW (s) 〉]

= vqE
[
e

∫ t

0
q
[
r(s)+〈N(s)T h(s),GX(s)+g 〉+ p3q−1

2 |N(s)T h(s)|2
]
ds

· e 1
p3

∫ t

0
〈 p3qN(s)T h(s),dW (s) 〉− 1

2p3

∫ t

0
|p3qN(s)T h(s)|2ds]

≤ vq
{

E
[
e
p0q

∫ t

0
r(s)ds]} 1

p0
{

E
[
e
p1q

∫ t

0
〈N(s)T h(s),GX(s)+g 〉 ds]} 1

p1

·
{

E
[
e
p2

(p3q2−q)+

2

∫ t

0
|N(s)T h(s)|2ds]} 1

p2

·
{

E
[
e

∫ t

0
〈 p3qN(s)T h(s),dW (s) 〉− 1

2

∫ t

0
|p3qN(s)T h(s)|2ds]} 1

p3

≤ vq
{

E
[
e
p0|q|

∫ t

0
|r(s)|ds]} 1

p0
{

E
[
e
p1|q|

∫ t

0
|N(s)T h(s)||GX(s)+g|ds]} 1

p1

·
{

E
[
e
p2

(p3q2−q)+

2

∫ t

0
|N(s)T h(s)|2ds]} 1

p2 ≤ Cvq,

with C > 0 depending on x, h(·) and q (independent of v), provided

(3.24)





E
[
e
p2

(p3q2−q)+

2

∫ t

0
|N(s)T h(s)|2ds]

< ∞,

E
[
e
p1|q|

∫ t

0
|N(s)T h(s)||GX(s)+g|ds]

< ∞.

In the above we used the facts that

(3.25) E
[
e

∫ t

0
〈 p3qN(s)T h(s),dW (s) 〉− 1

2

∫ t

0
|p3qN(s)T h(s)|2ds] ≤ 1, ∀t ∈ [0, T ],

and, by Corollary 3.2 (noting r(t) = eT
1 X(t)),

(3.26) E
[
e
p0|q|

∫ T

0
|r(s)|ds]

< ∞.

Now for any β ≥ 1 and ε ∈ (0, 1), let κ = ε
1+ε ∈ (0, 1

2 ). By Young’s inequality we have

(3.27)

β|N(s)T h(s)||X(s)| = [
ε1/2|N(s)T h(s)|][ε−1/2β|X(s)|]

≤ 1− κ

2− κ

[
ε1/2|N(s)T h(s)|]

2−κ
1−κ +

1
2− κ

[
ε−1/2β|X(s)|]2−κ

=
1

2 + ε
ε

2+ε
ε |N(s)T h(s)|2+ε +

1
2− κ

(
ε−1/2β

)2−κ|X(s)|2−κ

≤ ε

2
|N(s)T h(s)|2+ε +

β2

ε
|X(s)|2−κ.
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Consequently,

(3.28)
E

[
e
β
∫ T

0
|N(s)T h(s)||X(s)|ds] ≤ E

[
e

ε
2

∫ T

0
|N(s)T h(s)|2+εds+ β2

ε

∫ T

0
|X(s)|2−κds]

≤
{

E
[
e
ε
∫ T

0
|N(s)T h(s)|2+εds]} 1

2
{

E
[
e

2β2

ε

∫ T

0
|X(s)|2−κds]} 1

2
.

Thus by Corollary 3.2 and a simple calculation (noting the boundedness of N(·)), we see

that (3.24) holds for all q ∈ lR if the following is true: for some ε ∈ (0, 1),

(3.29) E
[
e
ε
∫ T

0
|N(s)T h(s)|2+εds]

< ∞.

Based on the above observation, we introduce the following:

(3.30) H[0, T ] ∆=
⋃
ε>0

{h(·) ∈ L1
F (0, T ; lR2)

∣∣ E
[
e
ε
∫ T

0
|N(s)T h(s)|2+εds]

< ∞}.

We claim that H[0, T ] is a linear space. In fact, if h1(·), h2(·) ∈ H[0, T ], then there exist

ε1, ε2 > 0, such that

(3.31) E
[
e
εi

∫ T

0
|N(s)T hi(s)|2+εids]

< ∞, i = 1, 2.

Thus, for any λ1, λ2 ∈ lR, we take 0 < ε ≤ min{ε1, ε2} small enough so that

(3.32) ε22+ε|λi|2+ε ≤ εi, i = 1, 2.

Then we have

(3.33)

E
[
e
ε
∫ T

0
|N(s)T [λ1h1(s)+λ2h2(s)]|2+εds]

≤ E
[
e
ε21+ε

∫ T

0

[
|λ1|2+ε|N(s)T h1(s)|2+ε+|λ2|2+ε|N(s)T h2(s)|2+εds]

≤ {
E

[
e
ε22+ε|λ1|2+ε

∫ T

0
|N(s)T h1(s)|2+εds]} 1

2
{
E

[
e
ε22+ε|λ2|2+ε

∫ T

0
|N(s)T h2(s)|2+εds]} 1

2

≤ {
E

[
e
ε1

∫ T

0
|N(s)T h1(s)|2+ε1ds]} 1

2
{
E

[
e
ε2

∫ T

0
|N(s)T h2(s)|2+ε2ds]} 1

2 < ∞.

This implies that λ1h1(·) + λ2h2(·) ∈ H[0, T ], proving our claim.

Let us make a simple observation on the space H[0, T ]. Denote

(3.34) Hβ,ε[0, T ] ∆={h(·) ∈ L1
F (0, T ; lR2)

∣∣ E
[
e
β
∫ T

0
|N(s)T h(s)|2+εds]

< ∞}, β, ε > 0.

Then

(3.35) Hβ,ε[0, T ] ⊆ Hβ̄,ε̄[0, T ], β ≤ β̄, ε ≤ ε̄.
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Hence

(3.36) H[0, T ] =
⋃

β,ε>0

Hβ,ε[0, T ].

We point out that (3.29) is a little stronger than we need for (3.24). But this stronger

assumption ensures that for any q ∈ lR and (x, h(·)) ∈ lR2 ×H[0, T ] the inequality (3.21)

holds. On the other hand, from the conditions in (3.24) and the definition of N(t) (see

(2.39)), we see that (3.29) is almost the best possible condition. Also, it is clear that

(3.37) L∞F (0, T ; lR2) ⊆ H[0, T ].

Further, by (2.24), (2.26) and (2.28), we know that N(·) is analytic on [0, T ] with N(0) =

0. Thus any h(·) ∈ H[0, T ] is not necessarily in L2
F (0, T ; lR2). Finally, since, N(·)−1 is

bounded on any [0, T − δ] (with δ ∈ (0, T )), we have

(3.38)
εE

[ ∫ T−δ

0

|h(s)|2+εds
] ≤ E

[
e
ε
∫ T−δ

0
|h(s)|2+εds]

≤ E
[
e
ε‖N(·)−1‖L∞(0,T−δ;lR2×2)

∫ T

0
|N(s)T h(s)|2+εds]

, ∀ε > 0, δ ∈ (0, T ).

Hence, by the definition of H[0, T ] (see (3.30)), we must have

(3.39) H[0, T ] ⊆
⋂

δ>0

⋃
p>2

Lp
F (0, T − δ; lR2) ≡ L2+

F (0, T−; lR2).

We now state and prove the following result, which gives the well-posedness of (2.38).

Proposition 3.3. Let X(·) be the solution of (2.1). Then for any (v, h(·)) ∈ (0,∞) ×
H[0, T ], the second equation in (2.38) admits a unique solution V (·) on [0, T ] such that

(3.20)–(3.21) hold for all q ∈ lR. Moreover, let (x, v) ∈ lR2 × (0,∞) and γ ∈ lR \ {0} be

given. Let h(·), h̄(·) ∈ H[0, T ] and V (·), V (·) be the corresponding solutions of the second

equation in (2.38). Then there exists an ε > 0 such that

(3.40) E

∣∣∣∣
V (t)γ

γ
− V (t)γ

γ

∣∣∣∣ ≤ C
{

E

∫ T

0

|N(s)T [h(s)− h̄(s)]|2+εds
} 1

2+ε

, t ∈ [0, T ],

with C > 0 only depending on x, v, γ, ε, h(·), and h̄(·) through

(3.41) max
{

E
[
e
ε
∫ T

0
|N(s)T h(s)|2+εds]

, E
[
e
ε
∫ T

0
|N(s)T h̄(s)|2+εds]}

.
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Proof. We need only to establish (3.40). To this end, we take arbitrary h(·), h̄(·) ∈
H[0, T ]. By definition, we can find ε > 0 such that

(3.42) E
[
e
ε
∫ T

0
|N(s)T h(s)|2+εds] + E

[
e
ε
∫ T

0
|N(s)T h̄(s)|2+εds]

< ∞.

Denote

(3.43) ζ(t) :=
V (t)γ

γ
− V (t)γ

γ
, t ∈ [0, T ].

Then, by Itô’s formula, we have

(3.44)

dζ(t) =
{

V (t)γ
[
r(t) + 〈N(t)T h(t), GX(t) + g 〉 ]

− V (t)γ
[
r(t) + 〈N(s)T h̄(t), GX(t) + g 〉 ]

+
γ − 1

2
[
V (t)γ |N(t)T h(t)|2 − V (t)γ |N(t)T h̄(t)|2]

}
dt

+ 〈V (t)γN(t)T h(t)− V (t)γN(t)T h̄(t), dW (t) 〉,

=
{

γζ(t)
[
r(t) + 〈N(t)T h(t), GX(t) + g 〉+(γ − 1)

2
|N(t)T h(t)|2]

+ V (t)γ 〈GX(t) + g +
γ − 1

2
N(t)T [h(t) + h̄(t)], N(t)T [h(t)− h̄(t)] 〉

}
dt

+ 〈 γζ(t)N(t)T h(t) + V (t)γN(t)T [h(t)− h̄(t)], dW (t) 〉 .
If we denote

(3.45) ψγ(t) = e
γ
∫ t

0
[r(s)+〈N(s)T h(s),GX(s)+g 〉− 1

2 |N(s)T h(s)|2]ds+γ
∫ t

0
〈N(s)T h(s),dW (s) 〉

,

then by the variation of constants formula we have

(3.46)

ζ(t) =
∫ t

0

ψγ(t)ψγ(s)−1V (s)γ 〈GX(s) + g +
γ − 1

2
N(s)T [h(s) + h̄(s)],

N(s)T [h(s)− h̄(s)] 〉 ds

+ ψγ(t)
∫ t

0

ψγ(s)−1V (s)γ 〈N(s)T [h(s)− h̄(s)], dW (s) 〉 .

Similar to (3.23), we can show that for any q ∈ lR there exists a constant Cq > 0 such that

(3.47) E
{[

ψγ(t)ψγ(s)−1
]q} ≤ Cq, ∀0 ≤ s < t ≤ T.

Consequently, for any q ∈ lR,

(3.48)

{
E

{[
ψγ(t)ψγ(s)−1V (s)γ ]q

} ≤ C, ∀0 ≤ s < t ≤ T,

E
{[

ψγ(s)−1V (s)γ
]q} ≤ C, ∀s ∈ [0, T ].
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In (3.47) and (3.48) the constant C > 0 depends on x, v, γ, q and (3.41). Next, taking

1 < p < 1 + ε we have

(3.49)

E
[|ζ(t)|] ≤ CE

∫ t

0

ψγ(t)ψγ(s)−1V (s)γ

· (|X(s)|+ 1 + |N(s)T h(s)|+ |N(s)T h̄(s)|)|N(s)T [h(s)− h̄(s)]|ds

+ C
[
E|ψγ(t)|2]

1
2
{
E

∫ t

0

ψγ(s)−2V (s)2γ |N(s)T [h(s)− h̄(s)]|2ds
} 1

2

≤ C
{
E

∫ t

0

[|X(s)|p + |N(s)T h(s)|p + |N(s)T h̄(s)|p + 1
]|N(s)T [h(s)− h̄(s)]|pds

} 1
p

+ C
{
E

∫ t

0

|N(s)T [h(s)− h̄(s)]|2+εds
} 1

2+ε ,

≤ C
{
E

∫ t

0

|N(s)T [h(s)− h̄(s)]|2+εds
} 1

2+ε .

The constant C > 0 in the above depends on x, v, γ, ε and (3.41). This proves (3.40).

We now look at a simple consequence of Proposition 3.3. For any h(·) ∈ H[0, T ] and

any scalar k > 0, if we let

(3.50) hk(t) =





k
h(t)
|h(t)| , |h(t)| > k,

h(t), |h(t)| ≤ k.

then

(3.51)





E
[
e
ε
∫ T

0
|N(s)T hk(s)|2+εds] ≤ E

[
e
ε
∫ T

0
|N(s)T h(s)|2+εds]

,

E

∫ T

0

|N(s)T [h(s)− hk(s)]|2+εds → 0, k →∞.

Thus by Proposition 3.3 and (3.37) we see that

(3.52) sup
h(·)∈H[0,T ]

Jγ(x, v;h(·)) = sup
h(·)∈L∞F (0,T ;lR2)

Jγ(x, v;h(·)).

Since the structure of L∞F (0, T ; lR2) is simpler than that of H[0, T ], the above relation will

be useful in studying Problem (Hγ) (see (2.46)).

§4. Feasibility and Accessibility.

Let us recall the utility functions (2.39)–(2.40), and denote

(4.1) J̃γ = sup
v>0

U(v; γ) ≡
{

0, γ < 0,

∞, γ ≥ 0.
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We now introduce the following notions concerning Problem (Hγ).

Definition 4.1. Problem (Hγ) is said to be

(i) feasible at (x, v) ∈ lR3 if there exists an h(·) ∈ H[0, T ] such that

(4.2) Jγ(x, v; h(·)) is well-defined.

Any h(·) ∈ H[0, T ] satisfying (4.2) is called a feasible portfolio. The set of all feasible

portfolios is denoted by H(x,v)
γ [0, T ], which depends on (x, v) and γ.

(ii) accessible at (x, v) ∈ lR3 if

(4.3) sup
h(·)∈H

(x,v)
γ [0,T ]

Jγ(x, v;h(·)) < J̃γ .

(iii) (uniquely) solvable at (x, v) ∈ lR3 if there exists a (unique) h̄(·) ∈ H(x,v)
γ [0, T ] such

that

(4.4) Jγ(x, v; h̄(·)) = max
h(·)∈H

(x,v)
γ [0,T ]

Jγ(x, v; h(·)).

Any h̄(·) ∈ H(x,v)
γ [0, T ] satisfying (4.4) is called an optimal portfolio.

It is clear that the following implications hold:

(4.5) solvability ⇒ accessibility ⇒ feasiblity.

Also, it is not hard to see that the above three notions are not equivalent, in general. The

notion of accessibility is a little more general than the so-called finiteness introduced by

Chen and Yong [3], where the corresponding J̃γ = ∞ (thus the name of finiteness seemed

to be natural there). Since J̃γ might be finite itself (see (4.1)), the name “accessible” seems

more suitable here. The following proposition easily follows from Proposition 3.3.

Proposition 4.2. Problem (Hγ) is feasible at any (x, v) ∈ lR2 × (0,∞), and any h(·) ∈
H[0, T ] is a feasible portfolio for this (x, v).

Note that in the above proposition we claimed that

(4.6) H(x,v)
γ [0, T ] = H[0, T ], ∀(x, v) ∈ lR2 × (0,∞), γ < 1.

The following result gives a sufficient condition for Problem (Hγ) to be accessible.
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Proposition 4.3. Let γ < 1. Then Problem (Hγ) is accessible at any (x, v) ∈ lR2×(0,∞)

if the following condition holds:

(4.7) Tγ

∫ T

0

|GeAsD|2ds < (1−
√
|γ|)2.

In particular, this is the case if γ ≤ 0.

Proof. We first consider the case γ ∈ (0, 1). Similar to (3.23), for any 0 < γ < 1, and

1 < p < 1
γ , we have (note |r(s)| ≤ |X(s)|)

(4.8)

E
[
V (T ; x, v, h(·)))γ

]
= vγE

[
e

∫ T

0
γ
[
r(s)+〈N(s)T h(s),GX(s)+g 〉− 1

2 |N(s)T h(s)|2
]
ds

· e
∫ T

0
γ 〈N(s)T h(s),dW (s) 〉]

= vγE
[
e

∫ T

0
γ
[
r(s)+〈N(s)T h(s),GX(s)+g 〉+ pγ−1

2 |N(s)T h(s)|2
]
ds

· e 1
p

∫ T

0
〈 pγN(s)T h(s),dW (s) 〉− 1

2p

∫ T

0
|pγN(s)T h(s)|2ds]

≤ vγ
{

E
[
e

∫ T

0

pγ
p−1

[
|X(s)|− 1−pγ

2 |N(s)T h(s)−GX(s)+g
1−pγ |2+ |GX(s)+g|2

2(1−pγ)

]
ds]} p−1

p

·
{

E
[
e

∫ T

0
〈 pγN(s)T h(s),dW (s) 〉− 1

2

∫ t

0
|pγN(s)T h(s)|2ds]} 1

p

≤ vγ
{

E
[
e

∫ T

0

pγ
p−1

[
|X(s)|+ |GX(s)+g|2

2(1−pγ)

]
ds]} p−1

p

.

Since the right hand side of the above is independent of h(·), the accessibility of Problem

(Hγ) will follow if we can show that the right hand side of (4.8) is finite. By Hölder’s

inequality and Lemma 3.1, we see that the right hand side of (4.8) is finite if the following

holds:

(4.9) E
[
e

∫ T

0
(1+ε) pγ

2(p−1)(1−pγ) |GX(s)|2ds]
< ∞,

for some ε > 0, arbitrarily small. By Lemma 3.1 again (noting (3.1)), (4.9) holds if

(4.10) (1 + ε)
Tpγ

(p− 1)(1− pγ)

∫ T

0

|GeAsD|2ds < 1.

Since ε > 0 is arbitrarily small and since a direct computation shows that

(4.11) min
1<p< 1

γ

p

(p− 1)(1− pγ)
=

1
(1−√γ)2

,

we see that (4.10) can be replaced by (4.7).
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Next, we note that for γ ≤ 0, (4.7) holds automatically. Thus we need to show that
for γ ≤ 0, Problem (Hγ) is automatically accessible. To show this, we first look at the
case γ < 0. Note that for any p > 1 and any positive integrable random variables ζ1, ζ2,
by Hölder’s inequality, we have

(4.12) E[ζ1ζ2] ≥ {E[ζ
1

1−p

1 ]}1−p{E[ζ
1
p

2 ]}p,

provided all the terms involved make sense. Using the above with

(4.13)





ζ1 = e

∫ T

0
γ
[
r(s)+〈N(s)T h(s),GX(s)+g 〉+ γ−p

2p |N(s)T h(s)|2
]
ds

,

ζ2 = e
p
∫ T

0
〈 γ

p N(s)T h(s),dW (s) 〉− p
2

∫ t

0
| γ

p N(s)T h(s)|2ds
,

we have the following:

(4.14)

E
[
V (T ; x, v, h(·)))γ

]
= vγE

[
e

∫ T

0
γ
[
r(s)+〈N(s)T h(s),GX(s)+g 〉− 1

2 |N(s)T h(s)|2
]
ds

· e
∫ T

0
γ 〈N(s)T h(s),dW (s) 〉]

= vγE
[
e

∫ T

0
γ
[
r(s)+〈N(s)T h(s),GX(s)+g 〉+ γ−p

2p |N(s)T h(s)|2
]
ds

· ep
∫ T

0
〈 γ

p N(s)T h(s),dW (s) 〉− p
2

∫ T

0
| γ

p N(s)T h(s)|2ds]

≥ vγ
{

E
[
e

∫ T

0

γ
1−p

[
r(s)+ γ−p

2p |N(s)T h(s)+
p[GX(s)+g]

γ−p |2− p|GX(s)+g|2
2(γ−p)

]
ds]}1−p

·
{

E
[
e

∫ T

0
〈 γ

p N(s)T h(s),dW (s) 〉− 1
2

∫ t

0
| γ

p N(s)T h(s)|2ds]}

= vγ
{

E
[
e

∫ T

0

γ
1−p

[
r(s)+ γ−p

2p |N(s)T h(s)+
p[GX(s)+g]

γ−p |2− p|GX(s)+g|2
2(γ−p)

]
ds]}1−p

≥ vγ
{

E
[
e

∫ T

0

γ
1−p

[
r(s)− p|GX(s)+g|2

2(γ−p)

]
ds]}1−p

.

Here we should note that for any h(·) ∈ H[0, T ] the process γ
p N(·)T h(·) satisfies Novikov’s

condition. Thus the last equality holds in (4.14). Hence Problem (Hγ) is accessible if

(4.15) E
[
e

∫ T

0

γ
1−p

[
r(s)− p|GX(s)+g|2

2(γ−p)

]
ds]

< ∞.

Similar to the proof of case γ ∈ (0, 1), we see that (4.15) holds if (note γ < 0 and p > 1)

(4.16)
Tγp

(1− p)(p− γ)

∫ T

0

|GeAsD|2ds =
T |γ|p

(p− 1)(p + |γ|)
∫ T

0

|GeAsD|2ds < 1.

It is clear that by choosing p > 1 large enough, we have the last inequality in (4.16), which
leads to

(4.17)
Jγ(x, v; h(·)) ≡ 1

γ
E

[
V (T ;x, v, h(·))γ

]

≤ vγ

γ

{
E

[
e

∫ T

0

γ
1−p

[
r(s)− p|GX(s)+g|2

2(γ−p)

]
ds]}1−p

< 0.
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This gives the accessibility of Problem (Hγ) at (x, v) ∈ lR2 × (0,∞).

Finally, we look at the case γ = 0. By definition we have

(4.18)

J0(x, v; h(·)) ≡ E
{
ln

[
V (T ; x, v, h(·)))]}

= lnv + E

∫ T

0

[
r(s) + 〈N(s)T h(s), GX(s) + g 〉−1

2
|N(s)T h(s)|2]ds

= lnv + E

∫ T

0

[
r(s)− 1

2
|N(s)T h(s)−GX(s)− g|2 +

1
2
|GX(s) + g|2]ds

≤ lnv + E

∫ T

0

[
r(s) +

1
2
|GX(s) + g|2]ds.

The right hand side of the above is independent of h(·). This gives the accessibility of

Problem (H0) at (x, v) ∈ lR2 × (0,∞), proving the proposition.

§5. Solvability of Problem (Hγ).

In this section we shall study the solvability of Problem (Hγ). We begin with the

solvability of the Problem (H0). We recall from Proposition 4.3 that Problem (H0) is

accessible. By (4.19) we have the following:

(5.1)
J0(x, v; h(·)) = E

[
lnV (T ; x, v, h(·))

]

= lnv + E

∫ T

0

[
r(s)− 1

2
|N(s)T h(s)−GX(s)− g|2 − 1

2
|GX(s) + g|2]ds.

It is clear that

(5.2) h(·) = [N(·)T ]−1[GX(·) + g] ∈ H[0, T ]

is the unique optimal portfolio with the optimal expected utility

(5.3) J0(x, v; h(·)) = lnv + E

∫ T

0

[
r(s)− 1

2
|GX(s) + g|2]ds.

The optimal wealth process V (·) is given by the solution of the following:

(5.4)

{
dV (t) = V (t)

{
[eT

1 X(t) + |GX(t) + g|2]dt + 〈GX(t) + g, dW (t) 〉}, t ∈ [0, T ],

V (0) = v,

with X(·) being the solution of (2.1). We summarize the above in the following proposition.

Proposition 5.1. For any (x, v) ∈ lR2 × (0,∞), Problem (H0) is uniquely solvable with

the optimal portfolio h(·) ∈ H[0, T ] given by (5.2).
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Next we shall deal with Problems (Hγ) for γ < 1 and γ 6= 0. We are going to use the

Bellman Dynamic Programming Principle for this.

Let (t, x, v) ∈ [0, T ) × lR2 × (0,∞) and consider Problem (Hγ) on the time interval

[t, T ]. To this end, we consider the state equations on [t, T ]:

(5.5)





dX(s) = [AX(s) + a]ds + DdW (s),

dV (s) = V (s)
{[

eT
1 X(s) + 〈N(s)T h(s), GX(s) + g 〉 ]ds

+ 〈N(s)T h(s), dW (s) 〉},

X(t) = x, V (t) = v.

We introduce the following:

(5.6) H[t, T ] ∆=
⋃
ε>0

{h(·) ∈ L1
F (t, T ; lRn)

∣∣ E
[
e
ε
∫ T

t
|h(s)|2+εds]

< ∞}.

For any (t, x, v) ∈ [0, T ) × lR2 × (0,∞), and any h(·) ∈ H[t, T ], the solution to (5.5) is

denoted by (X(· ; t, x, v), V (· ; t, x, v, h(·))). Note that X(· ; t, x, v) is independent of h(·).
Next we define

(5.7) Jγ(t, x, v; h(·)) ∆=E
{

U(Y (T ; t, x, v, h(·)); γ)
}

.

Then we can pose the following problems.

Problem (Hγ [t, T ]). For given (t, x, v) ∈ [0, T ] × lR2 × (0,∞), find a h(·) ∈ H[t, T ] such

that

(5.8) Jγ(t, x, v; h(·)) = max
h(·)∈H[t,T ]

Jγ(t, x, v; h(·)) ∆=Jγ(t, x, v).

We see that for t = 0, Problem (Hγ [t, T ]) and coincides with Problem (Hγ). We call

Jγ(t, x, y) the value function of Problem (Hγ). Similar to (3.52), we know that

(5.9) Jγ(t, x, v) = sup
h(·)∈H[t,T ]

Jγ(t, x, v; h(·)) = sup
h(·)∈L∞F (t,T ;lR2)

Jγ(t, x, v; h(·)).

Hence, by some relevant arguments found in Yong and Zhou [19] and by using the Bellman

Principle of Optimality, we know that if Jγ(· , · , ·) is smooth, then the following holds
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(assuming Jγ
vv < 0, and note y > 0):

(5.10)

0 = Jγ
t + sup

h∈lR2

{
〈Jγ

x , Ax + a 〉+Jγ
v

[
(eT

1 x)v + v 〈NT h,Gx + g 〉 ]

+
1
2
tr

[(
Jγ

xx Jγ
xv

(Jγ
xv)T Jγ

vv

)(
D

vNT h

)
(DT vhT N )

]}

= Jγ
t + 〈Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
DT Jγ

xxD

+ sup
h∈lR2

{v2

2
Jγ

vv|NT h|2 + v 〈DT Jγ
xv + (Gx + g)Jγ

v , NT h 〉
}

= Jγ
t + 〈Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
tr[DDT Jγ

xx]

+
1
2
Jγ

vv sup
h∈lR2

{
v2|NT h|2 + 2v 〈 DT Jγ

xv + (Gx + g)Jγ
v

Jγ
vv

, NT h 〉
}

= Jγ
t + 〈Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
tr[DDT Jγ

xx]− |DT Jγ
xv + (Gx + g)Jγ

v |2
2Jγ

vv

+
1
2
Jγ

vv inf
h∈lR2

{∣∣∣vNT h +
DT Jγ

xv + (Gx + g)Jγ
v

jγ
vv

∣∣∣
2}

= Jγ
t + 〈Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
tr[DDT Jγ

xx]− |DT Jγ
xv + (Gx + g)Jγ

v |2
2Jγ

vv
.

Here we should note that in view of our assumption about market completeness (see (2.26)–

(2.28)) the matrix N(t) is nondegenerate for every t ∈ [0, T ). Thus the infimum above is

attained by

(5.11) h(t, x, v; γ) = −1
v

(
N(t)T

)−1 DT Jγ
xv(t, x, v) + (Gx + g)Jγ

v (t, x, v)
Jγ

vv(t, x, v)
.

Finally, we end up with the following Bellman equation for the value function Jγ(t, x, v):

(5.12)





Jγ
t +〈 Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
tr[DDT Jγ

xx]− |DT Jγ
xv + (Gx + g)Jγ

v |2
2Jγ

vv
= 0,

(t, x, v) ∈ [0, T )× lR2 × (0,∞),

Jγ
∣∣
t=T

=
1
γ

vγ , (x, v) ∈ lR2 × (0,∞).

Now if we introduce the function pγ(t, x) by setting

(5.13) Jγ(t, x, v) =
1
γ

epγ(t,x)vγ , (t, x, v) ∈ [0, T ]× lR2 × (0,∞),
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then one has (suppressing (t, x) in pγ(t, x))

(5.14)

0 = Jγ
t + 〈Jγ

x , Ax + a 〉+v(eT
1 x)Jγ

v +
1
2
tr[DDT Jγ

xx]− |DT Jγ
xv + (Gx + g)Jγ

v |2
2Jγ

vv

= epγ

{
1
γ

pγ
t vγ + 〈 1

γ
pγ

xvγ , Ax + a 〉+(eT
1 x)vγ +

vγ

2γ
tr

[
DDT pγ

xx + DDT pγ
x(pγ

x)T
]

+
|DT pγ

xvγ−1 + (Gx + g)vγ−1|2
2(1− γ)vγ−2

}

=
vγ

γ
epγ

{
pγ

t + 〈 pγ
x, Ax + a 〉+γ(eT

1 x) +
1
2
tr[DDT pγ

xx + DDT pγ
x(pγ

x)T ]

+
γ|DT pγ

x + Gx + g|2
2(1− γ)

}
.

Hence Jγ(· , · , ·) defined by (5.13) satisfies (5.12) if and only if pγ(· , ·) satisfies the following
quasi-linear PDE:

(5.15)





pγ
t +

1
2
tr[DDT pγ

xx] +
1
2
|DT pγ

x|2 + 〈Ax + a, pγ
x 〉+γ 〈 e1, x 〉

+
γ|DT pγ

x + Gx + g|2
2(1− γ)

= 0, (t, x) ∈ [0, T )× lR2,

pγ
∣∣
t=T

= 0, x ∈ lR2.

We now construct a solution pγ(· , ·) to the above equation. To this end, we assume that
pγ(· , ·) has the following form:

(5.16) pγ(t, x) ∆= 〈Kγ(t)x, x 〉+2 〈 kγ(t), x 〉+kγ
0 (t), (t, x) ∈ [0, T ]× lR2,

with Kγ(·) ∈ C1([0, T ];S2), kγ(·) ∈ C1([0, T ]; lR2) and kγ
0 (·) ∈ C1([0, T ]; lR). Plugging

(5.16) into the equation in (5.15), we have (suppressing γ in (Kγ(·), kγ(·), kγ
0 (·)))

(5.17)

0 = 〈 K̇(t)x, x 〉+2 〈 k̇(t), x 〉+k̇0(t)

+ tr[DDT K(t)] + 2|DT [K(t)x + k(t)]|2 + 2 〈Ax + a,K(t)x + k(t) 〉

+ γ 〈 e1, x 〉+γ|[2DT K(t) + G]x + 2DT k(t) + g|2
2(1− γ)

= 〈{K̇(t) + 2K(t)DDT K(t) + K(t)A + AT K(t)

+
γ

2(1− γ)
(2K(t)D + GT )(2DT K(t) + G)

}
x, x 〉

+ 〈 2k̇(t) + 4K(t)DDT k(t) + 2AT k(t) + 2K(t)a + γe1

+
γ

1− γ
(2K(t)D + GT )(2DT k(t) + g), x 〉

+ k̇0(t) + tr[DDT K(t)] + 2|DT k(t)|2 + 2 〈 a, k(t) 〉+γ|2DT k(t) + g|2
2(1− γ)

.
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Hence, K(·), k(·), and k0(·) should be the solutions of the following ODEs, respectively

(noting the terminal condition in (5.15)):

(5.18)





K̇(t) +
2

1− γ
K(t)DDT K(t) + K(t)(A +

γ

1− γ
DG) + (A +

γ

1− γ
DG)T K(t)

+
γ

2(1− γ)
GT G = 0,

K(T ) = 0,

(5.19)





k̇(t) +
[ 2
1− γ

K(t)DDT + AT +
γ

1− γ
GT DT

]
k(t)

+ K(t)a +
1
2
γe1 +

γ

2(1− γ)
(2K(t)D + GT )g = 0,

k(T ) = 0,

(5.20)





k̇0(t) + tr[DDT K(t)] + 2|DT k(t)|2 + 2 〈 a, k(t) 〉+γ|2DT k(t) + g|2
2(1− γ)

= 0,

k0(T ) = 0.

It is clear that once (5.18) admits a unique solution K(·) ∈ C1([0, T ];S2), we can ob-

tain unique solutions k(·) ∈ C1([0, T ]; lR2) and k0(·) ∈ C([0, T ]; lR) of (5.19) and (5.20),

respectively. Then we obtain a solution pγ(· , ·) to (5.15).

Let us now look at (5.18), which is a Riccati equation. If K(·) is a solution of (5.18)

and we set

(5.21)





P (t) = −K(t), t ∈ [0, T ],

Aγ = A +
γ

1− γ
DG, Qγ = − γ

1− γ
GT G, Rγ =

1− γ

2
,

then P (·) satisfies

(5.22)

{
Ṗ (t) + P (t)Aγ + AT

γ P (t)− P (t)DR−1
γ DT P (t) + Qγ = 0,

P (T ) = 0.

This is the Riccati equation of the following LQ problem (see Yong and Zhou [19]):

(5.23)





ẋ(t) = Aγx(t) + Du(t),

J(u(·)) =
∫ T

0

{ 〈Qγx(t), x(t) 〉+ 〈Rγu(t), u(t) 〉}dt.
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Clearly, in the case that γ < 0, both Qγ and Rγ are positive definite. By standard LQ

theory (from Yong and Zhou [19], say), the LQ problem admits a unique optimal control

and Riccati equation (5.23) admits a unique solution P (·). Consequently, Problem (Hγ)

is solvable.

Recall from Proposition 4.4 that Problem (Hγ) is accessible for any γ ≤ 0. From this

we obtain unique solvability for all γ ≤ 0. The case when γ ∈ (0, 1) is much more subtle

because in this case, although Rγ is still positive definite, Qγ is negative definite. The

corresponding LQ problem is solvable only if some conditions are satisfied (see Yong and

Zhou [19]). We state the following result, which is found in Yong and Zhou [19] (stated in

terms of LQ problem (5.23)).

Proposition 5.2. If there exists a δ > 0 such that

(5.24)

1− γ

2

∫ T

s

|u(t)|2dt− γ

1− γ

∫ T

s

∣∣∣
∫ t

s

GeAγ(t−τ)Du(τ)dτ
∣∣∣
2

dt

≥ δ

∫ T

s

|u(t)|2dt, ∀u(·) ∈ L2(s, T ; lR2), s ∈ [0, T ),

then LQ problem (5.23) is uniquely solvable.

According to the above analysis, condition (5.24) also gives a sufficient condition for

the solvability of Problem (Hγ). Let us make some further manipulations of (5.24). Since

(5.25)

∫ T

s

∣∣∣
∫ t

s

GeAγ(t−τ)Du(τ)dτ
∣∣∣
2

dt ≤
∫ T

s

{ ∫ t

s

|GeAγ(t−τ)D|2dτ

∫ t

s

|u(τ)|2dτ
}

dt

≤ (T − s)
∫ T

s

|GeAγtD|2dt

∫ T

s

|u(t)|2dt,

it follows that (5.24) holds if

(5.26) γT

∫ T

0

|GeAγtD|2dt <
(1− γ)2

2
.

This condition has a very similar nature to that of (4.8). Note that (5.26) holds auto-

matically for γ ≤ 0. Hence we may summarize the above analysis to state the following

theorem.

Theorem 5.3. For any γ ∈ (−∞, 1) satisfying (5.26), Problem (Hγ) is solvable at any

(x, v) ∈ lR2 × (0,∞) with the optimal portfolio given by

(5.27) h(t) =
[N(t)T ]−1[(2DTK(t)+G)X(t)+2DTk(t)+g]

1− γ
, t ∈ [0, T ).
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We note that when γ = 0, the unique solution of (5.18) is K(·) = 0, and thus from

(5.19) we have k(·) = 0 as well. Then (5.27) coincides with (5.2).
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Appendix A

In this appendix we shall use some ideas of Duffie and Kan [5] and Ma and Yong [10]

to determine the discount bond’s volatility ν(·), thereby filling in some details omitted

from subsection 2.2.

First of all, let θ(·) be given by (2.5) satisfying (2.3)–(2.4). We define the risk neutral

probability measure P̃ and the corresponding standard Brownian motion W̃ (t) as in (2.11)

and (2.12), respectively. Substituting (2.5), (2.7), and (2.8) into (2.2) yields

(A.1)

{
dS1(t) = S1(t)

[
eT
1 X(t)dt + 〈σ, dW̃ (t) 〉 ],

dS2(t) = S2(t)
[
eT
1 X(t)dt + 〈 ν(t), dW̃ (t) 〉 ].

Next we observe (recall (2.1) and (2.5))

(A.2)

dX(t) = [AX(t) + a]dt + DdW (t)

= [AX(t) + a]dt + D[dW̃ (t)− θ(t)dt]

= [(A−DG)X(t) + (a−Dg)]dt + DdW̃ (t)
∆=[BX(t) + b]dt + DdW̃ (t).

Note we have defined the matrix B and the vector b as in (2.14), and so if a,A, and D are

specified, then determining g and G is equivalent to determining b and B. Moreover, (2.1)

becomes (2.13).
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Now suppose that for any times t and τ the market price at time t of a zero-coupon

bond maturing at t+τ is given by F (τ, X(t)) for some smooth function F : [0,∞)×lR2 → lR.

Define

(A.3) R(x) ∆= lim
τ ↓ 0

− log F (τ, x)
τ

, ∀x ∈ lR2.

Thus the short rate is given by

(A.4) r(t) = R(X(t)), t ∈ [0,∞).

Consider a discounted zero-coupon bond maturing at a fixed time T > 0 and whose price

process is denoted by Y (·), and suppose the short interest rate is R(X(t)). Then Y (·)
satisfies the backward stochastic differential equation (2.15). If (Y (·), Z(·)) is the adapted

solution of (2.15), then

(A.5) Y (t) = e
−

∫ T

t
R(X(s))ds −

∫ T

t

e
−

∫ T

s
R(X(τ))dτ 〈Z(s), dW̃ (s) 〉, t ∈ [0, T ],

which implies (2.16).

Next we use the idea of Ma and Yong [10] to assume (2.17), that is,

Y (t) = u(t,X(t)), t ∈ [0, T ].

Then by Itô’s formula we have (note (2.13))

(A.6)

R(X(t))u(t,X(t))dt + 〈Z(t), dW̃ (t) 〉 = dY (t) = d[u(t,X(t))]

=
{
ut(t,X(t)) + 〈ux(t,X(t)), BX(t) + b 〉+1

2
tr

[
uxx(t,X(t))DDT

]}
dt

+ 〈ux(t,X(t)), DdW̃ (t) 〉 .

Consequently, we should choose u(· , ·) to be the solution of the partial differential equation

(2.18). By (2.16) and (2.17) we also have

(A.7) u(t,X(t)) = E
P̃

[
e
−

∫ T

t
R(X(s))ds

∣∣∣ Ft

]
, t ∈ [0, T ].

To determine the solution of (2.18) we follow Duffie and Kan [5] and suppose that

u(t, x) has the exponential form (2.19), that is,

u(t, x) = eη(t)+〈 ξ(t),x 〉, (t, x) ∈ [0,∞)× lR2,
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for some deterministic functions ξ(·) and η(·). Then by the terminal condition in (2.18)

we have

(A.8) η(T ) = 0, ξ(T ) = 0.

Take R(x) = 〈 e1, x 〉, so by the equation in (2.18) one has

(A.9)

0 = η̇(t) + 〈 ξ̇(t), x 〉+ 〈 ξ(t), Bx + b 〉+1
2
|DT ξ(t)|2 − 〈 e1, x 〉

= η̇(t) + 〈 ξ(t), b 〉+1
2
|DT ξ(t)|2 + 〈 ξ̇(t) + BT ξ(t)− e1, x 〉,

∀(t, x) ∈ [0,∞)× lR2.

Hence we end up with equations (2.20) and (2.21) for η(·) and ξ(·). In other words, if ξ(·)
and η(·) are solutions of (2.20) and (2.21), respectively, then the function u(· , ·) defined

by (2.19) is the solution of (2.18). In particular, the solution ξ(·) of (2.20) is given by

(A.10) ξ(t) = −
∫ T

t

eBT (s−t)e1ds = −
∫ T−t

0

eBT se1ds, t ≤ T,

and the solution η(·) of (2.21) is given by

(A.11)

η(t) = −
∫ T

t

[ 〈 b, ξ(s) 〉+1
2
|DT ξ(s)|2]ds,

=
∫ T

t

[ 〈 b,
∫ T−s

0

eBT τe1dτ 〉−1
2
|DT

∫ T−s

0

eBT τe1dτ |2]ds,

=
∫ T−t

0

[ 〈 b,
∫ s

0

eBT τe1dτ 〉−1
2
|DT

∫ s

0

eBT τe1dτ |2]ds, t ≤ T.

Next we consider the price at (the possibly negative) time T − T̂ of a zero-coupon,

discount bond that matures at time T . Then under the no-arbitrage condition, the risk-

free yield should be the same as ρ(T − T̂ ) ≡ eT
2 X(T − T̂ ). By (2.19), and looking at the

price of this bond at T − T̂ , we have

(A.12) e−ρ(T−T̂ )T̂ = u(T − T̂ ,X(T − T̂ )) = eη(T−T̂ )+〈 ξ(T−T̂ ),X(T−T̂ ) 〉.

Hence we should have the additional conditions (2.22) for ξ(·) and η(·) (note X(·) =

(r(·), ρ(·))T ).

For the discount bond’s volatility ν(·), by the definitions of S2(·) and u(· , ·) we must

have

(A.13) S2(t) = u(t,X(t)), t ∈ [0, T ].
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Then by Itô’s formula we obtain (note (A.1) and (2.19)–(2.21))

(A.14)

S2(t)
[ 〈 e1, X(t) 〉 dt + 〈 ν(t), dW̃ (t) 〉 ] = dS2(t) = d[u(t,X(t))]

= u(t,X(t))
[
η̇(t) + 〈 ξ̇(t), X(t) 〉+ 〈 ξ(t), BX(t) + b 〉+1

2
|DT ξ(t)|2]dt

+ u(t,X(t)) 〈 ξ(t), DdW̃ (t) 〉
= S2(t)

[ 〈 e1, X(t) 〉 dt + 〈DT ξ(t), dW̃ (t) 〉 ].

Hence by (2.7) we obtain the equations in (2.23).

Appendix B

As discussed in Subsection 2.3, for a consistent model that is complete, free of arbitrage

opportunities, and calibrated to market data, we would like to solve the following system

of equations for B:

(B.1)





T̂BT e2 = c + T̂AT e2 − e1,

∫ T̂

0

eBT te1dt = T̂ e2,

subject to the following constraint:

(B.2)
∫ T̂

0

teT
1 eBT te1dt 6= 0,

for given A, c, and T̂ (satisfying suitable conditions). In this appendix we study the

existence of solutions to this system.

We denote a possible solution of (B.1)–(B.2) to be

(B.3) B =
(

b11 b12

b21 b22

)
.

It is clear that the first equation in (B.1) is equivalent to the following:

(B.4)
(

b21

b22

)
= BT e2 = T̂−1(c− e1) + AT e2.

Hence we need only to determine b11 and b12, or, equivalently, BT e1, from the second

equation in (B.1) and the constraint (B.2), because BT e2 is given by (B.4).

We start with some necessary conditions for the solutions. The following is our first

result.
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Proposition B.1. Suppose (B.1) admits a solution BT =
(

b11 b21

b12 b22

)
. Then A, c and T̂

must satisfy the following necessary condition:

(B.5) eT
1 (c + T̂AT e2) 6= 1,

and

(B.6) b12 6= 0.

Proof. By (B.4), we see that (B.5) is the same as b21 6= 0. Now suppose either b12 = 0,

or b21 = 0. Then BT is upper or lower triangle matrix, and thus

(B.7) eBT s =
(

eb11s ∗
∗ eb22s

)
, s ∈ lR,

where ∗ represents some entries that are irrelevant. Consequently, noting the second

equation in (B.1),

(B.8) 0 = eT
1 (T̂ e2) =

∫ T̂

0

eT
1 eBT se1ds =

∫ T̂

0

eb11sds > 0,

which is a contradiction, proving (B.5) and (B.6).

Now we would like to draw some further necessary conditions for a solution B of (B.1).

Proposition B.2. For any B ∈ lR2×2,

(B.9) eBT t = ϕ0(t)I + ϕ1(t)BT , ∀t ∈ lR,

with (ϕ0(·), ϕ1(·))T being the solution of the following:

(B.10)





(
ϕ̇0(t)
ϕ̇1(t)

)
=

(
0 −(detB)
1 (trB)

)(
ϕ0(t)
ϕ1(t)

)
,

(
ϕ0(0)
ϕ1(0)

)
=

(
1
0

)
.

If I and B are linearly independent, which is the case when (B.5)–(B.6) holds, then rep-

resentation (B.9) is unique.

Proof. First of all, for B ∈ lR2×2, by the Cayley-Hamilton theorem one has

(B.11) B2 − (trB)B + (det B)I = 0.
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Therefore, if (ϕ0(·), ϕ1(·))T is the solution of (B.9), then

(B.12)

d

dt

[
ϕ0(t)I + ϕ1(t)BT

]
= ϕ̇0(t)I + ϕ̇1(t)BT

= −(det B)ϕ1(t)I + [ϕ0(t) + (trB)ϕ1(t)]BT

= ϕ0(t)BT + ϕ1(t)[−(det B)I + (trB)BT ]

= ϕ0(t)BT + ϕ1(t)(BT )2 = BT [ϕ0(t)I + ϕ1(t)BT ].

This together with ϕ0(0) = 1 and ϕ1(0) = 0 means that eBT t admits representation (B.9).

If I and B are linearly independent, it is easy to prove that the representation (B.9) is

unique.

Corollary B.3. Let B be a solution of (B.1). Then

(B.13)
∫ T̂

0

ϕ1(t)dt 6= 0,

and

(B.14)
(

b11

b12

)
≡ BT e1 =

(∫ T̂

0

ϕ1(t)dt
)−1[

T̂ e2 −
( ∫ T̂

0

ϕ0(t)dt
)
e1

]
.

Proof. By (B.9) and the second equation in (B.1) we have

(B.15) T̂ e2 =
∫ T̂

0

eBT te1dt =
( ∫ T̂

0

ϕ0(t)dt
)
e1 +

( ∫ T̂

0

ϕ1(t)dt
)
BT e1.

Since T̂ > 0 and e1 and e2 are linearly independent, we must have (B.13). Then (B.14)

follows from (B.15).

The next result gives some solutions to (B.1)–(B.2) (under certain conditions).

Proposition B.4. Suppose B is a solution of (B.1)–(B.2) such that

(B.16) detB = 0.

Then A, c, and T̂ satisfy the following necessary conditions:

(B.17) (e1 + e2)T (c + T̂AT e2) = 1,

(B.18) eT
2 (c + T̂AT e2) > 1,

38



and B must be of the following form:

(B.19) B =
(
−b22 + T̂−1z0 b22 − T̂−1z0

−b22 b22

)
,

where b22 is given by (B.4) and z0 is determined in the following way:

(i) In the case that

(B.20) b22T̂ ≡ eT
2 (c + T̂AT e2) = 2,

z0 = 0, trB = 0, and

(B.21) B =
2

T̂

(−1 1
−1 1

)
.

(ii) In the case that

(B.22) b22T̂ ≡ eT
2 (c + T̂AT e2) 6= 2,

z0 is the unique non-zero solution of

(B.23) f(z) ∆=(z − b22T̂ )(ez − 1− z) + z2 = 0

and trB 6= 0.

Moreover, (B.19) and (B.21) do give a solution to (B.1) satisfying (B.2).

Proof. Suppose B is a solution of (B.1)–(B.2) satisfying (B.16). Then, by (B.5)–(B.6),

we know that

(B.24) b11b22 = (detB) + b12b21 = b12b21 6= 0.

Now, under (B.16), system (B.10) gives:

(B.25) ϕ0(t) ≡ 1, t ∈ lR,

and

(B.26) ϕ1(t) =





e(trB)t − 1
trB

, trB 6= 0,

t, trB = 0.
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Consequently, (B.14) becomes

(B.27)
(

b11

b12

)
≡ BT e1 = T̂

(∫ T̂

0

ϕ1(t)dt
)−1(

e2 − e1

)
.

This implies

(B.28) b11 + b12 = 0.

Then it follows from (B.24) that

(B.29) (e1 + e2)T BT e2 = b21 + b22 = 0,

which implies (B.17) (by using (B.4)).

Now we separate two cases:

Case 1: If trB ≡ b11 + b22 = 0, then equation (B.27) is equivalent to

(B.30) −T̂ = b11

∫ T̂

0

ϕ1(t)dt = b11

∫ T̂

0

tdt =
b11T̂

2

2
.

Hence, by (B.28)–(B.29) together with trB = 0, we conclude that in this case B has the

form (B.21). This also implies that b22T̂ = 2, which is the same as (B.20).

Case 2: If trB 6= 0, then, instead of (B.30), we have to solve

(B.31)
−T̂ = b11

∫ T̂

0

ϕ1(t)dt =
b11

b11 + b22

∫ T̂

0

[
e(b11+b22)t − 1

]
dt

=
b11

b11 + b22

e(b11+b22)T̂ − 1− (b11 + b22)T̂
b11 + b22

.

Note that b22 is given by (B.4). Thus the above is an equation for b11. To solve this

equation, we introduce a variable

(B.32) z = (b11 + b22)T̂ .

Then some simple calculation show that one has to solve equation (B.23). To this end, we

observe the following.

(B.33)

{
f ′(z) = zez − (b22T̂ − 1)(ez − 1),

f ′′(z) = ez[z − (b22T̂ − 2)].
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Thus

(B.34) f ′(0) = 0, f ′(∞) = ∞, f ′(−∞) = b22T̂ − 1,

and

(B.35) f ′′(z)





> 0, z > b22T̂ − 2,

= 0, z = b22T̂ − 2,

< 0, z < b22T̂ − 2.

Hence we have the following several subcases:

(a) b22T̂ > 2: In this case, f(·) is convex on (b22T̂−2,∞) and concave on (−∞, b22T̂−
2), with the unique stationary point z = b22T̂ − 2, and with z = 0 being a local strict

maximum. Consequently, f(·) is strictly increasing on (−∞, 0) and on (z̄,∞) for some

z̄ ∈ (0, b22T̂ − 2), and strictly decreasing on (0, z̄) (thus, this z̄ is a local strict minimum

of f(·)). Hence f(·) admits a unique non-zero root z0 ∈ (b22T̂ − 2,∞).

(b) 1 < b22T̂ < 2: In this case, f(·) is also convex on (b22T̂ − 2,∞) and concave on

(−∞, b22T̂ − 2), with the unique stationary point z = b22T̂ − 2. But now, z = 0 is a

local strict minimum. Consequently, f(·) is strictly increasing on (−∞, z̄) and on (0,∞)

for some z̄ ∈ (b22T̂ − 2, 0), and strictly decreasing on (z̄, 0) (thus, this z̄ is a local strict

maximum of f(·)). Hence f(·) admits a unique non-zero root z0 ∈ (−∞, b22T̂ − 2).

(c) b22T̂ = 2: In this case, f(·) is strictly increasing on lR. Thus f(·) only admits the

zero solution.

(d) b22T̂ ≤ 1: In this case, f(·) is strictly increasing on (0,∞) and strictly decreasing

on (−∞, 0). Thus f(·), again, only admits the zero solution.

Now, in subcases (c) and (d), f(·) only admits the zero solution. This corresponds

to the case trB = 0 discussed above. By the analysis there, we see that b22T̂ = 2 has to

be true. Hence subcase (d) is not possible. In other words, in order for the solution B to

satisfy det B = 0, one must have b22T̂ > 1. This gives (B.18). The subcase (c) merges into

Case 1 above.

Next we look at subcases (a) and (b). For these subcases we let z0 be the unique

non-zero solution of (B.23). Then

(B.36) b11 = −b22 + T̂−1z0, b12 = b22 − T̂−1z0.
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Hence B has to be of the form (B.18).

Finally, we need to check if constraint (B.2) is satisfied. To this end, we note by (B.25)

that

(B.37)

∫ T̂

0

te1e
BT te1dt =

∫ T̂

0

teT
1 [I + ϕ1(t)BT ]e1dt

=
T̂ 2

2
+ b11

∫ T̂

0

tϕ1(t)dt

=
T̂ 2

2
+ b11T̂

∫ T̂

0

ϕ1(t)dt− b11

∫ T̂

0

∫ t

0

ϕ1(s)dsdt

= − T̂ 2

2
− b11

∫ T̂

0

∫ t

0

ϕ1(s)dsdt.

Thus, in the case trB = 0, we have

(B.38)
∫ T̂

0

teT
1 eBT te1dt = − T̂ 2

2
+

2

T̂

∫ T̂

0

∫ t

0

s ds dt = − T̂ 2

2
+

T̂ 2

3
= − T̂ 2

6
6= 0.

On the other hand, in the case trB 6= 0 (i.e., we are in the subcase (a) or (b); see the

earlier proof), from equation (B.10) one has

(B.39)

∫ T̂

0

ϕ1(t)dt =
∫ T̂

0

∫ t

0

ϕ0(s)dsdt + (trB)
∫ T̂

0

∫ t

0

ϕ1(s)dsdt

=
T̂ 2

2
+ (trB)

∫ T̂

0

∫ t

0

ϕ1(s)dsdt.

Hence, by (B.27),

(B.40) −T̂ = b11

∫ T̂

0

ϕ1(t)dt =
b11T̂

2

2
+ (trB)b11

∫ T̂

0

∫ t

0

ϕ1(s)dsdt.

Consequently, by (B.37),

(B.41)

∫ T̂

0

te1e
BT te1dt = − T̂ 2

2
− b11

∫ T̂

0

∫ t

0

ϕ1(s)dsdt = − T̂ 2

2
+

1
trB

(
T̂ +

b11T̂
2

2

)

= − T̂ 2

2
+

T̂

z0

(
T̂ +

−b22T̂
2 + z0T̂

2

)
=

T̂ 2

2z0
(2− b22T̂ ) 6= 0.

This completes the proof.
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We now consider the case where det B 6= 0. In this case, by applying BT to the second

equation in (B.1), one obtains (noting (B.4))

(B.42) (eBT T̂ − I)e1 = T̂BT e2 = c− e1 + T̂AT e2.

This leads to

(B.43) eBT T̂ e1 = c + T̂AT e2 =
(

b21T̂ + 1
b22T̂

)
≡

(
c̄1

c̄2

)
,

which is equivalent to the second equation in (B.1) (because B is invertible). Keep in mind

that we only need to solve for b11 and b12 from the above two (scalar) equations.

To solve (B.43) we shall use the following:

Proposition B.5. Denote

(B.44) ∆ ∆=(trB)2 − 4(detB).

(i) If ∆ > 0, then B has two different real eigenvalues:

(B.45) λ1 =
trB +

√
∆

2
, λ2 =

trB −√∆
2

,

and

(B.46)





ϕ0(t) =
−λ2e

λ1t + λ1e
λ2t

λ1 − λ2
,

ϕ1(t) =
eλ1t − eλ2t

λ1 − λ2
.

(ii) If ∆ = 0, then B has one real eigenvalue of multiplicity 2:

(B.47) λ =
trB
2

,

and

(B.48)

{
ϕ0(t) = eλt(1− λt),

ϕ1(t) = teλt.

(iii) If ∆ < 0, then B has a pair of complex eigenvalues:

(B.49) λ =
trB ± i

√−∆
2

∆= α± iβ,
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and

(B.50)





ϕ0(t) =
eαt

β

[
β cos βt− α sin βt

]
,

ϕ1(t) = −eαt sin βt

β
.

Proof. (i). In this case, B has two different real eigenvalues given by (B.45). Thus




ϕ0(t) = C1e
λ1t + C2e

λ2t,

ϕ1(t) = − ϕ̇0(t)
detB

= − 1
detB

[
λ1C1e

λ1t + λ2C2e
λ2t

]
.

By the initial conditions in (B.10), we obtain
{

C1 + C2 = 1,

λ1C1 + λ2C2 = 0.

Thus

C1 =
λ2

λ2 − λ1
, C2 =

λ1

λ1 − λ2
.

Hence, noting det B = λ1λ2, we have (B.46).

(ii). In this case, B has one real eigenvalue of multiplicity 2 given by (B.47). Thus




ϕ0(t) = eλt(C1 + C2t),

ϕ1(t) = − 1
detB

eλt
[
λ(C1 + C2t) + C2

]
.

By the initial condition in (B.10), we obtain

C1 = 1, C2 = −λ.

Hence, noting det B = λ2, we obtain (B.48).

(iii). In this case, B has a pair of complex eigenvalues given by (B.49). Thus




ϕ0(t) = eαt
[
C1 cos βt + C2 sin βt

]
,

ϕ1(t) = − 1
det B

eαt
{
α
[
C1 cos βt + C2 sinβt

]
+ β

[− C1 sin βt + C2 cosβt
]}

.

By the initial conditions, we have

C1 = 1, C2 = −α

β
.
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Hence, noting det B = α2 + β2, we have (B.50).

Now we return to equation (B.43). By representation (B.9), we have

(B.51) eBT T̂ e1 =
[
ϕ0(T̂ )I + ϕ1(T̂ )BT

]
e1 =

(
ϕ0(T̂ ) + ϕ1(T̂ )b11

ϕ1(T̂ )b12

)
.

On the other hand, recall from (B.5) (which means b21 6= 0), we have

(B.52)





b11 = (trB)− b22,

b12 =
b11b22 − (det B)

b21
=
−b2

22 + b22(trB)− (det B)
b21

.

Note here, again, that b21 and b22 are determined by (B.4). Thus they are supposed to be

known here. Now we can write (B.51) as follows:

(B.53)





ϕ0(T̂ ) + ϕ1(T̂ )
[
(trB)− b22

]
= c̄1,

ϕ1(T̂ )
−b2

22 + b22(trB)− (det B)
b21

= c̄2.

We separate three cases.

Case 1: Suppose B has two distinct real eigenvalues λ1 and λ2. In this case, (B.53)

becomes (note (trB) = λ1 + λ2 and (det B) = λ1λ2)

(B.54)





−λ2e
λ1T̂ + λ1e

λ2T̂

λ1 − λ2
+

eλ1T̂ − eλ2T̂

λ1 − λ2

[
λ1 + λ2 − b22

]
= c̄1,

eλ1T̂ − eλ2T̂

λ1 − λ2

−b2
22 + b22(λ1 + λ2)− λ1λ2

b21
= c̄2.

This is a system of equations in λ1 and λ2. Once a solution (ζ1, ζ−2) to (B.54) is obtained,

from (B.52), we can obtain b11 and b12 immediately.

Case 2: Suppose B has a real eigenvalue λ with multiplicity 2. In this case, (B.53)

becomes (note trB = 2λ and det B = λ2):

(B.55)





eλT̂ (1− λT̂ ) + T̂ eλT̂
[
2λ− b22

]
= c̄1,

T̂ eλT̂ −b2
22 + 2b22λ− λ2

b21
= c̄2.

This is a system of two equations for just one known λ. Thus some necessary conditions

have to be satisfied among the coefficients in order to have a solution λ. Then, similar to

the above, by using (B.52), we can obtain b11 and b12 as long as λ is obtained.
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Case 3: Suppose B has a pair of complex eigenvalues α ± βi. In this case, (B.53)

becomes (note trB = 2β and det B = α2 + β2):

(B.56)





eαT̂

β

[
β cos βT̂ − α sin βT̂

]− eαT̂ sin βT̂

β

[
2β − b22

]
= c̄1,

− eαT̂ sin βT̂

β

−b2
22 + 2b22β − (α2 + β2)

b21
= c̄2.

This is a system of equations for unknowns α and β. Again, if we can solve the above, we

will be able to obtain b11 and b12 from (B.52). For example, if we suppose that b22 = c̄2 = 0,

then the above implies that sin βT̂ = 0, so that βT̂ = kπ, k = 0,±1,±2, . . .. Now if c̄1 = 0,

then (B.56) does not admit any solution α. If c̄1 > 0, then we can only have βT̂ = 2kπ,

k = 0,±1,±2, . . . , in which case α = lnc̄1

T̂
. Similarly, if c̄1 < 0, then we can only have

βT̂ = (2k + 1)π, k = 0,±1,±2, . . . , in which case α = ln(−c̄1)

T̂
.
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