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1 Introduction

For many years, the standard approach to valuation and hedging of credit index derivatives
(CID, henceforth) was the static copula model (c.f. [9], [10], [6] and references therein). The
appealing feature of copulae is that they allow to separate the specification of marginal default
probabilities from the dependence structure. However, they have been found to have several
shortfalls ([6],[4]), and their static nature is not well suited for hedging and pricing of certain
CID.

In recent years, two major families of dynamic models have been developed. One is known
as bottom-up and the other is known as top-down. Bottom-up models ([1],[3], [4], [6], [11], [12],
[15], [17]) describe the evolution of each individual default process, and are therefore driven
by the information generated by the underlying pool of obligations (full information). Top-
down models ([2],[8], [16], [13], [22], [24], [25]), on the other hand, describe the evolution of the
portfolio loss process (or functionals thereof) and can be viewed as reduced information models,
since essentially, only the information about the sum of the defaults, and/or its functionals, such
as the cumulative loss process, is used. Top down models proved to be computationally efficient,
and well suited for calibration to the term structure of CDO spreads. However, the top down
approach fails to consistently incorporate the marginal information (information generated by
individual obligors), and thus it cannot produce sensible hedging results.

It is apparent that, in order to capture satisfactorily the relationship between individual
default processes and aggregate loss, one cannot avoid working with the full information. The
aim of this paper is to combine the advantages of copula models with those of a dynamic bottom
up approach. The theory of Markov copulae, which can be loosely regarded as ”copulae” for
Markov processes, has proved to be useful in this regard.

It also appears that Markov copulae serve as a useful tool for valuation of certain financial
products, such a ratings triggered corporate bonds, whose cash flows flows depend on ratings
assigned to the issuer by at least two rating agencies.

The paper is organized as follows: in the next section, we provide some relevant mathematical
results regarding Markov copulae. Section 3 is devoted to the application of these results to
pricing and hedging of CID. In Section 4 we apply Markov copulae to pricing of ratings triggered
step up corporate bonds.

2 Multivariate Markov Processes with Given Mar-
ginals and Markov Copulae

2.1 Selected Results From the Theory of Markov Copulae

In a nutshell, given a collection of Markov processes {Xi}d
i=1, a Markov copula allows to con-

struct a multivariate Markov process, Y = (Y i)d
i=1, whose each component Y i is a Markov

process equal in law to Xi. It is clear that process Y must posses some additional structure, be-
sides the Markov property, as it is generally not true that components of a multivariate Markov
process are themselves Markovian. The theory of Markov copulae exploits this additional struc-
ture, which we shall now briefly discuss. For a comprehensive treatment of the analytical theory
of Markov processes, that we use in what follows, we refer to [14].

2.1.1 Markovian Consistency

Given a probability space (Ω,F ,P), endowed with some filtration F, we let X = (X1, . . . , Xd)
be a multivariate F-Markov process taking values in a separable metric product space E =
Πd

i=1 Ei := E1 × · · · × Ed. We require that, for some index set I ⊂ {1, . . . , d}, the component
XI := (Xi, i ∈ I) be an F-Markov process, i.e. we require that, for all f ∈ B(EI) (bounded,
measurable functions), and for all t, s ≥ 0,

E(f(XI
t+s)

��Ft) = E(f(XI
t+s)

��XI
t ), (1)

where EI = Πi∈IEi.

Definition 2.1 We say that a Markov process X satisfies Markovian consistency condition for
XI if (1) holds. If, in addition, XI is equal in law to a Markov process Y , taking values in EI ,
we say that X satisfies Markovian consistency condition for (XI , Y ).
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In what follows, we provide sufficient and necessary conditions for Markov consistency to hold.
Towards this end, let L(E) ⊂ B(E) be a given Banach space. For x = (x1, . . . , xd) ∈ E, and
for an index set I, we write xI = (xi, i ∈ I). Let (A,D(A)) be a linear operator on L(E). We
define the following subspaces:

DI(E) = {f ∈ D(A) : f(x) = gf (xI), for some gf ∈ B(EI)},
DI(EI) = {SI(f), f ∈ DI(E)},
LI(E) = A

�
DI(E)

�
,

LI(EI) = {SI(f), f ∈ LI(E)},
where SI(f) denotes trace of f on EI , which is defined as

SI(f) = gf .

The following two propositions are borrowed from [7].

Proposition 2.1 Let (A,D(A)) be a linear operator on L(E). Suppose that A is the (infini-
tesimal) generator1 of an E-valued F-Markov process, X = (X1, X2, . . . , Xd). Assume that the
component XI is F-Markov. Then, for all f ∈ DI(E) it holds that:

Af(x) = hf (xI), for some hf in B(EI). (i)

Proposition 2.2 Let (A,D(A)) be a linear operator on L(E), s.t. A is the generator of an
E-valued F-Markov process, X = (X1, X2, . . . , Xd). Assume that, for every f ∈ DI(E), the
following holds:

Af(x) = hf (xI), for some hf in B(EI).

Then XI is an F-Markov process corresponding to the strongly continuous contraction semigroup
generated by the operator (AI , DI(EI)), defined as:

AISI(f) = SI(Af), ∀f ∈ DI(E). (ii)

Next, we state sufficient conditions on the operator A, so that XI is F-Markovian with given
finite dimensional distributions.

Corollary 2.1 Let X be an E-valued, F-Markov process with generator A. Let Y be an EI-
valued Markov process, with generator AY . Suppose conditions of Proposition 2.2 are satis-
fied and define AI by (ii) in Proposition 2.2. Suppose, in addition, that the graphs G(AI) :=
(AI(D(AI)),D(AI)) and G(AY ) := (AY (D(AY )),D(AY )) coincide. Then, X satisfies Markov-
ian consistency condition for (XI , Y ).

Proof. This immediately follows from Proposition 2.2 and from Proposition 3.1, Chapter 4, in
[14]. ¤

2.1.2 Markov Copulae

We are ready now to introduce the concept of Markov copula. Towards this end, we formulate
the following problem:

Given a collection of Ei-valued Markov processes {Y i}{i=1,...,d}, we want to construct an
E-valued process X = (X1, X2, . . . Xd) on some probability space (Ω,F ,P), such that it is
Markov w.r.t. its natural filtration, say FX , and satisfies Markovian consistency conditions for
(Xi, Y i), i = 1 . . . d.

In the next definition, we denote by A the collection {Ai}{i=1,...,d} of generators correspond-
ing to processes Y i, i = 1, . . . , d.

Definition 2.2 Let CA ⊂ L(B(E), B(E)) be the set of linear operators A satisfying:

i) For all i = 1 . . . d, and for all f ∈ Di(E),

Af(x) = hf (xi)

for some hf ∈ B(Ei),

1All (infinitesimal) generators considered here are taken to be the strong generators. That is why, we shall simplify
the notation and say that A is the infinitesimal generator, rather than say that (A,D(A)) is the infinitesimal generator,
of a Markov process.
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ii) For all i = 1 . . . d, and for all f ∈ Di(E), A satisfies

AiSi(f) = Si(Af),

iii) A is the generator of an E-valued Markov process.

Any element A ∈ CA is called a Markov copula for processes Y i, i = 1 . . . d.

We now have the following result (cf. [7])

Proposition 2.3 Let A be a Markov copula for processes Y i, i = 1 . . . d.. Then the canonical
Markov process X = (X1, . . . , Xd) corresponding to the semigroup generated by A satisfies
Markovian consistency conditions for (Xi, Y i), i = 1, . . . , d.

Remark. The results provided above can be extended to time inhomogeneous generators via
the standard homogenization argument.

2.2 Examples of Markov Copulae

2.2.1 Diffusion Modulated Multivariate Markov Jump Process

Here we take E to be a compact subset of Rd. Let J ⊂ {1, . . . , d}, for any z ∈ Rd we denote by
zJ an element in Rd whose ith component is zi if i ∈ J , and it is 0 otherwise. Next, let J be
the collection of subsets of {1, . . . , d} of cardinality of at least 2.

Consider the function spaces C2
0 (R) and C0(Ei). Let b⊗ denote the injective tensor product

between Banach spaces, as well as the injective tensor product between linear operators on these
spaces (see e.g. [23]). In particular, we have that (see [7]) C2

0 (R)b⊗C0(Ei) can be identified with
C2,0

0 (R× Ei), and C2
0 (R)b⊗C0(E1)b⊗ . . . b⊗C0(Ed) can be identified with C2,0...0

0 (R× E).
Next, let I(i:j), j ≥ i, denote the identity operator on the space C0(Ei × Ei+1 × · · · × Ej).

Suppose now that we are given a collection of d Markov processes Y i with values in R×Ei and
with infinitesimal generators (Ai, C2,0

0 (R, Ei)) defined by:

Aif(y, xi) = Lb⊗I(i)f(y, xi) + eAifi(y, xi), (5)

where L is the infinitesimal generator of a diffusion process on R, and where eAi is defined aseAifi(y, xi) := λi(y, xi)

Z
Ei

(fi(y, xi + zi)− fi(y, xi)) νi(dzi; y),

and where λi(y, xi) are bounded, measurable functions, and for every y ∈ R, νi(dzi; y) is a
probability measures on Ei.

We then have the following result ([7])

Proposition 2.4 Let {Ai}, i = 1 . . . d be as in (5) and let

Af(y, x) := Lb⊗I(1:d)f(y, x) +

dX
i=1

I(1:i−1)b⊗ eAib⊗I(i+1:d)f(y, x)

+
X
S∈J

λS(y, x)

Z
ES

�
f(y, x + zS)− f(y, x)

�
νS(dzS ; y)

−
dX

i=1

X
S∈J :i∈S

λS(y, x)

Z
ES

�
f(y, x + zi)− f(y, x)

�
νS(dzS ; y), (6)

D(A) := C2,0...0
0 (R× E), (7)

where,

i) for each y ∈ R, νS(dz; y) is a probability measure on ES defined as

νS(dzS ; y) := CS(νi(dzi; y), i ∈ S) (8)

for some copula function CS,
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ii) the non negative bounded functions λS(y, x) are the intensities of simultaneous jumps of
components Xi, i ∈ S, and are chosen so that the following condition holds:X

S∈J :i∈S

λS(y, x) ≤ λi(y, xi), ∀x ∈ E, y ∈ R, i ∈ {1, . . . , d}. (9)

Then, the operator A is an element of CA,i.e. A is a Markov copula for Y i, i = 1, . . . , d.

2.2.2 Bivariate Markov Chain

In the case when Ai, i = 1, . . . , d are generators of finite state Markov chains, the set CA is
determined by the set of positive solutions of a linear algebraic system. For notational ease, we
shall only discuss the case d = 2. The following proposition is borrowed from [5]

Proposition 2.5 Consider two finite Markov chains X1 and X2, w.r.t. their own filtrations,
and with values in O1 and O2, respectively. Suppose that their respective generators are A1(t) =
[αi

j(t)]i,j∈O1 and A2(t) = [βh
k (t)]h,k∈O2 . Next, consider the system of equations in the unknowns

λih
jk(t), where i, j ∈ O1, h, k ∈ O2 and (i, h) 6= (j, k):X

k∈O2

λih
jk(t) = αi

j(t), ∀h ∈ O2, ∀i, j ∈ O1, i 6= j (10)X
j∈O1

λih
jk(t) = βh

k (t), ∀i ∈ O1, ∀h, k ∈ O2, h 6= k. (11)

Then, for any positive solution of the above system, the matrix function A(t) = [λih
jk(t)]i,j∈O1,k,h∈O2 ,

with
λih

ih(t) = −
X

(j,k)∈O1×O2,

(j,k) 6=(i,h)

λih
jk(t), (12)

is a Markov copula for Xi, i = 1, 2.

Remark. Note that, typically, system (10) –(11) contains many more unknowns than equations.
In fact, given that cardinalities of O1 and O2 are K1 and K2, respectively, the system consists
of K1(K1 − 1) + K2(K2 − 1) equations in K1K2(K1K2 − 1) unknowns.

3 Credit Index Derivatives: An efficient bottom up
approach

In this section, using the above results, we construct a Markovian market model that will
underlie pricing and hedging of CID.

3.1 Markovian Market Model

Let (Ω,F ,Q) be the underlying probability space. On (Ω,F ,Q) we define the following:

– τi, i = 1, . . . , N , a collection of positive random variables which represent default times in a
pool of N obligors;

– eZi
t , i = 1, . . . , N , a family of processes with eZi

0 = 0 and eZi
t ∈ (0, 1] for t > 0. eZi

t represents
the fractional loss incurred at the default time of the ith obligation in the pool, τi;

– eXt, an Rd valued process of (observable) factors of economic/financial relevance. We assumeeX is Markov with generator Lt.

We assume that, for every i, the process ( eZi, eX) is Markov in its natural filtration, which we

denote by Fi. In addition, we assume that ( eZi, X), i = 1 . . . , N, admit the following, time
inhomogeneous, infinitesimal generators:

Ai
tf(zi, x) = (Iib⊗Lt)f(zi, x) + ηi(x, t, zi)

Z
(0,1]

(f(zi + yi, x)− f(zi, x)) νi(dyi; x, t), (13)

where, ηi(x, t, zi) = ϑi(x, t)1{zi=0} for some non-negative, measurable and bounded function ϑ,
and where νi(dzi; x, t) is a probability measure on (0, 1]. Possible specifications for νi(dyi; x, t)
are:
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– νi(dy; x, t) = δ1−R(dy), R ∈ [0, 1), which yields the case of constant loss of size 1 − R at
default,

– νi(dy; x, t) = δζ(x,t)(dy), for some appropriate function ζ : R2 → (0, 1]. This specification
yields predictable loss at default,

– νi(dy; x, t) is a probability measure on (0,1], not concentrated on a point mass. In this case,
the loss at default ceases to be predictable.

In order to price and hedge credit index derivatives, we need to specify, in particular, the joint
dynamics of the loss processes ( eZi)i=1,...,N . In analogy to classic copula approaches, we would
like to construct a multivariate Markov process with ”arbitrary” dependence structure, whose
components have desired finite dimensional distributions.

We recall some notation used in the previous section. Let I be a set of indices in {1, . . . , N},
and y = (y1 . . . yN ) be vectors in [0, 1]N . We define yI to be a vector in [0, 1]N , whose ith

component is yi if i ∈ I and 0 otherwise. Let Z = (Z1, . . . , ZN ). We want that process (Z, X)

is Markov with prescribed Markovian margins ( eZi, X), i = 1, 2, . . . , N.
Towards this end, following the Markov copula construction, we define the generator of

(Z, X) as follows:

Atf(z, x) = (I(1:N)b⊗Lt)f(z, x) +

NX
i=1

ηi(x, t, zi)

Z
(0,1]

�
f(z + yi, x)− f(z, x)

�
νi(dyi; x, t)

+
X
I∈J

λI(x, t, z)

Z
(0,1]I

�
f(z + yI , x)− f(z, x)

�
νI(dyI ; x, t)

−
IX

i=1

X
I∈J :i∈I

λI(x, t, z)

Z
(0,1]I

�
f(z + yi, x)− f(z, x)

�
νI(dyI ; x, t), (14)

where,

i) νI(dy; x, t) is a probability measure on (0, 1]I := Πı∈I(0, 1] defined as:

νI(dyI ; x, t) := CI(νi(dyi; x, t), i ∈ I) (15)

for some copula function CI ,

ii) the non negative bounded functions λI(x, t, z) are chosen so that the following holds:X
I∈J :i∈I

λI(x, t, z) ≤ ηi(x, t, zi), ∀x, t, z. (16)

In view of Proposition 2.4, (Z, X) is Markov in its natural filtration, which we denote by F,
and each component (Zi, X) is Markov w.r.t. F and equal in law to ( eZi, eX). We can therefore
utilize the process (Z, X) to price and hedge credit basket derivatives on baskets of obligations

referencing ( eZi)i=1,...,N , or any sub-pool therein. For this purpose we define the following
processes:

– The i-th default indicator processes Hi
t := 1{Zi

t>0},

– The cumulative default process Ht :=
PN

i 1{Zi
t>0},

– The cumulative loss2, Zt :=
PN

i Zi
t .

Note that (14) can be re-written as (we let I := 2{1,...,d}):

Atf(z, x) = Ltf(z, x) +
X
I∈I

λI(x, t, z)

Z
(0,1]I

�
f(z + yI , x)− f(z, x)

�
νI(dyI ; x, t) (17)

where

λi(x, t, z) = ηi(x, t, zi)−
X

I∈J :i∈I

λI(x, t, z) for i = 1, . . . , N, (18)

where z = (z1, . . . , zN ). Henceforth, we shall use the more concise notation in (51) for the
generator At.

2We assume without loss of generality that the notional of each obligor is 1.
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Remark. Observe that
ηi(x, t, zi) =

X
I∈I:i∈I

λI(x, t, z) (19)

Remark. It is clear that, for N large, the sum over all possible sets of at least two indices
in {1, . . . , N}, contains an unmanageable number of terms. In applications one does not need
to consider all possible jump sizes, and can select (preferably using financial or economical
reasoning) sub-pools of obligors that are more likely to suffer from the frailty effect3, in the
sense that they are prone to simultaneous default.

3.2 Pricing Credit Index Derivatives

The primary securities, underlying the CID market, are the individual vanilla credit default
swaps. For this reason we begin by discussing pricing of CDSs within our model.

3.2.1 Credit Default Swaps

In what follows we shall interpret the probability measure Q as a pricing measure corresponding

to the discount factor βt = e−
R t
0 rs ds, where r is the spot interest rate process. We shall assume

that process r is the first coordinate, say X1, of the factor process X, so that βt = e−
R t
0 X1

s ds.
The time-t fair spread of the i-th CDS contract maturing at T is defined as:

κi
t :=

EQ
� R T

t
βu
βt

dZi
u

���Ft

�
EQ
� R T

t
βu
βt

(1−Hi
u)du

���Ft

� =
EQ
� R T

t
βu
βt

d eZi
u

���Ft

�
EQ
� R T

t
βu
βt

(1− eHi
u)du

���Ft

� , (20)

although we shall use a more convenient representation.

Lemma 3.1 The spread in (20) can be represented as:

κi
t =

EQ
�

βT
βt

Zi
T − Zi

t +
R T

t
X1

u
βu
βt

Zi
u du

���Ft

�
EQ
�R T

t
βu
βt

(1−Hi
u) du

���Ft

� . (21)

Proof. The result follows from integration by parts formula. ¤
The expectations in (20) can be evaluated by solving related PDEs, as shown in the next

proposition.

Proposition 3.1 Let Ai
t be as in (13). Then

κi
t =

φi(Zi
t , Xt, t)− Zi

t

ρi(Zi
t , Xt, t)

, (22)

where functions φi and ρi satisfy, for4 x ∈ O ⊂ Rd, zi ∈ [0, 1]:

∂tφ
i(zi, x, t) + Ai

tφ
i(zi, x, t)− x1φ

i(zi, x, t) = −x1zi, t ∈ [0, T ) (23)

φ(zi, x, T ) = zi

and, letting h(zi) = 1{zi>0},

∂tρ
i(zi, x, t) + Ai

tρ
i(zi, x, t)− x1ρ

i(zi, x, t) = 1− h(zi), t ∈ [0, T ) (24)

ρi(zi, x, T ) = 0.

Proof. By the Feynman-Kac formula, (23) and (24) imply:

φi(Zi
t , Xt, t) =

1

βt
EQ
�

βT Zi
T +

Z T

t

βuZi
ur du

���Ft

�
(25a)

ρi(Zi
t , Xt, t) =

1

βt
EQ
�Z T

t

βu(1−Hi
u)du

���Ft

�
, (25b)

and the result follows from (21). ¤
3Please see the concluding remarks section for some discussion of so called contagion effect
4The domain O depends on a particular choice of factors X. In the remainder of this paper we will omit the

specification of the domains for the pricing PDEs, when it is clear from the context.
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3.2.2 Credit Index Derivatives

We are interested in valuation and hedging of CID, such as index swaps, tranche swaps, or
nth–to–default swaps.

Let Π(·) be a general payoff function, then the fair spread of a credit index derivative
maturing at T , and whose payoff is determined by Π, can be expressed as:

κt =
EQ
�R T

t
βu
βt

dΠΓ
u

���Ft

�
EQ
�R T

t
βu
βt

(Π(N )−Π(Ψu)) du
���Ft

� , (26)

where ΠΓ
t = Π

�
Γt

�
, and where constant N and processes Γ and Ψ are determined by the

covenants of the swap; as usually we let 0
0

= 0. For example,

(IS): In case of a credit index swap (IS) we have

Π(x) = x,

N = N, Γt = Zt, Ψt = Ht.

Note that here N represents the aggregate notional of the basket. Also, note that here
κIS

t = 0 on the event Ht = N.

(TS): In case of a synthetic CDO tranche swap (TS) with attachments L ∈ (0, 1) and U ∈ (0, 1),
L < U, we have5:

Π(x) = (x−A)1[A,B](x) + (B −A)1(B,N ](x) = (x−B)+ − (x−A)+,

where N = N, A = NL and B = NU. In addition, we have

Γt = Ψt = Zt.

Also, note that here κTS
t = 0 on the event Zt ≥ B.

(nTDS): In case of a nth-to-default swap (nTDS) we have

Π(x) = x,

N = n, Γt = Zt∧τ(n) , Ψt = Ht ∧N ,

where τ (n) indicates the time of the nth default. Also, note that here κnTDS
t = 0 on the

event t ≥ τ (n).

Remark. Integrating by parts, (26) can be written as:

κt =
EQ
�

βT
βt

Π
�
ΓT

�−Π
�
Γt

�
+ 1

βt

R T

t
X1

uβuΠ
�
Γu

�
du
���Ft

�
EQ
�R T

t
βu
βt

(Π(N )−Π(Ψu)) du
���Ft

� . (27)

In what follows, we let g(z) =
PN

i=1 zi, and h(z) =
PN

i=1 1{zi>0}. In addition, we shall
consider functions γ(z) and ψ(z) that indicate levels of processes Γ and Ψ, respectively. The
forms of γ and ψ depend on a particular application; for example, in case of the index swap (IS)
we have

γ(z) = g(z), ψ(z) = h(z),

and in case of the tranche swap (TS) we have

γ(z) = ψ(z) = g(z).

Recalling that At denotes the infinitesimal generator of (Z, X), we have the following propo-
sition:

5The definitions provided here apply to all tranches but the equity tranche, which is quoted in a very specific way
(cf. [6]) Straightforward adjustments need to be made so to deal with the equity tranche.
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Proposition 3.2 We have that for t ∈ [0, T ]

κt =
φ(Zt, Xt, t)−Π(γ(Zt))

ρ(Zt, Xt, t)
, (28)

where functions φ and ρ solve, respectively,

∂tφ(z, x, t) + Atφ(z, x, t)− x1φ(z, x, t) = −x1Π(γ(z)) (29)

φ(z, x, T ) = Π(γ(z))

and

∂tρ(z, x, t) + Atρ(z, x, t)− x1ρ(z, x, t) = Π(N )−Π(ψ(z)) (30)

ρ(z, x, t) = 0.

Proof. By the Feynman-Kac formula, (29) and (30) imply that:

φ(Zt, Xt, t) =
1

βt
EQ
�
βT Π(ΓT ) +

Z T

t

βuΠ(Γu)X1
u du

���Ft

�
(31a)

ρ(Zt, Xt, t) =
1

βt
EQ
� Z T

t

βu (Π(N )−Π(Ψu)) du
���Ft

�
, (31b)

The result follows from (27). ¤

Remark. For small pool sizes, N, the above PDEs can be solved numerically, for example
by finite difference approximation. Otherwise, one has to resort to Monte Carlo simulation to
compute the expectations in (31a) and (31b), as we shall discuss later.

3.3 Hedging CID with CDS

In this section we provide formulas for the hedging ratios of the CIDs with respect to the
individual CDSs.6

It is common practice to manage risky positions in basket swaps by holding portfolios of
individual CDS contracts. The portfolio weights are chosen so as to offset some of the risks
associated with the basket product. This approach, usually referred to as ”delta” hedging,

requires computation of certain ratios such as d eP/dfP i and d eP/dHi, where eP and fP i denote
the cumulative price of a CID, and the cumulative price of a single name CDS, respectively.

In this section, we derive formulas for the hedge ratios, under the following assumptions:

1. Ltf(x) := b(x, t)∂xf(x) + a(x, t)∂xxf(x),

2. ν(dyi; x, t) := δ1−R(dyi), i.e. the jump size at default is deterministic.

Under this set of assumptions, the infinitesimal generator of (Z, X) in (51) is of the form:

Atf(z, x) = Ltf(z, x) +
X
I∈I

λI(x, t, z)

Z
(0,1]I

�
f(z + yI , x, t)− f(z, x, t)

�
δ1−R(dyI) (32)

where δ1−R(dyI) := Πı∈Iδ1−R(dyi).

For ease of notation, for an index set in {1, . . . , N}, we define the following operator:

∆If(z, x, t) :=

Z
(0,1]I

�
f(z + yI , x, t)− f(z, x, t)

�
δ1−R(dyI). (33)

6Using the same techniques, we can compute hedging ratios of CID with respect to sub-baskets of credit default
swaps.
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3.3.1 Computing the Hedging Ratios

Let7 τ I := inf{t ≥ 0 : Zi
t − Zi

t− > 0, ∀i ∈ I}, and denote by MI
t := 1{τI≤t} the corresponding

indicator process. Note that X
I∈I:i∈I

MI
t = Hi

t . (34)

We define the following auxiliary processes:bXt := Xt −
Z t

0

b(Xs, s)ds (35a)

bHi
t := Hi

t −
Z t

0

ηi(Xs, s, Z
i
s)ds (35b)

cMI
t := MI

t −
Z t

0

λI(Xs, s,Zs)ds (35c)

where τ I is the random time of the simultaneous jump of all components (Zi, i ∈ I). In view of
(19) and (34) we have that bHi

t =
X

I∈I:i∈I

cMI
t . (36)

We also have the following important result:

Lemma 3.2 The processes in (35) are F-local martingales.

Proof. See the Appendix. ¤
We proceed with deriving a martingale representation for the cumulative price process of

the ith CDS contract initiated at time t = 0, at the contracted spread κi; we shall denote this
price process by eP i

t (κi), t ∈ [0, T ]. By an application of integration by parts formula, eP i
t (κi)

can be written as:ePt(κ
i) =

1

βt

 Z t

0

βuZi
uX1

u du− κi

Z t

0

βu(1−Hu) du (37)

+ EQ
�

βT Zi
T +

Z T

t

βuZi
uX1

u du|Ft

�
− κiEQ

�Z T

t

βu(1−Hi
u)du

���Ft

�!
.

Proposition 3.3 Assume Ai
t is as in (13), then the discounted cumulative price process of the

ith CDS in the pool is a local martingale with the following predictable representation:

d
�
β eP i(κi)

�
t

=
�
∂xφi

t − κi∂xρi
t

�
d bXt +

�
∆iφi

t − κi∆iρi
t

�
d bHi

t , (38)

where φi
t and ρi

t are defined by (25a) and (25b), respectively.

Proof.
By Itô formula,

d
�
β eP i(κi)

�
t

= Zi
tβtX

1
t dt− κiβt(1−Hi

t)dt + βt(dφi
t − κidρi

t)− (φi
t − κiρi

t)βtX
1
t dt

= −Ai
tφ

i
t dt + ∂xφi

tdXt +
1

2
∂xxφi

td[X]t + ∆iφi
tdHi

t

− κi
�
−Ai

tρ
i
t dt + ∂xρi

tdXt +
1

2
∂xxρi

td[X]t + ∆iρi
tdHi

t

�
,

where we used (23) and (24). The result (38) follows after some straightforward simplifications.
¤

Let us now consider a general CID with payoff function Π, contracted at time t = 0 for the
spread κ and maturing at time T . Similarly to (37), its cumulative price can be written as:

ePt(κ) =
1

βt

 Z t

0

βuΠ(Zu)r du− κ

Z t

0

βu(Π(N )−Π(Zu)) du (39)

+ EQ
�

βT Π(ZT ) +

Z T

t

βuΠ(Zu)X1
u du

���Ft

�
− κEQ

�Z T

t

βu (Π(N )−Π(Zu)) du
���Ft

�!
.

7By definition, Z0− = Z0.
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The proof of the next result follows along the same lines as the proof of Proposition 3.3, and
therefore will be omitted.

Proposition 3.4 The cumulative price of a CID whose payoff is determined by function Π is
a Q local martingale and admits the following predictable representation:

d
�
β eP (κ)

�
t
=
�
∂xφt − κ∂xρt

�
d bXt +

X
I∈I

�
∆Iφt − κ∆Iρt

�
dcMI

t , (40)

where φt and ρt are defined by (31a) and (31b), respectively.

The next proposition yields explicit formulae for the desired hedging ratios.

Proposition 3.5 Assume ∆iφi
t − κi∆iρi

t 6= 0, ∀i. Then the discounted price of a CID whose
payoff is determined by function Π admits the following representation:

d
�
β eP (κ)

�
t

=

0@∂xφt − κ∂xρt −
NX

i=1

�
∂xφi

t − κi∂xρi
t

��
∆iφt − κ∆iρt

�
∆iφi

t − κi∆iρi
t

1A d bXt (41)

+

NX
i=1

�
∆iφt − κ∆iρt

∆iφi
t − κi∆iρi

t

�
d(β eP i(κi))t

+
X
I∈J

 �
∆Iφt −

X
i∈I

∆iφt

�− κ
�
∆Iρt −

X
i∈I

∆iρt

�!
dcMI

t .

Proof. From (38) we derive the expression for d bHi:

d bHi
t =

1�
∆iφi

t − κi∆iρi
t

�d
�
βfP i(κi)

�
t
−

�
∂xφi

t − κi∂xρi
t

��
∆iφi

t − κi∆iρi
t

�d bXt, (42)

which is well defined by assumption. From (3.4) we have:

d
�
β eP (κ)

�
t

=
�
∂xφt − κ∂xρt

�
d bXt +

X
I∈I

�
∆Iφt − κ∆Iρt

�
dcMI

t

=
�
∂xφt − κ∂xρt

�
d bXt +

NX
i=1

�
∆iφt − κ∆iρt

�
dcM i

t +
X
I∈J

�
∆Iφt − κ∆Iρt

�
dcMI

t

+

NX
i=1

X
I∈J :i∈I

�
∆iφt − κ∆iρt

�
dcMI

t −
NX

i=1

X
I∈J :i∈I

�
∆iφt − κ∆iρt

�
dcMI

t

=
�
∂xφt − κ∂xρt

�
d bXt +

NX
i=1

�
∆iφt − κ∆iρt

�
d bHi

t

+
X
I∈J

�
∆Iφt − κ∆Iρt

�
dcMI

t −
NX

i=1

X
I∈J :i∈I

�
∆iφt − κ∆iρt

�
dcMI

t

=
�
∂xφt − κ∂xρt

�
d bXt +

NX
i=1

�
∆iφt − κ∆iρt

�
d bHi

t

+
X
I∈J

�
∆Iφt − κ∆Iρt −

X
i∈I

(∆iφt − κ∆iρt)
�
dcMI

t ,

where the last step can be easily shown by an induction argument on N. Plugging (42) into the
above, we obtain the desired predictable representation (41). ¤

3.4 Simulation Algorithm

For small basket sizes conditional expectations that need to be computed for the purpose of
valuation and hedging of basket derivatives can be computed by (numerically) solving relevant
(systems of) PDEs or IPDEs. However, for large basket sizes such (quasi) analytical solutions
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are infeasible within our framework. Thus, we apply Monte Carlo simulation to carry these
computations. It turns our that this simulation approach is extremely effective in the framework
of Markovian copulae.

We consider here simulations of sample paths of (Z, X) over the time interval, [t1, t2]. given
(Zt1 , Xt1) = (z, x). It is clear that simulating Z is equivalent to simulating times of individual
jumps, times of common jumps, and jump sizes. However, we need to stress here that in
applications we do not consider all I ∈ J as far as common jumps are concerned, but rather
we use judgment and economic information regarding to what I’s to select, so to make the
simulation procedure efficient.
Generating one sample path will, in general, involve the following steps:
Step 1: simulate a sample path of the factor process X. Typically X is a diffusion or jump dif-
fusion, and standard simulation procedures for this type of processes are discussed, for instance,
in Kloeden and Platen [18]). We denote by eX the simulated sample path of X.
Step 2: generate a sample path of Z on the interval [t1, t2] as follows:

Step 2.1: simulate the 1st jump time of Z in the time interval [t1, t2]. Towards this end, draw
a unit exponential random variable, which we denote by η. The simulated value of the
first jump time, τ , is then given by:

τ = inf
n

t > t1 :

Z t

t1

λ(z, eXu, u) du ≥ η
o

,

where
λ(z, eXt, t) :=

X
I∈I

λI(z, Xt, t)

If τ > t2 return to step 1, otherwise go to Step 2.2.

Step 2.2: simulate which one of the MI jumps at τ , by drawing from the conditional distri-
bution:

Q(∆MI
τ = 1) =

λI(z, eXτ−, τ)

λ(z, eXτ−, τ)
.

Step 2.3: given that, in step 2.2 we obtained that ∆MJ
τ = 1 for some J ∈ I, simulate the size

of the loss for each obligor in the index set J by drawing from the multivariate distribution
νJ(· ; eXτ−, τ−) 8.

Step 2.4: update the state of Z and set t1 = τ . Repeat Steps 2.1-2.3.

Step 3: calculate the simulated value of a relevant functional.

3.5 Model Calibration

In the previous sections we assumed a risk neutral pricing measure as given. Arbitrage free
pricing, in fact, requires existence of a risk neutral measure, under which the price processes in
the underlying market are martingales.

In our market model, relevant assets are single name CDS contracts composing the credit
indices, the indices themselves, and the related derivative products, such as CDOs, CDO2s,
etc. . It is a standing assumption that financial markets are arbitrage free, and a risk neutral
measure can thus be inferred from the prevailing market prices.

3.5.1 Calibration by simulation procedure

Choosing a risk-neutral probability measure such as to reproduce the prices of traded derivative
products is known as model calibration. Since the dynamics of (Z, X) are specified via a
Markov copula, calibration of the risk neutral parameters of the model, that is, the parameters
corresponding to the risk neutral measure, can be split into three separate problems 9:

Step i) calibration of the dynamics of the factor process X,

Step ii) calibration of the infinitesimal generators of the processes (Zi, X), i = 1, . . . , N ,

Step iii) calibration of the infinitesimal generator of the process (Z, X).

8For some treatment of simulation from copulae we refer to [19] and references therein.
9The market data used in calibration was courteously provided by GFI
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This considerably reduces the dimensionality of the optimization problem embedded in model
calibration. It is in fact clear from (14) that, once the intensities ηi(x, t, zi) and the jump size
distributions νi(dy; , x, t) have been fitted to individual name CDS market spread data, it suffices
to calibrate the common jump intensities λI(x, t),∀I ∈ J (see however the Remark at the end
of Section 3.1), along with the parameters of the copula function C(·), which determines the
jump size distribution νC(dy, x, t). In fact, since steps i) and ii) can be executed at extremely
low computational cost, we can regard the probability law of the marginal processes (Zi, X)
as given, and devote our attention to step iii). The jump intensities λI(x, t) and the copula
function, C(·) are fitted to market data for relevant CIDs, such as CDO and CDS Index.

To perform Step iii) of our calibration procedure we need to compute theoretical values for
various spreads according to formulae provided in Proposition 3.2. Since computing the expec-
tations in (31a) and (31b) requires Monte Carlo simulation then, for the purpose of solving the
optimization problem embedded in our calibration procedure, it is best to use algorithms that
do not require computation of gradients . In particular, we suggest using the downhill simplex
method (also known as the Nelder-Mead algorithm) or Powell method to perform the minimiza-
tion. We refer to [6] for a more detailed description of calibration by simulation procedure that
underlies what we do here.

3.5.2 Toy Model

We implement a ”toy” model to test the performance of our framework. In particular, we
assume a constant interest rate r, constant recovery R = .4 and marginal generators of the form

Ai
tf(t, zi) = ηi(t, zi)

Z
(0,1]

f(zi + y)− f(zi)δ1−R(dy),

where ηi(t, zi) = (ai + bit)1{zi=0}. Under these assumptions, the individual time-t = 0 spreads
are given by the formulae (here we make explicit dependence on maturity by writing κi

0(T )):

κi
0(T ) =

R T

0
re−rs(1− e−ais− bi

2 s2
)ds + e−rT (1− e−aiT− bi

2 T2
)R T

0
e−rse−ais− bi

2 s2
ds

(1−R)10000 (43)

which can be computed in terms of the erf. The (positive) parameters ai and bi are fitted so as
to match the 5 and 10 year spreads of the iTraxx S6 constituents as of December 1, 200610.

Recall that a key to numerical efficiency of our simulation procedure, and thus of our calibra-
tion by simulation, is a judicious choice of groups of obligors who may default simultaneously.
Here, towards this end, we let R = {10, 20, 40, 125} and, for n ∈ R, we define In as the set
containing the indices of the n riskiest obligors11. In particular, we have I125 = {1, 2, . . . , 125},
and I10 ⊂ I20 ⊂ I40 ⊂ I125.

We construct the generator of process Z as:

Atf(z) =

125X
i=1

ηi(zi, t)

Z �
f(z + yi)− f(z)

�
δ(1−R)(dyi)

+
X
n∈R

X
I⊂In

λI(z, t)

Z �
f(z + yI)− f(z)

�
π(dyI)

−
125X
i=1

X
n∈R

X
I⊂In:i∈I

λI(z, t)

Z �
f(z + yi)− f(z)

�
π(dyI), (44)

where, for I ⊂ In, λI(z, t) = (ān + b̄nt)1{zi=0 ∀i⊂I, zi>0 ∀i∈In\I}, with ān = αn min
{i∈In}

ai ,

b̄n = αn min
{i∈In}

bi and π(dyI) =
N

i∈I δ1−R(dyi). In words, the form of the above generator

implies that, at every time instant, either each alive obligor can default individually, or all the
surviving names whose indices are in the set In, n ∈ R can default simultaneously. In particular,

10Since the 10y spread data is available to us only for 65 out of 125 names, we infer the missing 10y spreads by
linear regression.

11We measure the risk associated to each name in the pool by the magnitude of the spread of the corresponding
five year CDS.
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note that the double summation in (44) contains at most four non-zero terms, whereas the
triple summation in (44) contains at most 125×4 non-zero terms. This makes the simulation of
process Z very fast, as we essentially need to simulate at most 125+4 jump indicator processes.
Moreover, we only need to calibrate four parameters, namely αn with n ∈ R.

3.5.3 Calibration Results for the Toy Model

We calibrate the parameters to the 5y CDO tranche spreads, and test the performance of the
calibrated model against 7y and 10y market spreads. The results are shown in the Table 1
below.

Tranche 5y market 5y model 7y market 7y model 10y market 10y model

0-3% 12.375 12.2828 27.125 27.7419 41.5 44.6305
3-6% 56.5 57.2899 135 114.855 333 318.309
6-9% 15.5 15.0546 38 32.4026 99 83.0893
9-12% 6 6.26695 18.75 13.3415 42 28.221
12-22% 2.5 2.42193 6.25 4.21169 13.5 7.51529
22-100% .875 0.81408 1.25 1.30499 2.875 1.53266

Table 1: Model fit to term structure of iTraxx S6 CDO tranches, Dec 2006.

The fit is very good, especially in consideration of the fact that half of the 10y individual
CDS spreads, that are needed for calibration of the individual default intensities, were the result
of a linear regression, as we did not have the respective market data.

For this simple model and set of data, CPU time was approximately 1 sec. per 50,000 simula-
tions for 5 year maturity, 2 sec. per 50,000 simulations for 7 year maturity, and 3 sec.per 50,000
simulations for 10 year maturity (using a non-optimized C++ code). The model calibration
takes approximately 2-3 minutes on a Pentium D 2.8 GHz machine.

4 Ratings Triggered Corporate Step-Up Bonds

Here we shall apply results on Markov copulae to the problem of valuation of ratings triggered
corporate step-up bonds. Similarly as in the case of CID, in case of step-up bonds we shall also
use simulation techniques for pricing. Here however, the main reason for using simulation based
approach is that the payoffs of these bonds have, in general, quite complicated path dependent
structure, which essentially prohibits the use if analytical or quasi-analytical methodologies.

4.1 Description of Ratings Triggered Step-Up Bonds

These bonds were issued by some European telecom companies in the recent 5-6 years. As of
now, to our knowledge, these products are not traded in baskets, however they are of interest
because they offer protection against credit events other than defaults. In particular, ratings
triggered corporate step-up bonds (step-up bonds for short) are corporate coupon issues for
which the coupon payment depends on the issuer’s credit quality: in principle, the coupon
payment increases when the credit quality of the issuer declines. In practice, for such bonds,
credit quality is reflected in credit ratings assigned to the issuer by at least one credit ratings
agency (Moody’s-KMV or Standard&Poor’s). The provisions linking the cash flows of the step-
up bonds to the credit rating of the issuer have different step amounts and different rating event
triggers. In some cases, a step-up of the coupon requires a downgrade to the trigger level by
both rating agencies. In other cases, there are step-up triggers for actions of each rating agency.
Here, a downgrade by one agency will trigger an increase in the coupon regardless of the rating
from the other agency. Provisions also vary with respect to step-down features which, as the
name suggests, trigger a lowering of the coupon if the company regains its original rating after
a downgrade. In general, there is no step-down below the initial coupon for ratings exceeding
the initial rating.

Next, we give a brief summary of the most common provisions characterizing the payoff of a
step-up bond (typically, a step-up bond is subject to a selection of the provisions listed below):

(i) Step-up: The coupon increases if the rating decreases and hits the rating-trigger.
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(ii) Step-down: The coupon decreases if the rating increases over the rating-trigger after the
trigger level was previously hit.

(iii) One-off: The coupon increases only once, even if the rating falls further below the rating-
trigger; for bonds that are not one-off, each further decrease in the rating, causes a further
increase in the coupon.

(iv) And/or: Determines whether the coupon is adjusted if both Moody’s and S&P ratings
hit the trigger, or whether the adjustment occurs if either Moody’s or S&P ratings hit the
trigger level.

(v) Accrual: the coupon increases may be enforced either starting from the next coupon
payment or immediately following a rating action.

Let Rt stand for some indicator of credit quality at time t (note that in this case, the process
R may be composed of two, or more, distinct rating processes). Assume that ti, i = 1, 2, . . . , n
are coupon payment dates. In this paper we assume the convention that coupon paid at date
tn depends only on the rating history through date tn−1, that is: cn = c(Rt, t ≤ tn−1) are the
coupon payments. In other words, we assume that no accrual convention is in force.

Assuming that the bond’s notional amount is 1, the cumulative discounted cash flow of the
step-up bond is (as usual we assume that the current time is 0):

(1−HT )βT +

Z
(0,T ]

(1−Hu)βu dCu + βτZτHT , (45)

where Ct =
P

ti≤t ci, τ is the bond’s default time, Ht = 1τ≤t, and where Zt is a (predictable)
recovery process.

4.2 Pricing Ratings Triggered Step-Up Bonds via Simulation

Here, using our results on Markov copulae, we shall apply a simulation approach to pricing
ratings triggered step-up bonds.

Let us consider a ratings triggered step-up bond issued by an obligor XY Z. Recall that,
typically, cash-flows associated with a step-up bond depend on ratings assigned to XY Z by
both Moody‘s Investors Service (Moody’s in what follows) and Standard & Poor’s (S&P in what
follows). Thus, a straightforward way to model joint credit migrations would be to consider a
credit migration process K such that Rt = (Mt, SPt), where Mt and SPt denote the time t
credit rating assigned to XY Z by Moody’s and SPt, respectively. We assume that process M is
a time-homogeneous Markov chain w.r.t. its natural filtration, under the statistical probability
P, and that its state space is K = {1, 2, . . . , K}. Likewise, we assume that process SP is a
time-homogeneous Markov chain w.r.t. its natural filtration, under the statistical probability
P, and that its state space is K = {1, 2, . . . , K}.

4.2.1 Credit ratings dynamics and Markov copula under the statistical prob-
ability

Typically, we are only provided with individual statistical characteristics of each of the processes
M and SP. Thus, in a sense, we know the marginal distributions of the joint process R under
the measure P (where M and SP are considered as the ”univariate” margins). The crucial issue
is thus the appropriate modeling of dependence between processes M and SP . In particular,
we want to model dependence, under P, between M and SP so that the joint process R is a
time-homogeneous Markov chain, and so that the components M and SP are time-homogeneous
Markov chains with given P-generators, say AM and ASP , respectively. Thus, essentially, we
need to model a P-generator matrix, say AR, so that process R is a time-homogeneous Markov
chain with P-generator AR and that processes M and SP are time-homogeneous Markov chains
with P-generators AM and ASP . We can of course deal with this problem using the theory of
Markov copulae.

Towards this end, we fix an underlying probability space (Ω,F ,P). On this space we consider
two univariate Markov chains M and SP, with given infinitesimal P-generators AM = [aM

ij ] and
ASP = [aSP

hk ], respectively. Next, we consider the system equations in variables
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X
k∈K

aR
ih,jk = aM

ij , ∀i, j ∈ K, i 6= j, ∀h ∈ K, (46)X
j∈K1

aR
ih,jk = aSP

hk , ∀h, k,∈ K, h 6= k, ∀i ∈ K. (47)

Now, provided that the system (46) –(47) has a positive solution, then it follows from Proposi-
tion 2.5 that resulting matrix12 AR = [aR

ih,jk]i,j∈K1, h,k∈K2 satisfies conditions for a P−generator
matrix of a bivariate time-homogenous Markov chain, say R = (R1, R2) whose components take
values in finite state spaces K1 and K2 with cardinalities K1 and K2, respectively, and, more
importantly, they are Markov chains with the same distributions as M and SP under under P.
Thus, indeed, the system (46)–(47) essentially serves as a Markov copula between the Markovian
margins M , SP and the bivariate Markov chain R.

Note that, typically, the system (46)–(47) contains many more variables than equations.
Thus, one can create several bivariate Markov chains R with the given margins M and SP .
In financial applications this feature leaves a lot of room for various modeling options and for
calibration of the model. For example, as observed by Lando and Mortensen [20] although the
ratings assigned by S&P and Moody’s to the same company do not necessarily coincide, split
ratings are rare and are usually only observed in short time intervals. This feature can easily
be modelled using the Markovian copula system (46) –(47) via imposing side constraints for
the unknowns aR

ih,jk’s. In order to model such observed behavior of the joint rating process, we
thus impose additional constraints on the variables in the system (46) –(47). Specifically, we
postulate that

aR
ih,jk =

(
0, if i 6= j and h 6= k and j 6= k,
α min(aM

ij , aSP
hk ), if i 6= j and h 6= k and j = k,

(48)

where α ∈ [0, 1] is a modelling parameter. Using constraint (48) we can easily solve system (46)
–(47) (in this case the system actually becomes fully decoupled) and we can obtain the generator
of the joint process. The interpretation of constraint (48) is the following: The components M
and SP of the process R migrate according to their marginal laws, but they tend to join, that
is, they tend to both take the same values. The strength of such tendency is measured by the
parameter α. When α = 0 then, in fact, the two components are independent processes; when
α = 1 the intensity of both components migrating simultaneously to the same rating category
is maximum (given the specified functional form for the intensities of common jumps).

4.2.2 Markovian Changes of Measure

For pricing purposes the statistical probability measure is changed to the EMM . Typically,
the Radon-Nikodym density is chosen in such a way that the resulting (risk-neutral) default
probabilities are consistent with the term structure of CDS spreads. In addition, we require
that the process R, which is Markovian under the statistical measure, is also Markovian under
the pricing measure. As a consequence, such change of measure must be chosen with some care.
We briefly state some facts concerning Markovian changes of measure. Let Xt be an E valued
Markov process under P with extended generator A (see [21]). In addition define the process

Mf
t :=

f(Xt)

f(X0)
exp

�
−
Z t

0

Af(Xs)

f(Xs)
ds

�
. (49)

Definition 4.1 We say that a strictly positive function f ∈ D(A) is a good function if Mf
t is

a genuine martingale with EP(Mf
t ) = 1.

Let f ∈ D(A) and h be a good function in C(E) or Mb(E) and define the operator

Ahf = h−1A(fh)− fA(h). (50)

In view of Definition 4.1, process Mh may play the rôle a the Radon-Nikodym density between
measure P and the resulting measure, say Qh. We have the following result (cf. [21])

12System (46) –(47) does not include diagonal elements of AR. These elements are obtained as aR
ih,ih =

−P(j,k)∈K aR
ih,jk.
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Theorem 4.1 Let Qh be the probability measure associated to the density process Mh
t . Then

Xt is a Markov process under Qh with extended generator (Ah,D(A)).

In the case of a finite state Markov chain, Theorem 4.1 yields the following corollary (cf.
[21])

Corollary 4.1 Let Xt be a finite state Markov chain on K with cardinality K and generator
A = aij. In addition let h = (h1, . . . , hK) be a positive vector. Then Xt is a Markov process
under Qhwith generator Ah = [aijhjh

−1
i ].

Going back to the problem at hand, we recall that AR = [aR
ih,jk] is the generator of R under

the statistical measure P. In view of Corollary 4.1, given a vector h = [h11, · · · , hKK ] ∈ RK2
,

we can change statistical measure P to an equivalent ”risk-neutral” measure Q in such a way
that process R is a time-homogeneous Markov chain under Q, and its Q-infinitesimal generator
is given by eAR = [eaih,jk],

where eaih,jk = aih,jk
hjk

hih
for ih 6= jk and eaih,jk = −Pjk 6=ih aih,jk

hjk

hih
for ih = jk.

Remark. Not that, although the change of measure preserves Markov property of the joint
process R, its components may not be Markov (in their natural filtration) under the new prob-
ability measure. This however is not an issue for us.

An arbitrary choice of vector h may lead to a heavy parametrization of the pricing model.
We suggest that the vector hij be chosen as follows:

hij = exp(α1i + α2j), ∀i, j ∈ K,

where α1 and α2 are parameters to be calibrated. It turns out, as the calibration results provided
in the next section indicate, that this is a good choice.

4.2.3 Model Calibration and Pricing

The model is fully specified by three parameters, namely α, α1, α2, which are calibrated to
market data.

Let us consider a vanilla bond, which is equivalent13 to the given step–up bond. One would
presume, then, that the price of a step–up bond is equal to the price of the equivalent vanilla
bond plus the (positive) value of the step–up provision. In general, equivalent vanilla bonds
are not traded on the market. However, their price can be synthesized by applying a standard
bootstrapping-interpolation procedure to the market prices of traded vanilla bonds. Surprisingly,
the value of the step–up provision is often negligible or even negative. This was already noted by
some recent empirical literature (cf. eg. [20]), which provides strong evidence that the market
typically ”underprices” step-up bonds. These findings suggest that step–up bond investors are
more risk averse than vanilla bond investors. In particular, on the theoretical level, this means
that the pricing kernel implied by step–up bonds prices should be different from that implied
by vanilla bonds. For calibration purposes, this implies that the model parameters, or at least
those relative to credit migrations, should not be calibrated to vanilla bond prices. Nevertheless,
such data provides useful information. In particular, under the assumptions given below, vanilla
bond prices can be used to compute a term structure of firm-specific, liquidity adjusted, discount
factors (risk–free rate + liquidity spread).

Our first assumption is that the vanilla bond market assesses likelihood of the default event
in the same way as the CDS (Credit Default Swap) market14. Our second assumption is that
liquidity risk is priced identically by the step–up and vanilla bond markets.

Given the above, we can apply a standard bootstrapping-interpolation procedure to a pool
of reference bonds15 to obtain a term-structure of firm specific, liquidity adjusted, zero-coupons.

13By equivalent, we mean a coupon bearing bond, backed by the same company, whose all provisions, other than
the step-up provision, are identical to those of the given step–up bond. That is, maturity and coupon dates are the
same, and the coupons of the equivalent bond are equal to the fixed coupons of the step–up bond. In addition, credit
risk is the same and liquidity risk is comparable. The term vanilla means that the step-up provision is not present.

14This is not necessary since default risk can be inferred from yield spreads in the bond market, but the higher
liquidity of the CDS market makes it a preferable choice.

15We adopt here terminology from [20] to denote vanilla bonds of several maturities which have comparable liquidity
and are issued by the same company as the relevant step-up bond.
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The straightforward procedure is briefly described below. We are given a set of J reference bonds
with associated cash-flows CF j

t
j
i

, j = 1, . . . , J , and coupon dates tj
0 = 0, . . . , tj

N = T j such that

T 1 < T 2 < · · · < T J . The cash-flows are then adjusted by the default probability implied by the
CDS spreads. Let τ denote the default time of the relevant obligor, the default adjusted cash-

flows are gCF
j

t
j
i

= CF j

t
j
i

Q(τ > tj
i ). The interpolation-bootstrapping procedure is now applied to

the reference bonds with default-risk adjusted cash flows, so that the resulting discount factors
account only for the firm specific liquidity spread16. At this point, the price of an arbitrary
step–up bond can be computed by simulating the evolution of the joint rating process and the
relative discounted cash-flows17. The model parameters, α, α1, α2 are calibrated to step-up
bond prices.

Calibration Results

We shall present now some calibration results. The bond data, obtained from Bloomberg’s
Corporate Bonds section, is relative to mid market quotes on April 5, 2006.

We calibrated the model parameters to a DT (Deutsche Telecom) step-up issue described in
the table below:

ISIN XS0132407957

Maturity 07/11/11

Coupon 6
5
8 Annual

Step provision

�
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+.

Table 2: DT step-up issue on April 5, 2006.

Given the default probability implied by the 5-y CDS spread of DT (46 bps), the liquidity
adjusted discount rates are obtained using the above mentioned bootstrapping-interpolation
procedure from the following pool of reference bonds:

ISIN Maturity Coupon Mid-Price

XS0141544691 01/22/07 5
1
4 1.015698

DE0002317807 05/20/08 5
1
4 1.031821

XS0242840345 02/02/09 3 0.979798
XS0217817112 04/22/09 3 0.978352

XS0210319090 01/19/10 3
1
4 0.976716

XS0210318795 01/19/15 4 0.960349

Table 3: Reference bonds pool on April 5, 2006.

The calibration results are given in the following table:

Model Price Market Price

Bond Price 1.11705 1.11705
Step-up provision .00574 -

Table 4: Calibration results

We remark that, since our calibration problem is overdetermined (three parameters are
calibrated to one piece of data), the value of the step-up provision is not uniquely defined. This
problem can be easily overcome by calibrating the model to more step-up issues of different
maturities and/or provisions.

16Plus market risk spreads other than credit spread.
17Simulation seems to be the only feasible computation technique, because of certain path dependencies in the

payoff structure, induced by the step–down provision present in most step–up issues. Such path dependency is well
explained in [20].
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Valuation of Step-up Bonds

Using the calibrated model, we price selected issues of DT step-up bonds; we refer to Tables
5 and 6 for the description of the bonds.

ISIN XS0113709264

Maturity 07/06/10

Coupon 6
5
8 Annual

Step provision

�
+50 bps, if both downgraded below single Aaa3/A-;
−50 bps, if both subsequently upgraded above Baa1/BBB+.

Table 5: DT step-up issue XS0113709264 on April 5, 2006.

ISIN XS0155788150

Maturity 10/07/09

Coupon 6
1
2 Annual

Step provision

�
+50 bps, if both downgraded below Baa1/BBB+;
−50 bps, if both subsequently upgraded above Baa2/BBB.

Table 6: DT step-up issue XS0155788150 on April 5, 2006.

Table 7 presents the pricing results as well as the corresponding market quotes. The results
are very satisfactory, indicating that the model is robust and prices consistently across maturities
and step–up provisions.

ISIN XS0113709264 XS0155788150

Mkt Price/Model Price Mkt Price/Model Price

Bond Price 1.10105/1.103546 1.08435/1.08685
Step-up provision - /.003752 - /.00215

Table 7: Pricing results using calibrated model

5 Appendix: proof of Lemma 3.2

We prove here Lemma 3.2. Towards this end we first define an operator bA as

bAtf(z,bz, x) = (I(1:N)b⊗Lt)f(z,bz, x) +

NX
i=1

ηi(x, t, zi)

Z
(0,1]

f(z + yi, z, x)− f(z,bz, x)νi(dyi; x, t)

+
X
I∈J

λI(x, t, z)

Z
(0,1]I

f(z + yI , z, x)− f(z,bz, x)νI(dyI ; x, t)

−
NX

i=1

X
I∈J :i∈I

λI(x, t, z)

Z
(0,1]I

f(z + yi, z, x)− f(z,bz, x)νI(dyI ; x, t). (51)

It is rather clear that bA is the generator of an F-Markov process (Z, bZ, X), where bZ is the process
s.t. Z0 = 0, which represents the latest state visited by process Z prior to its most recent jump.
Now, it is well known that for any function in the domain of bA, the following process,

Mf
t = f(Zt, bZt, Xt)−

Z t

0

bAsf(Zs, bZs, Xs) ds (52)

is an F-local martingale.
Thus, in order to verify that bX in (35c) is an F-local martingale it is enough to take

f(z,bz, x) = x.
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Next, observe that for all I we have that

MI
t = Πi∈I 1{Zi

t>0,Zi
t−=0} = Πi∈I 1{Zi

t>0, bZi
t=0}.

Thus, in order to verify that bX in (35a) is an F-local martingale it is enough to take f(z,bz, x) =

Πi∈I 1{zi
t>0,bzi

t=0}. This, together with (34) implies that bHi in (35b) is an F-local martingale for
each i. ¤
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