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Abstract: In this paper we develop a novel methodology for estimation of risk capital allocation.
The methodology is rooted in the theory of risk measures. We work within a general,
but tractable class of law-invariant coherent risk measures, with a particular focus on
expected shortfall. We introduce the concept of fair capital allocations and provide
explicit formulae for fair capital allocations in case when the constituents of the risky
portfolio are jointly normally distributed. The main focus of the paper is on the problem
of approximating fair portfolio allocations in the case of not fully known law of the
portfolio constituents. We define and study the concepts of fair allocation estimators
and asymptotically fair allocation estimators. A substantial part of our study is devoted
to the problem of estimating fair risk allocations for expected shortfall. We study
this problem under normality as well as in a nonparametric setup. We derive several
estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we
propose two backtesting methodologies that are oriented at assessing the performance
of the allocation estimation procedure. The paper closes with a substantial numerical
study of the subject.

Keywords: capital allocation, fair capital allocation, asymptotic fairness, expected shortfall,
risk measures, Euler principle, value-at-risk, tail-value-at-risk, backtesting capital
allocation.

1 Introduction

The measurement and the management of risk is without doubt of highest importance in the
financial and the insurance industries. Arguably, the theory and applications of risk measures are
most useful for this purpose. For early applications in the insurance context see [Büh70, Ger74],
and for a historical perspective in the financial context see [Gui16]. The seminal article [ADEH99]
placed risk measurements on an axiomatic foundation paving the way to coherent risk measures
which have been treated in numerous works since then. We refer to [Del00, FS11, MFE15] for an
in-depth treatment of the topic.

The application of risk measures to portfolio management naturally leads to the problem of
allocating portions of the risk capital to the constituents of the portfolio, i.e. to the risk allocation
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problem. There are a number of different approaches to risk capital allocation, depending on the one
hand on the class of the used risk measures, and on the other hand on the used allocation principles.
The Euler principle, often used in risk management practice, is one example, see e.g. [Tas04, Tas07].
For coherent risk measures, the Euler principle coincides with the axiomatic approach proposed
in [Kal05]. For the more general case of convex risk measures we refer to [Tsa09, MFE15] and
references therein.

Risk measures as we consider them here are mathematical tools which require as inputs probabil-
ity distributions of the underlying risk factors. In practical applications one is typically confronted
with the fact that these probability distributions are not fully specified. For example, let X repre-
sent a P&L, which is a function of some underlying risk factors, and let ρ be the risk measure used
to measure the riskiness of X, so that the desired quantity to compute is the risk ρ(X). Since the
probability laws of the risk factors are not fully specified, then one needs to approximate ρ(X), per-
haps by estimating this quantity exploiting historical data. As a consequence, the risk allocations,
which are usually computed in terms of risk measures, need to be approximated, in particular by
estimation.

The problem of estimation of risk has, to a great extent, been neglected in the literature. In
the recent paper [PS18] a new statistical methodology for efficient estimation of risk capital ρ(X)
was proposed. The methodology introduced in that paper is based on the key concept, which
the authors call unbiased estimation of risk also introduced in [PS18], and is based on economic
principle.1 Inspired by the ideas from [PS18], in this paper we develop a novel methodology for
estimation of capital risk allocation.2 We work within a general, but tractable class of coherent risk
measures, the so-called weighted value-at-risk measures introduced in [Che06], with focus on the
expected shortfall risk measure, which is broadly accepted in the risk management practice.

The underlying key concept introduced in this paper is the fair capital risk allocation, which
builds upon the robust representation of coherent risk measures. Our concept of fairness aligns
well with what has been done in some of the existing literature. In particular, it implies fairness
in the sense of fuzzy games introduced in [Del00]. The fair capital risk allocation can be also
viewed as version of the Euler principle of risk allocation. The fair allocation principle used here
has been also applied in [BCF18] in the context of allocation of the total default fund among the
clearing members of a CCP. For additional insight about fair risk allocation we refer to the recent
work [CD19]. We provide explicit formulae for fair capital allocations in case when the constituents
of the portfolio are jointly normally distributed.

The major focus of the paper is on the problem of approximating fair portfolio allocations when
the law of the portfolio constituents is not fully known. Motivated by the concept of the fair capital
allocation, we define and study the concepts of fair allocation estimators and asymptotically fair
allocation estimators. A substantial portion of our study is devoted to the problem of estimating
the risk allocation under expected shortfall and normality. In addition we consider a nonparametric
approach to this problem. We derive several estimators, and prove their fairness and/or asymptotic
fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assess-
ing the performance of the allocation estimation procedure. Finally, we perform relevant numerical
studies. The results of the numerical studies that we have conducted so far are encouraging for
practical use of the estimation and backtesting of the capital allocation.

This work is a first step towards developing formal methodologies for estimating and backtesting
of fair capital allocation. As such, it has potential to open new theoretical and practical research
avenues.

1The concept of unbiased estimation of risk must not be confused with the classical concept of unbiased estimator.
2In this paper we will occasionally write capital allocation or risk allocation in place of capital risk allocation.
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2 The fair allocation principle

Let (Ω,F ,P) be an atomless probability space, and let E be the expectation under P. In what
follows, all needed integrability and regularity assumptions are taken for granted.

We consider a random vector X = (X1, . . . , Xd) whose components are interpreted as discounted
future profits and losses (P&Ls). The marginal random variable Xi (margin – for short) might
correspond to the ith clearing member of a central clearing counterparty (CCP), to the ith position
in the portfolio, to the ith trader portfolio in a trading desk, or to the ith desk in the financial
institution portfolio. In the following, we will refer to X as portfolio and to Xi as the ith portfolio
margin or the ith portfolio constituent.

Let L1 := L1(Ω,F ,P) and let ρ : L1 → R ∪ {+∞} be a normalized monetary risk measure.
That is: ρ is monotone, i.e. ρ(U) ≤ ρ(V ) for all U, V ∈ L1 such that U ≥ V ; ρ is cash-additive,
i.e. ρ(U + c) = ρ(U)− c for all c ∈ R and all U ∈ L1; ρ is normalized, i.e. ρ(0) = 0.

The riskiness of the portfolio X is measured by applying the risk measure ρ to the aggregated
portfolio P&L denoted by

S :=
d∑
i=1

Xi.

We call the quantity ρ(S) the aggregated risk, or total risk, of the portfolio X.
Our objective is to study the issue of allocating the aggregated risk of the portfolio to the

individual constituents of the portfolio. Specifically, we intend to find a vector a = (a1, . . . , ad) ∈ Rd,
called a risk allocation, such that the following balance condition holds

ρ(S) =
d∑
i=1

ai. (2.1)

The component ai is interpreted as the risk contribution of Xi to the aggregated risk, and therefore
Xi + ai is interpreted as the ith secured margin of portfolio X. Correspondingly, we call X + a the
secured portfolio, and S +

∑d
i=1 ai the secured aggregated position.

Stated as such, the risk allocation problem is ill–posed. Indeed, any collection of numbers
a1, . . . , ad satisfying the balance condition (2.1) constitutes a risk allocation. In order to deal
with a meaningful risk allocation problem we need to impose additional conditions, that reflect
some additional and desired features of the portfolio allocation. With this in mind, we impose an
additional condition on a, which we will call the fairness condition.

Towards this end, we require more structure on the risk measure ρ. We additionally assume
that the monetary risk measure ρ is finite, law-invariant, comonotonic and coherent; see [Kus01] for
details. In view of [Sha13, Theorem 2(iii)] we conclude that ρ is a weighted value-at-risk measure,3 so
that it admits representation (1.1) in [Che06] for a fixed probability measure ν on [0, 1]. Specifically,
for a continuously distributed random variable Y ,

ρ(Y ) = ρν(Y ) :=

∫
[0,1]

ESα(Y )ν(dα), Y ∈ L1, (2.2)

where ESα is the Expected Shortfall4 (ES) risk measure (sometimes also called tail value-at-risk or
conditional value-at-risk) for reference level α ∈ [0, 1]. Moreover, ρ admits a robust-type represen-
tation of the form

ρ(Y ) = sup
Q∈D

EQ[−Y ], (2.3)

3Following the traditional nomenclature, we use the name ‘weighted value-at-risk measure’, although a more
appropriate name would be ‘weighted expected shortfall’.

4For a formal definition of expected shortfall in the context of this paper see (2.12).
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where D is a determining family of probability measures absolutely continuous with respect to P.
As shown in [Che06, Theorem 6.3], for any Y ∈ L1 there exists a unique minimal extreme measure
QY ∈ D such that5

ρ(Y ) = EQY [−Y ]. (2.4)

Sometimes, we refer to QY as the worst-case scenario measure (for position Y ). We denote by ZY
the associated Radon-Nikodym derivative dQY /dP. In particular, as shown in [Che06] (cf. formula
(6.2) there), if Y has a continuous distribution then we have

ZY = g(Y ), and ρ(Y ) = E[−g(Y )Y ], (2.5)

for some Borel function g. For example if ρ = ESα is the expected shortfall at level α, then we have

ZY =
1

α
1{Y <qY (α)}, (2.6)

where qY (α) is the α–quantile of Y .
In what follows, for simplicity, we write ES instead of EQS . The value ES [Xi + ai] represents the

average performance of the secured margin Xi + ai under the extremal measure QS . The following
fairness condition selects risk allocations which are comparable under the extremal measure of the
aggregated portfolio P&L.

Definition 2.1. The capital allocation a = (a1, . . . , ad) is called fair, if

ES [Xi + ai] = ES [Xj + aj ] , i, j = 1, . . . , d. (2.7)

The economic intuition behind this definition is as follows: the worst-case-scenario QS is, in our
setting, the determining scenario of the capital allocation for the portfolio through ρ(S) = ES [−S]
resulting from Equation (2.4). A fair capital allocation is meant to create secured positions Xi+ai,
1 ≤ i ≤ d, so that the averages of all secured positions with respect to the worst-case-scenario QS

are all equal.
Since ρ is a monetary risk measure, the extremal measures for S and S + c, c ∈ R, coincide.

Thus, for any fair capital allocation a satisfying the balance condition in (2.1) we have

0 = ρ

( d∑
i=1

(Xi + ai)

)
= −ES

[ d∑
i=1

(Xi + ai)

]
= −

d∑
i=1

ES [Xi + ai] , (2.8)

and consequently the risk allocations are given by

ai = −ES [Xi] = −E[ZSXi], i = 1, . . . , d. (2.9)

In view of (2.5), we also have that

ai = −E
[
g
( d∑
k=1

Xk

)
Xi

]
, i = 1, . . . , d. (2.10)

First, we note that the fair risk allocation is unique, which is due to the existence and uniqueness
of the extreme measure QS . Secondly, we also note that the concept of fairness introduced in

5Note that the set of extreme measures, i.e. the set of measures that satisfy (2.4), might contain more than
one element. The term minimal corresponds to the minimal element with respect to the convex stochastic order;
see [Che06] for details.
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Definition 2.1 is actually equivalent to the concept of Euler risk allocation. This observation is
readily demonstrated by (2.9). However, it is the characterization of the fairness property of
risk allocation as presented in (2.7) that underlies the notion of fair allocation estimator given in
Definition 3.1, which is the key definition in this paper. That is why we defined fairness of risk
allocation via (2.7) rather than via (2.9).

We also note that the above notion of fairness implies fairness in the sense of fuzzy games
introduced in [Del00]. Indeed, this follows from Theorems 17 and 18 therein taking representation
(2.3) into account. The fair allocation principle of Definition 2.1 has been applied in [BCF18] in
the context of allocation of the total default fund among the clearing members of a CCP.

The following example illustrates the concept of fair allocation.

Example 2.2 (Mean risk allocation). Consider expectation for measuring risk, i.e. ρ(Y ) = E[−Y ],
in which case D = {P}. Then, clearly, for any X = (X1, . . . , Xd), the capital allocation a =
(a1, . . . , ad) given as

ai = −E[Xi], i = 1, . . . , d,

is fair.

2.1 Risk allocation under normality

As an example where explicit formulae can be obtained, we study the case of normally distributed
profits and losses. In this regard, let us assume that the vector X is normally distributed under
P with mean µ and covariance matrix Σ and fix i ∈ {1, . . . , d}. Then, (Xi, S) is bivariate normal,
and the conditional expectation E[Xi|S] takes the form

E[Xi|S] = βiS + αi,

with βi = Cov(Xi,S)
Var(S) , and αi = µi − βi

∑d
j=1 µj . Since this conditional expectation is the L2 :=

L2(Ω,F ,P) orthogonal projection of Xi on the linear space spanned by S we obtain

Xi = βiS + αi + εi,

where S and εi are independent under P, and E[εi] = 0. For any weighted value-at-risk measure ρ,
Equation (2.9) implies that a fair capital allocation is given by

ai = −ES [Xi] = −αi − βiES [S]− ES [εi]

= −αi + βiρ(S)− E[ZSεi]

= −αi + βiρ(S)− E[g(S)εi] = −αi + βiρ(S)− E[g(S)]E[εi]

= −αi + βiρ(S), (2.11)

where we have used (2.5) in the fourth equality, independence of S and εi under P in the fifth
equality, and the fact that εi has zero mean under P, in the last equality. As expected, the total
allocated risk is divided among constituents using the regression slope allocations which is typically
referred to as the covariance principle, see [MFE15, Section 8.5].

Expected shortfall. To be more specific, we consider as an important example the expected
shortfall (ES). In this regard, let ρ = ESα denote ES under P for the level α ∈ (0, 1). Then, for a
continuously distributed real valued random variable Y we have

ESα(Y ) = E[−Y | Y ≤ qY (α)], (2.12)
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where qY (α) is an α-quantile of Y . Thus, since S is normally distributed, (2.12) yields

ESα (S) = −
d∑
i=1

µi +
1

α

√
Var(S)φ

(
Φ−1(α)

)
, (2.13)

where φ and Φ are the density and the cumulative distribution function of the standard normal
distribution; see [MFE15, Example 2.14]. Putting together (2.11) and (2.13) we see that the capital
allocation for ES is given as

ai = −µi +
Cov(Xi, S)

α
√

Var(S)
φ(Φ−1(α)), i = 1, 2, . . . , d . (2.14)

3 Fair allocation estimators

In practice, the probability distribution under P of X, the portfolio’s P&L, is not fully specified.
Since, in view of (2.5) and (2.10), we have

ρ(S) = −E
[
g
( d∑
k=1

Xk

) d∑
k=1

Xk

]
, and ai = −E

[
g
( d∑
k=1

Xk

)
Xi

]
, i = 1, . . . , d, (3.1)

then, in almost all practically relevant applications, neither the aggregated risk ρ(S) nor the fair
risk allocation a are known, and thus need to be estimated. Hence, appropriate estimation proce-
dures have to be developed, in particular estimation procedures based on the historical data about
realizations of the portfolio. This will involve estimating, in some way, the probability distribution
of X under P.

In the following, we set the relevant statistical framework and propose efficient procedures to
deal with this estimation issue. We refer to X as to the population. Historical information about X
is given in terms of a random sample of size n drawn from X, which we denote by X1, . . . , Xn, so
that X1, . . . , Xn are independently drawn copies of the random variable X. Our aim is to estimate
the aggregated risk ρ(S) using the information contained in the sample. Towards this end we let

Xn := {Xj = (Xj
1 , . . . , X

j
d), j = 1, . . . , n},

represent the random sample, and let us denote its realization by

xn := {xj = (xj1, . . . , x
j
d), j = 1, . . . , n}, (3.2)

where xjk corresponds to the j-th observed (realized) value of the portfolio’s kth margin.
The formal statistical setup for this situation is as follows: consider a family of probability

measures P := (Pθ)θ∈Θ on (Ω,F ), where Θ denotes the parameter space. To avoid unnecessary
technical difficulties, we assume that all measures in P are equivalent. Furthermore, we assume
that for any θ ∈ Θ the random sample X1, . . . , Xn is i.i.d. under Pθ. Moreover, we assume that
P = Pθ0 for some (unknown) parameter θ0 ∈ Θ. We will denote by ρθ and, respectively Eθ, the risk
measure ρ, and respectively the expectation, under the probability measure Pθ. Similarly to the
notation QY and ZY , corresponding to the reference measure P, we will use notation Qθ

Y and ZθY
with regard to the reference measure Pθ.

Given the random sample Xn, the allocation a is estimated using an allocation estimator Ân =
(Ân1 , . . . , Â

n
d ) defined as

Ân = ηn(Xn), (3.3)

for some measurable function ηn : Rd×n → Rd.
Next, we define a property that should be satisfied by any reasonable allocation estimator.



Fair capital risk allocation 7

Definition 3.1. An allocation estimator Ân is called fair if, for all θ ∈ Θ,

Eθ
[
Zθ
S,Ân

(Xi + Âni )
]

= 0, i = 1, . . . , d, (3.4)

where Zθ
S,Ân

:= Zθ
S+
∑d
i=1 Â

n
i

.

We emphasize that Ân is a random variable, and Zθ
S,Ân

is the Radon-Nikodym derivative cor-

responding to S +
∑d

i=1 Â
n
i .

We stress that the definition of the fair allocation estimator requires that property (3.4) is
satisfied for all populations from the population space Θ, that is for all θ ∈ Θ.

Intuitively, the above definition means that an allocation estimator is fair if it mimics the
balanced fairness condition (2.9) for all relevant scenarios (given by probability distributions Pθ, θ ∈
Θ). In particular, the aggregated risk estimator obtained from a fair allocation estimator Â by
summation turns out to be unbiased in the sense of [PS18, Definition 4.1], namely, for any θ ∈ Θ
we get

ρθ
(
S +

d∑
i=1

Âni

)
= −

d∑
i=1

Eθ
[
Zθ
S,Ân

(Xi + Âni )
]

= 0. (3.5)

Equality (3.5) guarantees that the secured aggregated portfolio position S+
∑d

i=1 Âi is accept-
able in the sense that it bears no risk, while Equality (3.4) ensures that the average performance
of the secured marginal positions under the worst-case scenario measure for the secured portfolio
S are the same and that the joint position is secured. In particular, for d = 1, the definitions of
fairness and unbiasedness coincide.

It should be noted that (3.5) means that a fair allocation estimator charges an adequate amount
of capital to secure the portfolio. This is a consequence of (3.4), which means that a fair allocation
estimator applies an adequate amount of capital charge to each position constituent.

We end this section with a simple example to illustrate the concept of fairness.

Example 3.2. Consider the mean risk allocation given in Example 2.2. This leads to the family
of risk measures ρθ(·) = −Eθ[ · ], θ ∈ Θ. Then, the risk allocation estimator

M̂n
i = − 1

n

n∑
j=1

Xj
i , for i = 1, 2, . . . , d ,

is a fair allocation estimator. Indeed, note that here, for each θ ∈ Θ, the extremal measure coincides
with the original probability measure Pθ, i.e. Zθ

S,M̂n
≡ 1. Thus, for i ∈ {1, 2, . . . d} we obtain

Eθ
[
Zθ
S,M̂n(Xi + M̂n

i )
]

= Eθ
[
Xi −

1

n

n∑
j=1

Xj
i

]
= 0.

3.1 Estimating capital allocation under expected shortfall and normality

Following Section 2.1, we study the case where the d-dimensional random vector X is normally
distributed under every Pθ, and we assume that the risk is measured by the expected shortfall ESθα,
at a fixed level α ∈ (0, 1). In what follows, for the random sample Xn, we will use the notation
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Sj :=
∑d

i=1X
j
i , j = 1, . . . , n, and we set6

µ̂i := 1
n

∑n
j=1X

j
i ,

µ̂S := 1
n

∑n
j=1 S

j =
∑d

i=1 µ̂i

σ̂2
S := 1

n

∑n
j=1(Sj − µ̂S)2,

ĈovXi,S := 1
n

∑n
j=1(Xj

i − µ̂i)(Sj − µ̂S),

to denote the sample mean of the ith constituent, the sample mean of the portfolio, the sam-
ple variance of the portfolio, and the sample covariance of the ith constituent and the portfolio,
respectively.

Motivated by the Representation (2.11) we define the allocation estimator B̂ = (B̂1, . . . , B̂d) as

B̂i := −α̂i + β̂i R̂(S), i = 1, . . . , d , (3.6)

where β̂i = 1
σ̂2
S

ĈovXi,S and α̂i = µ̂i− β̂iµ̂S are the estimators of the slope and intercept regression

coefficient from the L2 orthogonal projection of the ith margin of X onto S, and where R̂(S) is an
unbiased risk estimator (in the sense of [PS18]) for the Expected Shortfall of the secured position
S. It has been shown in [PS18, Example 5.4] that R̂(S) under normality can be represented as

R̂(S) = −µ̂S + σ̂Sbn, (3.7)

where bn ∈ R is deterministic, and depends only on the sample size n, and risk level α ∈ (0, 1).
Consequently, the estimator becomes

B̂i = −µ̂i +
ĈovXi,S
σ̂S

bn, i = 1, . . . , d.

Before we show that B̂ satisfies the fairness property, we show an important conditional un-
biasedness property of the estimators β̂i and α̂i, in the usual statistical sense. Towards this end,
for i = 1, 2, . . . , d, we use

βθi := Covθ(Xi, S) · (Varθ(S))−1,

αθi := Eθ(Xi)− βθi
d∑

k=1

Eθ(Xk),

to denote the true regression coefficients of the L2–orthogonal projection of ith margin of X onto
S under Pθ, for θ ∈ Θ; see Section 2.1. Note that, in view of our assumption that for any θ ∈ Θ
the random sample X1, . . . , Xn is i.i.d. under Pθ, we get βθi = Covθ(Xj

i , S
j) · (Varθ(Sj))−1 and

αθi = Eθ(Xj
i )− βθi

∑d
k=1 Eθ(X

j
k), for j = 1, . . . , n.

Proposition 3.3. For any θ ∈ Θ it holds that

Eθ
[
β̂i | µ̂S , σ̂S

]
= βθi and Eθ

[
α̂i | µ̂S , σ̂S

]
= αθi , i = 1, . . . , d. (3.8)

Proof. Recall from Section 2.1 that under normality, for j ∈ {1, . . . , n}, i ∈ {1, . . . , d}, and θ ∈ Θ,
we have

Xj
i = αθi + βθi S

j + εj,θi , (3.9)

6To ease the notation, we will drop the superscript n in the following. So, we will write µ̂i rather than µ̂ni , etc.
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where εj,θi is a zero mean Gaussian random variable independent of Sj . As a simple consequence of

(3.9) we obtain that εj,θi is independent of µS and σS under Pθ for all θ ∈ Θ. Then, by definition,

I1 := Eθ
[
β̂i | µ̂S , σ̂S

]
= 1

σ̂2
S
Eθ
[

1

n

n∑
j=1

(Xj
i − µ̂i)(S

j − µ̂S) | µ̂S , σ̂S
]

(3.10)

= 1
σ̂2
S
Eθ
[

1

n

n∑
j=1

Xj
i S

j − µ̂iµ̂S | µ̂S , σ̂S
]
.

Inserting (3.9), and using that n−1
∑n

j=1(Sj)2 = σ̂2
S + µ̂2

S , we obtain

I1 = 1
σ̂2
S
Eθ
[

1

n

n∑
j=1

(αθi + βθi S
j + εj,θi )Sj − µ̂iµ̂S | µ̂S , σ̂S

]

= 1
σ̂2
S
Eθ
[
αθi µ̂S + βθi (σ̂2

S + µ̂2
S) +

1

n

n∑
j=1

εj,θi Sj − µ̂iµ̂S | µ̂S , σ̂S
]

= 1
σ̂2
S
Eθ
[
αθi µ̂S + βθi (σ̂2

S + µ̂2
S) +

1

n

n∑
j=1

Eθ
[
εj,θi Sj |Sj , µ̂S , σ̂S

]
− µ̂iµ̂S | µ̂S , σ̂S

]

= 1
σ̂2
S
Eθ
[
αθi µ̂S + βθi (σ̂2

S + µ̂2
S) +

1

n

n∑
j=1

SjEθ
[
εj,θi |S

j , µ̂S , σ̂S
]
− µ̂iµ̂S | µ̂S , σ̂S

]

= 1
σ̂2
S
Eθ
[
αθi µ̂S + βθi (σ̂2

S + µ̂2
S) +

1

n

n∑
j=1

SjEθ
[
εj,θi
]
− µ̂iµ̂S | µ̂S , σ̂S

]

= 1
σ̂2
S
Eθ
[
αθi µ̂S + βθi (σ̂2

S + µ̂2
S)− µ̂iµ̂S | µ̂S , σ̂S

]
= βθi + µ̂S

σ̂2
S
Eθ
[
αθi + βθi µ̂S − µ̂i | µ̂S , σ̂S

]
.

We use again (3.9) and obtain

µ̂i =
1

n

n∑
j=1

Xj
i = αθi + βθi

1

n

n∑
j=1

Sj + ηθ, (3.11)

with ηθ = 1
n

∑n
j=1 ε

j,θ
i satisfying Eθ[ηθ | µ̂S , σ̂S ] = 0, so that

Eθ
[
µ̂i | µ̂S , σ̂S

]
= αθi + βθi µ̂S , (3.12)

and hence I1 = βθi yielding our first claim. With this result and using (3.11), we obtain

Eθ [α̂i | µ̂S , σ̂S ] = Eθ
[
µ̂i − β̂iµ̂S | µ̂S , σ̂S

]
= Eθ

[
µ̂i − βθi µ̂S | µ̂S , σ̂S

]
= αθi

which concludes the proof of (3.8).

Proposition 3.3 shows that we can estimate the portfolio risk expressed through µ̂S and σ̂S
without impacting the statistical unbiasedness property of the regression coefficients; cf. Equation
(3.7). Consequently, the risk allocation estimation procedure could be split into two independent
steps. First, we estimate the aggregated portfolio risk, and then we estimate the proper allocation
of the risk within portfolio constituents. Now, we use this property to show that the allocation
estimator given in (3.6) satisfies the fairness property.
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Theorem 3.4. Assume that the allocation estimator B̂ = (B̂1, . . . , B̂d) is given by (3.6) with R̂(S)
as in (3.7). Then, the capital allocation B̂ is fair.

Proof. In what follows we will simply write R̂ instead of R̂(S). We note that for any θ ∈ Θ the
Radon-Nikodym density Zθ

S,B̂
is σ(S+

∑d
i=1 B̂i)-measurable; see [Che06, Proposition 6.2] and recall

that B̂i = −α̂i + β̂iR̂. Moreover, since

d∑
i=1

β̂i =
1

σ̂2
S

d∑
i=1

ĈovXi,S =
σ̂2
S

σ̂2
S

= 1

we obtain that

d∑
i=1

α̂i =
d∑
i=1

µ̂i − µ̂S ·
d∑
i=1

β̂i = µ̂S − µ̂S = 0.

Consequently, as expected,

d∑
i=1

B̂i = R̂ (3.13)

and Equation (3.7) yields that Zθ
S,B̂

is σ(µ̂S , σ̂S , S)-measurable. With a view towards (3.4), we

compute

Eθ
[
Zθ
S,B̂

α̂i

]
= Eθ

[
Zθ
S,B̂

Eθ[α̂i | µ̂S , σ̂S , S]
]

= Eθ
[
Zθ
S,B̂

Eθ[α̂i | µ̂S , σ̂S ]
]

= Eθ
[
Zθ
S,B̂

αθi

]
,

by Proposition 3.3. Analogously,

Eθ
[
Zθ
S,B̂

β̂i

]
= Eθ

[
Zθ
S,B̂

βθi

]
and we obtain

Eθ
[
Zθ
S,B̂

(
Xi + B̂i

)]
= Eθ

[
Zθ
S,B̂

(
Xi − α̂i + β̂iR̂

)]
= Eθ

[
Zθ
S,B̂

(
Xi − αθi + βθi R̂

)]
. (3.14)

Next, using (3.5) and (3.13) yields that

0 = Eθ
[
Zθ
S,B̂

(
S +

d∑
i=1

B̂i

)]
= Eθ

[
Zθ
S,B̂

(
S + R̂

)]
. (3.15)

This result, together with representation (3.9) for j = n+ 1, and letting Xn+1 = X, imply that

(3.14) = Eθ
[
Zθ
S,B̂

(
Xi − αθi − βθi S

)]
= Eθ

[
Zθ
S,B̂

εθi

]
= Eθ

[
Zθ
S,B̂

]
Eθ
[
εθi
]

= 0, (3.16)

where we used the fact that (εθi , S) is bivariate normal with uncorrelated margins, so that εθi is
independent of S, and consequently from Zθ

S,B̂
. This concludes the proof.
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4 Asymptotic fairness

We now introduce the definition of fairness for a sequence of estimators, (Ân)n∈N, and we define
the notion of asymptotic fairness.

Definition 4.1. A sequence of allocation estimators (Ân)n∈N will be called fair at n ∈ N, if Ân is
fair. If fairness holds for all n ∈ N, we call the sequence (Ân)n∈N fair. The sequence (Ân)n∈N is
called asymptotically fair if

Eθ
[
Zθ
S,Ân

(Xi + Âni )
]

n→∞−−−−→ 0, i = 1, 2, . . . , d, and θ ∈ Θ. (4.1)

In view of Theorem 3.4 it is clear that the sequence of capital allocation estimators (B̂n)n∈N
defined in (3.6), for varying n, is a fair sequence.7

In the rest of the section we assume that the risk allocation is done using ES with reference
level α.

4.1 Asymptotic fairness of capital allocation estimators under normality

Using (2.14), we now define a sequence Ĉn = (Ĉn1 , . . . , Ĉ
n
d ), n ∈ N, of “plug-in type” capital

allocation estimators as

Ĉni := −µ̂i +
ĈovXi,S
ασ̂S

φ(Φ−1(α)). (4.2)

The sequence (Ĉn)n∈N is not fair, in general, but it is asymptotically fair, as proven below.

Proposition 4.2. The sequence (Ĉn)n∈N is asymptotically fair.

Proof. Set F̂n := −µ̂S + σ̂S
φ(Φ−1(α))

α and note that Ĉni = −α̂ni + β̂ni F̂
n, i = 1, 2, . . . , d.

Proceeding analogously to the proof of Theorem 3.4, with B̂ replaced by Ĉn and with R̂ replaced
by F̂n, we see that in order to prove proposition it is enough to show that for any θ ∈ Θ we have

Eθ
[
Zθ
S+F̂n

(
S + F̂n

)]
n→∞−−−−→ 0. (4.3)

Now, note that

Eθ
[
Zθ
S+F̂n

(
S + F̂n

)]
= ρθ(S + F̂n),

and, in the terminology of [PS18], F̂n is the standard Gaussian expected shortfall plug-in estimator
for S. Consequently, noting that for d = 1 the definition of asymptotic fairness coincides with the
definition of asymptotic unbiasedness given in [PS18, Definition 6.1], and using [PS18, Proposition
6.4] we conclude the proof.

4.2 Asymptotic fairness of non-parametric capital allocation estimators

We assume throughout this section that the population X, and hence the aggregated portfolio S,
are continuous random variables under any θ ∈ Θ. Given that the ES is used to determine the

7Recall that the superscript n is omitted in (3.6) for the ease of notation.
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risk allocation, and taking (2.6) and (2.9) into account, we consider two natural non-parametric
expected shortfall capital allocation estimators

Ďn
i := −

∑n
k=1X

k
i 1{Sk+ ˆV@Rnα≤0}

nα
, i = 1, . . . , d, (4.4)

D̂n
i := −

∑n
k=1X

k
i 1{Sk+ ˆV@Rnα≤0}∑n

k=1 1{Sk+ ˆV@Rnα≤0}
, i = 1, . . . , d, (4.5)

where ˆV@Rn
α := −S(bnαc+1), with S(j) denoting the jth order statistics, and bzc denoting the largest

integer less or equal than z.

Proposition 4.3. The sequences (D̂n)n∈N and (Ďn)n∈N are asymptotically fair.

We will show only that D̂n
i is asymptotically fair. The proof for Ďn

i follows by similar arguments.
Before we prove Proposition 4.3, let us introduce supplementary notation and a lemma that will be
useful for the proof. For any θ ∈ Θ we use aθ = (aθ1, . . . , a

θ
n) to denote the true expected shortfall

allocation for X under θ and so we have (cf. (2.6))

ZθS,aθ =
1

α
1{

S+
∑d
i=1 a

θ
i≤qθS+∑d

i=1
aθ
i

(α)

},
where qθ

S+
∑d
i=1 a

θ
i

(α) denotes the true α-quantile of S +
∑d

i=1 a
θ
i under Pθ. Similarly, we have

Zθ
S,D̂

=
1

α
1{

S+
∑d
i=1 D̂

n
i ≤qθS+∑d

i=1
D̂n
i

(α)

}.

Lemma 4.4. For any θ ∈ Θ we get Zθ
S,D̂n

Pθ−−→ Zθ
S,aθ

, as n→∞.

Proof. Let us fix θ ∈ Θ. For brevity we will use the notation r :=
∑d

i=1 a
θ and Rn :=

∑d
i=1 D̂

n
i .

First, using classical trimmed-mean convergence arguments (see e.g. [Sti97]) we will show that

Rn
Pθ−−→ r, n→∞. (4.6)

Let In :=
∑n

k=1 1{Sk−qθS(α)≤0} and an := bnαc+ 1, n ∈ N. Since an =
∑n

k=1 1{Sk+ ˆV@Rnα≤0}, we get

Rn = −
∑n

k=1 S
k
1{Sk+ ˆV@Rnα≤0}∑n

k=1 1{Sk+ ˆV@Rnα≤0}
= − 1

an

an∑
k=1

S(k) = − 1

an

In∑
k=1

S(k) + εn,

where εn := − 1
an

(
1{an>In}

∑an
k=In+1 S

(k) − 1{an<In}
∑In

k=an+1 S
(k)
)

. Next, we will show that

εn
Pθ−−→ 0. Due to the consistency of the empirical quantiles, we have that S(an) Pθ−→ qθS(α) and

S(In) Pθ−→ qθS(α), as n→∞. Hence, noting that

0 ≤ |εn| ≤
∣∣∣∣In − anan

∣∣∣∣max
{∣∣∣S(an)

∣∣∣ , ∣∣∣S(In)
∣∣∣} ,

it is sufficient to prove that
∣∣∣ In−anan

∣∣∣ Pθ−−→ 0. For this, we observe that

In − an
an

=
n

an

(
1

n
In − α

)
+
nα− an
an

.
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Since limn→∞
nα−an
an

= 0, limn→∞
n
an

= 1
α , and, by the Law of Large Numbers,

(
1
nIn − α

) Pθ−−→ 0,

we have that εn
Pθ−−→ 0. Also, by the Law of Large Numbers we get at once that

1

an

In∑
k=1

S(k) =
n

an

(
1

n

n∑
k=1

Sk1{Sk≤qθS(α)}

)
Pθ−−−→ 1

α
E
[
S1{S≤qθS(α)}

]
= −r,

which concludes the proof of (4.6).

Next, for a fixed ε ∈ ( 1
α , 0), we get

Pθ
[
|ZS,D̂n − Z

θ
S,aθ | > ε

]
= Pθ

[
|ZS,D̂n − Z

θ
S,aθ | 6= 0

]
= Pθ

[
{S +Rn ≤ qθS+Rn(α)} ∩ {S + r > qθS+r(α)}

]
(4.7)

+ Pθ
[
{S +Rn > qθS+Rn(α)} ∩ {S + r ≤ qθS+r(α)}

]
. (4.8)

We want to show that (4.7) and (4.8) go to zero as n → ∞. For brevity, we show the proof only
for (4.7); the proof for (4.8) is analogous. For any ε2 > 0 we get

(4.7) = Pθ
[
{qθS+r(α) < S + r ≤ qθS+r−(r−Rn)(α) + (r −Rn)}

]
≤ Pθ

[
{qθS+r(α) < S + r ≤ qθS+r−(r−Rn)(α) + |r −Rn|}

]
≤ Pθ [{|r −Rn| ≥ ε2}] + Pθ

[
{qθS+r(α) < S + r ≤ qθS+r−(r−Rn)(α) + ε2}

]
. (4.9)

Using (4.6), and recalling that convergence in probability implies convergence in distribution which
in turn implies convergence of quantiles (at continuity points) for n→∞ we get

Pθ [{|r −Rn| ≥ ε2}]→ 0 and qθS+r−(r−Rn)(α)→ qθS+r(α). (4.10)

Combining (4.9) with (4.10), noting that the choice of ε2 was arbitrary, and that S is continuous,
we conclude the proof.

Now, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let us fix θ ∈ Θ and i ∈ {1, . . . , d}. We want to show that

Eθ
[
Zθ
S,D̂n

(Xi + D̂n
i )
]
→ 0, n→∞.

Noting that

Eθ
[
Zθ
S,D̂n

(Xi + D̂n
i )
]

= Eθ
[
Zθn(Xi + D̂n

i )
]

+ Eθ
[
ZθS,aθ(Xi + D̂n

i )
]
,

where Zθn := Zθ
S,D̂n

− Zθ
S,aθ

, we need to prove that

Eθ
[
Zθn(Xi + D̂n

i )
]
→ 0, n→∞, (4.11)

and

Eθ
[
ZθS,aθ(Xi + D̂n

i )
]
→ 0, n→∞. (4.12)
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We start with the proof of (4.11). Noting that for any n ∈ N we have |Zθn| ≤ 1
α and

n∑
k=1

1{Sk+ ˆV@Rnα≤0} = bnαc+ 1,

we get∣∣∣Eθ[Zθn(Xi + D̂n
i )
]∣∣∣ ≤ Eθ

[
|Zθn|(|Xi|+ |D̂n

i |)
]

≤ 1

α

(
Eθ
[
1{|Zθn|6=0}|Xi|

]
+ Eθ

[
1{|Zθn|6=0}|D̂

n
i |
])

≤ 1

α

(
Eθ
[
1{|Zθn|6=0}|Xi|

]
+

1

bnαc+ 1
Eθ
[
1{|Zθn|6=0}

n∑
k=1

|Xk
i |1{Sk+ ˆV@Rnα≤0}

])

≤ 1

α

(
Eθ
[
1{|Zθn|6=0}|Xi|

]
+

1

bnαc+ 1
Eθ
[
1{|Zθn|6=0}

n∑
k=1

|Xk
i |
])

≤ 1

α

(
Eθ
[
1{|Zθn|6=0}|Xi|

]
+

n

bnαc+ 1
Eθ
[
1{|Zθn|6=0}|X

1
i |
])

. (4.13)

Now, noting that 1{|Zθn|6=0} = 1{|Zθn|< 1
2α
} and using Lemma 4.4 we get

Pθ
[
|Zθn| 6= 0

]
→ 0, n→∞.

Combining this with (4.13), noting that |Xi| and |X1
i | are integrable, and n

bnαc+1 →
1
α as n→∞,

we conclude the proof of (4.11).
Next, we prove (4.12). Recalling that aθ is a true allocation for X under θ we get

Eθ
[
ZθS,aθ(Xi + D̂n

i )
]

= Eθ
[
ZθS,aθ(Xi + aθi )

]
+ Eθ

[
ZθS,aθ(D̂

n
i − aθi )

]
= Eθ

[
ZθS,aθ(D̂

n
i − aθi )

]
.

Consequently, noting that Zθ
S,aθ

and D̂n
i are independent under Pθ we get

Eθ
[
ZθS,aθ(Xi + D̂n

i )
]

= Eθ
[
ZθS,aθ

]
Eθ
[
D̂n
i − aθi

]
= −Eθ

[∑n
k=1X

k
i 1{Sk+ ˆV@Rnα≤0}∑n

k=1 1{Sk+ ˆV@Rnα≤0}
+ aθi

]

= − 1

bnαc+ 1
Eθ
[

n∑
k=1

(Xk
i + aθi )1{Sk+ ˆV@Rnα≤0}

]
= − n

bnαc+ 1
Eθ
[
(X1

i + aθi )1{S1+ ˆV@Rnα≤0}

]
= − n

bnαc+ 1
Eθ
[
(X1

i + aθi )
(
1{S1+ ˆV@Rnα≤0} − 1{S1≤qθS(α)}

)]
.

≤ n

bnαc+ 1
Eθ
[
|X1

i + aθi |1An
]
, (4.14)

where An := {qθS(α) < S1 ≤ − ˆV@Rn
α} ∪ {− ˆV@Rn

α < S1 ≤ qθS(α)}, and where in the last equality

we used the property Eθ
[
(X1

i + aθi )1{S1≤qθS(α)}

]
= 0. By similar reasoning as in (4.9), we get

Pθ[An] ≤ Pθ[|qθS(α) + ˆV@Rn
α| > ε] + Pθ[|S1 + ˆV@Rn

α| < ε],
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for any ε > 0. Since − ˆV@Rn
α is a consistent estimator of qθS(α), we conclude that Pθ[|qθS(α) +

ˆV@Rn
α| > ε]→ 0, as n→∞. Consequently, as the choice of ε was arbitrary and S1 is continuous,

we obtain that Pθ[An]→ 0, as n→∞. Combining this with (4.14), and since |X1
i +aθi | is integrable,

and n
bnαc+1 →

1
α as n→∞, the proof of (4.12) is complete.

5 Backtesting and numerical examples

In this section we analyze the proposed fair capital allocation methodology via examples using
simulated data and real market data. It goes without saying that any quantitative methodology
used for measuring and allocating risk relies on an adopted formal model. It also goes without
saying that actual results of risk measurement and/or risk allocation need to be tested for their
adequacy. Often, testing adequacy of the results of risk measurement is done in practice using
backtesting, and we will use this approach in testing the estimation procedures of fair capital
allocation introduced in the previous sections.

Backtesting, applied for risk measurement in the financial context, can be summarized as fol-
lows: given a time series of capital forecasts, one compares these forecasts with the realized losses;
the accumulated performance is the key ingredient of the backtesting. Backtesting might be also
treated as a specific case of assessment of quality of a point forecast, which aims at assessing
whether the forecasted capital is sufficient; see [Zie16, SKG15, NZ17]. In particular, backtesting
value-at-risk goes back to [Kup95] and recently has gained a lot of practical and theoretical interest;
see [AS14, PS18] for further details on this topic and the related literature. Undoubtedly, simi-
lar backtesting procedure should be developed for testing the adequacy of risk capital allocation
methodologies.

We focus our attention on assessing the performance of a statistical capital allocation method-
ology when the underlying reference risk measure is expected shortfall at the fixed level α ∈ (0, 1],
used in computing of the values of our estimators. For this purpose we propose two backtesting
frameworks:

• absolute deviation from fairness backtesting;

• risk level shifts adjustments backtesting.

The backtesting framework adopted for assessment of adequacy of estimators of capital allocations,
say Ã = (Ã1, . . . , Ãd), that were created using some capital allocation methodology,8 uses as its
input the observations of past P&Ls. The key ingredient to both backtesting methods is the
estimation of

d∑
i=1

Eθ0
[
Zθ0
S,Â

(Xi + Ãi)
]
, (5.1)

and the estimation of

Eθ0
[
Zθ0
S,Â

(Xi + Ãi)
]
, i = 1, 2, . . . , d. (5.2)

We assume that the length of the backtesting window is m days. With each day k = 1, . . . ,m,
we associate the P&Ls Xk

i and allocation estimators Ãki , i = 1, . . . , d. The estimators Ãki can be
obtained in various ways. One way is to proceed in accordance to what was proposed previously in
this paper. Specifically, to produce allocation estimators Ãki on day k one uses market observations
from the previous n days. We denote these observations as Xk,n = (Xk−n

i , . . . , Xk
i , i = 1, . . . , d).

8We refer to such methodology as to an Internal Capital Allocation Model (ICAM).
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Based on these observations, and following (3.3), we compute the estimators of the allocations as
Ãk = ηn(Xk,n).

The realizations of Xk
i and Ãki are denoted as xki and ãki , respectively. We set y := (y1, . . . , ym),

where yk = (yk1 , . . . , y
k
d), k = 1, . . . ,m, and yki := xki + ãki , i = 1, 2, . . . , d. We also let ξk :=∑d

i=1 y
k
i , k = 1, 2, . . . ,m, to denote the realized aggregated secured position on day k, and we set

ξ := (ξ1, . . . , ξm).
In order to proceed we introduce the following functions of β ∈ (0, 1],

Gβ(Ã) := −

∑m
k=1 ξ

k
1{ξk+ ˆV@Rβ(ξ)≤0}∑m

k=1 1{ξk+ ˆV@Rβ(ξ)≤0}
, (5.3)

and

Giβ(Ã) := −

∑m
k=1 y

k
i 1{ξk+ ˆV@Rβ(ξ)≤0}∑m

k=1 1{ξk+ ˆV@Rβ(ξ)≤0}
, i = 1 . . . , d, (5.4)

with ˆV@Rβ being the empirical value-at-risk at level β ∈ (0, 1]. Note that yiks are computed using
as the reference risk measure ES at the fixed risk level α. If no confusions arise, we will write Gβ,
respectively Giβ, instead of Gβ(Ã), respectively Giβ(Ã).

Now, similarly to the derivation of D̂n
i , we estimate the expectation in (5.1) as −Gα, and we

estimate (5.2) as −Giα.

Deviation from fairness backtesting. If the capital allocation methodology is fair, then the
obtained empirical values Giα, i = 1, . . . , d, should be close to zero, for the fixed reference level
α; the bigger the obtained estimate, the bigger the potential (true) deviation from fairness for the
ith margin. The deviation from fairness backtest assesses proximity to zero of Giα, i = 1, . . . , d.
A comprehensive study of properties of Giαs, such as ‘how far from zero is an acceptable value’ is
beyond the scope of this manuscript. Nevertheless, the following backtesting methodology is one
way to address this question.

Risk level shift backtesting. Instead of measuring the deviation from fairness directly, it is
natural to find the reference risk level β ∈ (0, 1] that makes Giβ closest to zero; equivalently, we
want to answer the question by how much one needs to shift the reference risk level α to make the
position acceptable. This approach hinges on duality-based performance measurement introduced
in [PM18]. It should be noted that this approach is different from the elicitability-based backtests
as it focuses on capital conservativeness assessment rather than the general forecast fit; cf. [NZ17].
Formally, for the estimators of capital allocation Ã, we define

Υ(Ã) := inf{β ∈ (0, 1] : Gβ(Ã) ≤ 0}, (5.5)

W i
−(Ã) := inf{ε ∈ [0, α] : Giα(Ã) ·Giα−ε(Ã) ≤ 0}, (5.6)

W i
+(Ã) := inf{ε ∈ [0, 1− α] : Giα(Ã) ·Giα+ε(Ã) ≤ 0}, (5.7)

where in (5.6) we use the convention inf ∅ = α, and correspondingly, in (5.7) we put inf ∅ = 1− α.
Similar to Giβ, Gβ, we may simple write Υ, and W i

±. Note that Gβ is a monotone decreasing

function in β, while Giβ generally speaking is not monotone. Hence, the quantities W± are defined
as the smallest shift in the reference risk level from α, to the right or to the left, that makes the
ith secured position acceptable. Thus, the closer Υ is to the initial reference risk level α the better
is the total risk estimation procedure. Similarly, the closer W± are to zero, the better is the risk
allocation procedure. One can look at W as the performance index that is dual to the ES family;
see [PM18, Proposition 4.3] for more details.
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Finally, by combining the left and right minimal shifts, we define the the minimal shift estimator
as

W i(Ã) :=

{
−W i

−, if W i
− < W i

+

W i
+, if W i

− ≥W i
+

, i = 1, 2, . . . , d. (5.8)

Before moving to numerical examples, several comments on backtesting procedure are in order.

(a) It goes without saying that the results produced by the deviation from fairness and the risk
level shift approaches should be compared with each other for consistency and reality check.

(b) It is worth mentioning that the two proposed backtesting methodologies can be applied to any
ICAM, not necessarily those discussed in this paper.

(c) Our study of the backtesting procedure of the estimation of the risk capital allocation is pre-
liminary. A thorough investigation of the statistical properties of Giα and W i is deferred to
future studies.

Next we will illustrate the performance of the capital allocation estimators B̂n, Ĉn, and D̂n on
simulated data by applying the two backtesting procedures described above. For brevity and to
ease the notation, we will write B̂n, Ĉn, and D̂n as B̂, Ĉ, and D̂, respectively.

For simulations, we consider two cases of probability distributions of the P&Ls vector X - the
Gaussian distribution and the Student’s t-distribution. We also fix the reference level α = 0.05.
All numerical evaluations are performed using R statistical software; the source codes are available
from the authors upon request.

Example 5.1 (Gaussian P&Ls). We assume that the portfolio X of eight (discounted) P&Ls
follows an eight dimensional Gaussian distribution N (µ,Σ), with the (true) mean

µ = (0.000786, 0.001549, 0.001660, 0.000195, 0.000650, 0.000413,−0.000401,−0.001146),

and the (true) variance-covariance matrix

Σ =



0.000226 0.000174 0.000104 0.000066 0.000069 0.000019 -0.000077 -0.000135
0.000174 0.000346 0.000135 0.000068 0.000091 0.000022 -0.000082 -0.000195
0.000104 0.000135 0.000257 0.000065 0.000084 0.000034 -0.000093 -0.000111
0.000066 0.000068 0.000065 0.000133 0.000048 0.000025 -0.000058 -0.000064
0.000069 0.000091 0.000084 0.000048 0.000137 0.000034 -0.000065 -0.000081
0.000019 0.000022 0.000034 0.000025 0.000034 0.000061 -0.000022 -0.000031

-0.000077 -0.000082 -0.000093 -0.000058 -0.000065 -0.000022 0.000149 0.000085
-0.000135 -0.000195 -0.000111 -0.000064 -0.000081 -0.000031 0.000085 0.000202


.

For the purpose of obtaining the above mean vector and the variance-covariance matrix we used
values of daily returns of eight stocks from S&P 500 index, namely: AAPL, AMZN, BA, DIS, HD,
KO, JPM, and MSFT; these data were taken for the period from January 2015 till December 2018.
We will use this sample again in Example 5.4. The first six stocks represent long positions in our
portfolio and the last two represent short positions; this gives the negative entries in µ and Σ. The
positions in each stock are equally weighted with nominal (absolute) value $1.

We took the learning period of n = 500 days, and the backtesting period of m = 5,000 days.
Below, we present the results for the Gaussian plug-in estimator Ĉ and the non-parametric estimator
D̂; we omit results for estimators B̂ and Ď, since, due to large size of the learning period, the results
are almost identical to Ĉ and D̂, respectively. Additionally, for comparison, we present results for
the true allocations a; these allocations were obtained by plugging-in true mean and covariance
matrix into (2.14).
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Figure 1: Example 5.1. Top row: estimated risk allocations for the eight portfolio constituents
(indexed by color) at each backtesting day, k = 1, . . . ,m for the true allocation a, and the estimated
risk allocations Ĉ and D̂; the height of each horizontal layer represents the risk allocated to one of
the constituents. Bottom row: estimated aggregated risk at each backtesting day. The estimated
risk allocations are close to the reference allocations. The Gaussian plug-in estimator Ĉ slightly
outperforms the non-parametric method D̂.

The obtained results validate, as expected, the proposed methods. In Figure 1 we present the
values of the risk allocation to each constituent (top row), and the aggregated risk (bottom row).
In this example, the fair risk allocation a computed with the true underlying distribution can be
considered as reference for the backtesting results. The estimated risk allocations using Ĉ and D̂ are
close to the reference allocations, and as expected, the results computed using the non-parametric
method D̂ are not as close to the reference results as those obtained using Ĉ that explicitly exploits
the Gaussian distribution structure of the data.

Table 1 contains the summary of the estimated backtesting measures G0.05, G
i
0.05,W

i and Υ.
First, we note that the values of G0.05(a), Gi0.05(a) and W i(a) corresponding to backtesting the fair
allocation are, as expected, close to zero. In addition, Υ(a) is close to α = 0.05. This indicates that
the proposed backtesting methodologies are adequate. The obtained values give the benchmark for
the following results produced by using Ĉ and D̂. We note that indeed, the values of G0.05, G

i
0.05,W

i

and Υ corresponding to Ĉ and D̂ are in the same ballpark as for a, indicating that Ĉ and D̂ are
suitable risk allocation methodologies. We also provide a graphical representation of Gi0.05 in
Figure 2 (top row), and in Figure 2 (bottom row) we Giβ(D̂), i = 1, . . . , 8 as function of β.

For convenience, we additionally present several graphical representations of the backtesting
metrics. In Figure 3 we plot Gβ and Giβ as functions of β, for the three risk allocation methods

a, Ĉ, D̂. All these functions should take zero value around β = α = 0.05, which is clearly the case.
Finally, Figure 4 is dedicated to risk level shift backtesting. The top row shows the values of W i

for risk allocations estimated using a, Ĉ, and D̂. The blue dots in the bottom graphs in Figure 4
depict the values of α±W , all of them being close to the reference risk value α = 0.05, which again
indicates adequacy of risk allocation estimation procedure D̂.
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X1 X2 X3 X4 X5 X6 X7 X8 S

Gi0.05(a) -0.00038 0.00017 -0.00054 -0.00039 -0.00021 -0.00048 0.00076 -0.00011 G0.05(a) -0.00118
W i(a) -0.013 0.001 -0.002 -0.002 -0.003 -0.012 -0.017 0.001 Υ(a) 0.047

Gi0.05(Ĉ) -0.00090 -0.00037 -0.00014 -0.00022 0.00043 -0.00058 0.00088 0.00008 G0.05(Ĉ) -0.00081

W i(Ĉ) -0.009 -0.004 -0.002 -0.002 0.004 -0.016 -0.013 -0.005 Υ(Ĉ) 0.048

Gi0.05(D̂) 0.00032 0.00110 0.00031 0.00014 -0.00003 0.00010 -0.00011 -0.00088 G0.05(D̂) 0.00094

W i(D̂) 0.003 0.005 0.002 0.005 -0.001 -0.001 0.002 0.008 Υ(D̂) 0.053

Table 1: Summary of the estimated backtesting measures for Example 5.1: In the first columns
we show Gi0.05 and W i, i = 1, . . . , 8, for the true allocation a, and the estimated risk allocations
Ĉ and D̂, corresponding to backtesting the fair allocation. The values are close to zero, indicating
that the proposed backtesting methodologies are adequate. The last column shows the aggregated
quantities G0.05 and the risk level shift Υ. Here, Υ is close to α = 0.05, as expected.
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Figure 2: Example 5.1. Graphical representation of the deviation from fairness backtesting
method, compare Table 1: the first row shows Gi0.05, i = 1, . . . , 8, for the true allocation a, and
the estimated risk allocations Ĉ and D̂. The values are close to zero, indicating that the proposed
backtesting methodologies are adequate. The second and third row shows Giβ as function of β

for each constituent. The red dots in the bottom rows represent the values of Gi0.05 using D̂. An
aggregated plot together with Gβ is given in Figure 3.
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Figure 3: Example 5.1: the estimated backtesting measures as function of the risk level β for
the true allocation a, and the estimated risk allocations Ĉ and D̂ (compare Table 1 for values
corresponding to β = 0.05). The measures Giβ, i = 1, 2, . . . , 8 for the different constituents are
indicated by color while the bold red line represents the backtesting measure Gβ at portfolio level.
All these functions should be zero around β = α = 0.05, which is clearly the case.
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Figure 4: Example 5.1. Graphical representation of the risk level shift backtesting method,
compare Table 1: the first row shows W i, i = 1, . . . , 8, values being close to zero. The second
and third row shows Giβ(D̂) as function of β for each constituent, blue dots represent the values of

W i(D̂).
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Figure 5: Example 5.2. Estimated risk allocations for the eight portfolio constituents (indexed
by colour) at each backtesting day, k = 1, . . . ,mfor the estimated risk allocations Ĉ and D̂; the
height of each coloured horizontal layer represents the risk allocated to one of the constituents. It
is apparent that the estimated risk allocation by these two methods are quite different.

X1 X2 X3 X4 X5 X6 X7 X8 S

Gi0.05(Ĉ) 0.00209 0.00363 0.00152 0.00127 0.00093 0.00088 -0.00084 -0.00076 G0.05(Ĉ) 0.00872

W i(Ĉ) 0.016 0.025 0.013 0.012 0.012 0.021 0.014 0.012 Υ(Ĉ) 0.069

Gi0.05(D̂) 0.00074 0.00062 -0.00030 0.00028 0.00049 0.00014 0.00001 0.00013 G0.05(D̂) 0.00212

W i(D̂) 0.004 0.003 -0.001 0.008 0.007 0.001 0.000 -0.001 Υ(D̂) 0.054

Table 2: Summary of the estimated backtesting measures for Example 5.2: In the first columns
we show Gi0.05 and W i, i = 1, . . . , 8, for the estimated risk allocations Ĉ and D̂, corresponding to
backtesting the fair allocation. The values of Gi0.05(Ĉ) are of one order of magnitude further away
from zero than Gi0.05(D̂), indicating that indeed risk allocation methodology D̂ is more adequate
for this experiment. The last column shows the aggregated quantities G0.05 and the risk level shift
Υ. Here, Υ(D̂) is close to α = 0.05, as expected.

Example 5.2 (Student t-distributed P&Ls). Similar to the previous example we consider a port-
folio of eight constituents and with discounted P&L following a t-distribution with five degrees of
freedom. For comparison reasons, the distribution of (X1, . . . , X8) is modified so that it has the
same mean and variance covariance structure as in Example 5.1.

First, note that there is no available counterpart of a for this setup. Second, as we will show
below, since X does not follow a Gaussian distribution, one should not use Ĉ to estimate the risk
allocation, and only D̂ is an appropriate methodology in estimating risk allocation. In Figure 5, we
present the estimated risk allocations computed using Ĉ and D̂, over the entire backtesting period
k = 1, . . . ,m. It is apparent that the estimated risk allocation by these two methods are quite
different. Table 2 contains the values of the estimated backtesting metrics, and for the reader’s
convenience Gi0.05 and W i are represented graphically in Figure 6. The values of Gi0.05(Ĉ) are of
one order of magnitude further away from zero than Gi0.05(D̂), indicating that indeed risk allocation
methodology D̂ is more adequate for this experiment. We also note that magnitude of Gi0.05(D̂) in
this example aligns with the benchmark values from Example 5.1. Similar arguments hold true for
W i and Υ.
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Figure 6: Estimated backtesting measures for Example 5.2, compare Figures 1 and 3. The first
row represents the deviation from fairness backtesting method and shows Gi0.05 for each constituent
i = 1, . . . , 8 for the risk allocations Ĉ and D̂. The second row represents the risk level shift back-
testing method and shows W i, respectively. The values of Gi0.05(Ĉ) are of one order of magnitude
further away from zero than Gi0.05(D̂), indicating that indeed risk allocation methodology D̂ is more
adequate for this experiment. We also note that magnitude of Gi0.05(D̂) in this example aligns with
the benchmark values from Example 5.1. Similar arguments hold true for W i.

Example 5.3 (Fairness and asymptotic fairness). In this example we illustrate the fairness and
the asymptotic fairness properties. Again, for the sake of a reference statistic which eases the
presentation, we work under the normality assumption. Moreover, we consider only the first three
constituents from Example 5.1, that is (X1, X2, X3), because the other constituents show similar
behavior. The numerical results presented below confirm that allocations a and B̂ are fair. In
addition, these results confirm that the allocations Ĉ and D̂ are asymptotically fair even though
they are not fair in this example.

Figure 7 deals with the issue of a short learning period, that is a small sample size, of n = 250.
We see that for allocations a and B̂ the Gi0.05’s and W i’s are getting close to zero with increasing
m, and that Υ gets close to 0.05 with increasing m, confirming that these are fair allocations. We
also see that Gi0.05’s and W i’s stay away from zero, and Υ stays away from 0.05 with increasing m
for allocations Ĉ and D̂, indicating that these are not fair allocations.

Figure 8 illustrates the asymptotic fairness of D̂n with n → ∞. The left panel shows that
Gi0.05(D̂) get closer to zero for large m with increasing n. Similarly for the right panel, with regard
to W i and Υ.
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Figure 7: Example 5.3 (small sample size): We fix the learning period of size n = 250 and consider
increasing lengths of backtesting intervals, i.e. we let m run. On the first two rows we plot Gi0.05,
i = 1, 2, 3, for the true allocation a, and the estimated risk allocations B̂, Ĉ and D̂. On the last two
rows we plot W i, i = 1, 2, 3,. For allocations a and B̂ the measures are getting close to zero with
increasing m, and Υ gets close to 0.05, confirming that these are fair allocations. For allocations
Ĉ and D̂ the opposite is true, indicating that these are not fair allocations.
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Figure 8: Example 5.3 (asymptotic fairness): in the left panel we plot Gi0.05(D̂) as function of m,
for different values of learning period, n = 250 (top) to n = 4000 (bottom). These plots confirm
that Gi0.05(D̂) get closer to zero with increasing n, which yields asymptotic fairness. The pictures
in the right panel contain values of W i(D̂) and Υ(D̂) as functions of m, and for n = 250, 1000 and
4000 (from top to bottom). We obtain similar results here, showing that W i and Υ get closer to
zero with increasing n.
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Figure 9: Aggregated portfolio P&Ls split into Dataset 1 (January 2015 - December 2016,
left panel) and Dataset 2(January 2017 - December 2018, right panel). The estimated volatil-
ities are 0.0425 (0.0456/0.0392)(firsthalf/secondhalf) in Dataset 1 and in the right panel
0.0415 (0.0267/0.0522).

Example 5.4 (Market data example). In this example we analyze the performance of the backtest-
ing methodologies on market data. We consider the same portfolio formation as in Example 5.1,
by taking eight stocks (AAPL, AMZN, BA, DIS, HD, KO, JPM, and MSFT) from the S&P 500
index, and form an equally weighted long-short portfolio. Namely, we hold a long position in the
first six stocks, and a short position in the last two stocks, with nominal (absolute) value $1 in
each stock. For this study, we use the daily stock returns, for the period January 2015 - December
2018. Throughout we set both, learning period (n) and backtesting period (m), equal to 250 days.
We split the dataset into two subsets: January 2015 - December 2016 (Dataset 1 ), and January
2017 - December 2018 (Dataset 2 ). As before, for each dataset, we use the standard 1-day rolling
window and compare forecasted capital allocations with realized portfolio values.

One reason to split the data into these two time frames stems from the distinctively different
patterns of the the aggregated P&L of the portfolio; see Figure 9. Dataset 1 is more homogeneous,
with slightly larger volatility in the first half. Specifically, the sample standard deviation of the
aggregated P&L portfolio for Dataset 1 is equal to 0.0425; the sample standard deviation for the
first half is 0.0456, and for the second half is 0.0392. Dataset 2 exhibits a higher volatility in the
second half compared to its first half and compared to Dataset 1; the standard deviation for the
first half is 0.0267, and for the second half is 0.0522. As we will show later, these differences will
propagate into the capital risk allocation and they will be picked up by the backtesting procedure.
Similar to the previous examples, for both datasets we will use the risk allocation estimators Ĉ
and D̂, and we will use both backtesting procedures proposed in Section 5. We also performed the
Jarque-Bera normality test for the aggregated portfolio P&Ls for both datasets, which was rejected
at significance level 0.01.

In the following, we will analyze each dataset separately. A first overview is presented in
Figure 10, where the first two columns (left panel) correspond to Dataset 1, and the rightmost two
columns (right panel) to Dataset 2.

Dataset 1, January 2015 - December 2016, Figure 10, left panel, and Table 3. The aggregated
(total) risk of the portfolio is displayed in the first row of Figure 10, which was computed by using
estimators Ĉ and D̂. The aggregated portfolio risk seems to be well estimated by both Ĉ and D̂.
The noticeable slight decrease in time of the aggregated risk is partially due to the lower volatility of
the returns in the second part of the Dataset 1. The estimated risk capital allocations are presented
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Dataset 1 X1 X2 X3 X4 X5 X6 X7 X8 S

Gi0.05(Ĉ) -0.00107 0.00221 0.00110 -0.00036 -0.00052 0.00255 0.00653 -0.00797 G0.05 0.00247

W i(Ĉ) -0.002 0.010 0.010 -0.002 -0.026 0.014 -0.050 0.018 Υ 0.056

Gi0.05(D̂) -0.00653 -0.00855 -0.00692 -0.00525 -0.00419 0.00102 0.01707 0.00339 G0.05 -0.00996

W i(D̂) -0.022 -0.022 -0.026 -0.030 -0.026 0.006 -0.050 -0.010 Υ 0.044

Table 3: Summary of backtesting statistics for Example 5.4, Dataset 1, split into the first period
(first two rows) and the second period (last two rows): in the first columns we show Gi0.05 and
W i, i = 1, . . . , 8, for the estimated risk allocations Ĉ and D̂, corresponding to backtesting the fair
allocation. Overall, the capital allocations are well estimated by both Ĉ and D̂, with exception
of the seventh constituent, for which W 7

0.05(Ĉ) = −0.05 and W 7
0.05(D̂) = −0.05. For i = 7 the

correlation difference is noticeably higher than for the rest of the sample which might be a result
of a structural change. The last column shows the aggregated quantities G0.05 and the risk level
shift Υ. Here, Υ is close to α = 0.05, as expected.

X1 X2 X3 X4 X5 X6 X7 X8

01/2015 – 12/2015 0.70 0.66 0.75 0.66 0.68 0.58 -0.54 -0.38
01/2016 – 12/2016 0.59 0.65 0.56 0.6 0.59 0.52 -0.18 -0.33

Difference 0.11 0.01 0.18 0.06 0.09 0.06 -0.36 -0.04

Table 4: Estimated correlations between each portfolio constituent (Xi) and aggregated portfolio
(S), for two separate time periods for Dataset 1 in Example 5.4. One can that the biggest difference
is observed for i = 7; this might indicate a structural change, a possible explanation of the results
in Table 3.

in the second row, and the backtesting statistics G,Gi, and W,W i are graphically displayed in rows
3-5 of Figure 10 and the numerical values are presented in Table 3.

Overall, the capital allocations are well estimated by both9 Ĉ and D̂, with exception of the
seventh constituent, for which W 7

0.05(Ĉ) = −0.05 and W 7
0.05(D̂) = −0.05. To see whether this is a

problem with the estimator or a result of time-correlation structure change we checked the sample
correlations between each constituent and the portfolio for two disjoint subsets. The results are
presented in Table 4. One could see that for i = 7 the correlation difference is noticeably higher
than for the rest which might be a result of a structural change. Consequently, we believe that the
proposed backtesting procedures correctly identified a wrong allocation in this particular case.

Dataset 2, January 2017 - December 2018, Figure 10, right panel, and Table 5. Due to the
increase of the volatility in the second half of the Dataset 2, the aggregated portfolio risk increases
throughout the backtesting period; see Figure 10, first row. In the second row of the same figure
we present the nominal value of the allocated risk among constituents computed by using risk
allocation estimators Ĉ and D̂. In contrast to Dataset 1, the backtesting results for Dataset 2
reveal a significant underestimation of the aggregated risk. This can be seen by noticing that the
values of G0.05 and Υ, for both Ĉ and D̂, are far from zero; see last column in Table 5, or the
third and fourth rows of Figure 10, right panel. The graph of function β → Gβ is plotted in the
third row of Figure 10, solid red line, and the value of Υ corresponds to the red vertical line in
the last row. Comparing these plots with the corresponding plots from previous examples and
datasets, we also conclude that the aggregated risk is significantly underestimated. Inevitably, this

9We note that while data is not normally distributed, the estimator Ĉ performed similarly well as the nonpara-
metric estimator D̂.



Fair capital risk allocation 27

Dataset 2 X1 X2 X3 X4 X5 X6 X7 X8

Gi0.05(Ĉ) 0.01187 0.02618 0.01512 0.00562 0.01229 0.00404 -0.01356 -0.01785 G0.05 0.0437

W i(Ĉ) 0.234 0.210 0.146 0.166 0.222 0.110 0.278 0.274 Υ 0.204

Gi0.05(Ĉ) 0.00680 0.01669 0.01633 0.00301 0.00876 0.00181 -0.00809 -0.01106 G0.05 0.03425

W i(D̂) 0.158 0.130 0.102 0.078 0.074 0.042 0.118 0.086 Υ 0.156

Table 5: Summary of backtesting statistics for Example 5.4, Dataset 2, split into the first period
(first two rows) and the second period (last two rows): in the first columns we show Gi0.05 and
W i, i = 1, . . . , 8, for the estimated risk allocations Ĉ and D̂, corresponding to backtesting the
fair allocation. In contrast to Dataset 1, the backtesting results for Dataset 2 reveal a significant
underestimation of the aggregated risk. Inevitably, this error propagates to the risk allocation
estimation. Clearly, the values of Gi0.05 and Υ are significantly different from zero. The risk

allocation using the nonparametric estimators D̂ performs better than that one using Ĉ.

error propagates to the risk allocation estimation, as shown in the plots from rows 3-5. Clearly,
the values of Gi0.05 and Υ are significantly different from zero (see also Table 5), in comparison to
those from Dataset 1 and the previous examples. On the other hand, arguably, the risk allocation
using the nonparametric estimators D̂ performs better than that one using Ĉ; see for instance the
values of W i(D̂) and Gi0.05(D̂) versus W i(Ĉ) and Gi0.05(Ĉ). Finally, we note that, for the estimator

D̂, the zeros of functions β → Giβ(D̂), i = 1, . . . , 8, are essentially the same as the zero of the

function β → Gβ(D̂), indicating that the risk allocation itself (as proportion of the total risk) is
done properly, and failure of the backtesting procedure is due to underestimation of the total risk.
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β
0.1 0.2 0.3 0.4 0.5 -0

.0
4

0.
00

0.
04

Giβ(D̂) and Gβ(D̂)

β
0.1 0.2 0.3 0.4 0.5

1 2 3 4 5 6 7 8

Gi
0.05(Ĉ)
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-0
.0
5

0.
05

0.
15

Risk allocations using D̂

-0
.0
5

0.
05

0.
15

-0
.0
4

0.
00

0.
04
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Figure 10: Aggregated risk, risk allocation and the backtesting metrics for portfolios in Exam-
ple 5.4. Two columns on the left (left panel) correspond to Dataset 1, while rightmost two columns
(right panel) correspond to Dataset 2. The results are obtained by using the risk allocation esti-
mator Ĉ and the nonparametric risk allocation estimators D̂.
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