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Introduction

An important issue that should be addressed in the context of credit default swap (CDS) rates is a
construction of an appropriate model in which a family of options written on credit default swap,
referred to hereafter as credit default swaptions, can be valued and hedged. Some previous efforts in
this directions were largely motivated by the market practice of using a suitable version of the Black
swaption formula. For an option written on a single-name forward credit default swap, such pricing
formula was derived by Schönbucher [30]-[31] and Jamshidian [22], who formally used the risk-
neutral valuation formula in an intensity-based credit risk model, which was not fully specified. The
derivations of a version of the Black formula for credit default swaptions presented in these papers
are based on rather abstract approximation arguments for a positive martingale, as opposed to an
explicit construction of a (lognormal) model for a family of CDS rates associated with a given tenor
structure, in which the pricing of a credit default swaption could be supported by strict replication
arguments. Such a construction was provided, albeit under some simplifying assumptions, in recent
papers by Brigo [8]-[9]. To be more specific, Brigo [8]-[9] analyzes the joint dynamics of certain
families of forward CDS rates under judiciously chosen martingale measures. He shows that in some
cases (most notably, for a family of one-period forward CDS rates), it is possible to develop a change
of a numéraire approach, which is analogous to arbitrage-free modeling of forward LIBOR rates.
He also emphasizes the difficulties that arise in the context of modeling of a family of co-terminal
forward CDS rates.

In an alternative approach, Ben-Ameur et al. [2] and Brigo and Cousot [12] deal with the
valuation of European and Bermudan credit default swaptions within the framework of the intensity-
based SSRD (Shifted Square-Root Diffusion) model, which was introduced previously by Brigo and
Alfonsi [11]. In a recent work by Brigo and El-Bachir [13], a complete study of valuation of credit
default swaptions in the SSRJD (Shifted Square-Root Jump-Diffusion) model is provided.

It is worth stressing that none of the above-mentioned papers addresses the issue of hedging of
credit default swaptions. The only work, that we are aware of, that discusses hedging of CDS option
is Zhang et al. [32]. The methodology used in this paper is driven by the idea of simultaneous
derivation of the price of the swaption and of the hedging strategy by solving a sequence of some
constrained optimization problems. It appears that the hedging strategy discussed in [32] is not
necessarily a self-financing strategy, and, moreover, it is not quite clear what is the meaning of the
calculated ”price” of the swaption. In addition, the relationship (9), in [32], between the par CDS
spread and the risk-neutral intensity of default, appears to be questionable. Such relationship is true
in case of constant default intensity and constant recovery rate (in which case the par CDS spread
is constant as well), but is not true in general. Consequently, there appears to be mismatch between
postulated stochastic evolution of the par spread process and the stochastic evolution of the hazard
rate process.

In our previous papers [4]-[6], we provided some general results regarding the issue of hedging
of general defaultable claims in the copula-based and intensity-based frameworks. The goal of this
work is to apply these results to the valuation and hedging of credit default swaptions in some
specific hazard process models.

A strictly positive random variable τ , defined on a probability space (Ω,G,Q∗), is termed a
random time. In view of its financial interpretation, we will refer to it as a default time. We
define the default indicator process Ht = 1{τ≤t} and we denote by H the filtration generated by
this process. We assume that we are given, in addition, some auxiliary filtration F and we write
G = H ∨ F, meaning that we have Gt = σ(Ht,Ft) for every t ∈ R+. The filtration G is referred
to as to the full filtration. It is clear that τ is an H-stopping time, as well as a G-stopping time
(but not necessarily an F-stopping time). All processes are defined on the space (Ω,G,Q∗). In what
follows, T is a finite horizon and unless otherwise stated, all processes considered are assumed to be
G-adapted and with càdlàg sample paths.
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1 Dynamics of Asset Prices in a Hazard Process Model

We assume that the underlying market model is arbitrage-free, meaning that it admits a spot mar-
tingale measure Q∗ (not necessarily unique) equivalent to Q. A spot martingale measure is associated
with the choice of the savings account B as a numéraire, in the sense that the price process of any
tradeable security, which pays no coupons or dividends, is a (Q∗,G)-martingale when it is discounted
by the savings account B. As usual, B is given by

Bt = exp
(∫ t

0

ru du
)
, ∀ t ∈ R+, (1)

where the short-term r is assumed to follow an F-progressively measurable stochastic process. The
choice of a suitable term structure model is arbitrary and it is not discussed in the present work.

Let us denote by Gt = Q∗(τ > t | Ft) the survival process of τ with respect to a filtration F. We
postulate that G0 = 1 and Gt > 0 for every t ∈ R+ (hence the case where τ is an F-stopping time is
excluded) so that the hazard process Γ = − lnG of τ with respect to the filtration F is well defined.

For any Q∗-integrable and FT -measurable random variable Y , the following classic formula holds

EQ∗(1{T<τ}Y | Gt) = 1{t<τ}G
−1
t EQ∗(GTY | Ft).

Clearly, the process G is a bounded (Q∗,G)-supermartingale and thus it admits the unique Doob-
Meyer decomposition G = µ − ν, where µ is a martingale part and ν is a predictable increasing
process. Note that, if G is continuous, then the processes µ and ν are continuous as well.

In this section, we work under the following standing assumption.

Assumption 1.1 We postulate that G is a continuous process and the increasing process ν in its
Doob-Meyer decomposition is absolutely continuous with respect to the Lebesgue measure, so that
dνt = υt dt for some F-progressively measurable, non-negative process υ. We denote by λ the F-
progressively measurable process defined as λt = G−1

t υt. The process λ is called the F-intensity of
default time.

Assumption 1.1 implies that dGt = dµt − λtGt dt, where the (Q∗,F)-martingale µ is continuous.
Moreover, continuity of G implies that Q∗(τ = t) = 0 for any t ∈ R+. Finally, it is known (see, e.g.,
[15] or [16]) that under Assumption 1.1 the process M , which is given by the formula

Mt = Ht −
∫ t∧τ

0

λu du = Ht −
∫ t

0

(1−Hu)λu du, (2)

is a (Q∗,G)-martingale.

We first recall some valuation results for defaultable claims, which are borrowed from [6].

Definition 1.1 By a defaultable claim maturing at T we mean a quadruple (X,A,Z, τ), where X
is an FT -measurable random variable, A = (At)t∈[0,T ] is an F-adapted, continuous process of finite
variation with A0 = 0, Z = (Zt)t∈[0,T ] is an F-predictable process and τ is a default time. The
dividend process D = (Dt)t∈R+ of a defaultable claim maturing at T equals, for every t ∈ R+,

Dt = X1{T<τ}1[T,∞[(t) +
∫

]0,t∧T ]

(1−Hu) dAu +
∫

]0,t∧T ]

Zu dHu.

The financial interpretation of this definition is as follows: X is the promised payoff, A represents
the process of promised dividends and the process Z, termed the recovery process, specifies the
recovery payoff at default.
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Definition 1.2 The ex-dividend price process S associated with the dividend process D equals, for
every t ∈ [0, T ],

St = Bt EQ∗
(∫

]t,T ]

B−1
u dDu

∣∣∣Gt
)
.

It can be shown (see [6]) that the ex-dividend price of the defaultable claim (X,A,Z, τ) satisfies,
for every t ∈ [0, T ],

St = 1{t<τ}
Bt
Gt
EQ∗

(
B−1
T GTX1{t<T} +

∫ T

t

B−1
u GuZuλu du+

∫ T

t

B−1
u Gu dAu

∣∣∣Ft
)
. (3)

This means, in particular, that for any t ∈ [0, T ] the ex-dividend price S equals St = 1{t<τ}S̃t for
the F-adapted process S̃, which is termed the ex-dividend pre-default price of a defaultable claim.

Definition 1.3 The cumulative price process Sc associated with the dividend process D is given
by the following expression, for every t ∈ [0, T ],

Sct = Bt EQ∗
(∫

]0,T ]

B−1
u dDu

∣∣∣Gt
)

= St +Bt

∫

]0,t]

B−1
u dDu.

Under the assumption that all (Q∗,F)-martingales are continuous (see Assumption 1.2 in [6]),
the following result is valid (we refer to [6] for the proof).

Proposition 1.1 Let µ be the (Q∗,F)-martingale part of the Doob-Meyer decomposition of G and
let m be the (Q∗,F)-martingale given by the formula

mt = EQ∗
(
B−1
T GTX +

∫ T

0

B−1
u GuZuλu du+

∫ T

0

B−1
u Gu dAu

∣∣∣Ft
)
.

(i) The dynamics of the ex-dividend price S on [0, T ] are

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt+ dAt

)

+ (1−Ht)G−1
t

(
Bt dmt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ,m〉t

)
.

(ii) The dynamics of the predefault price S̃ on [0, T ] are

dS̃t =
(
(λt + rt)S̃t − λtZt

)
dt+ dAt +G−1

t

(
Bt dmt − S̃t dµt

)

+G−2
t

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

(iii) The dynamics of the cumulative price Sc on [0, T ] are

dSct = rtS
c
t dt+ (Zt − St−) dMt

+ (1−Ht)G−1
t

(
Bt dmt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ,m〉t

)
.

2 Credit Default Swaptions

We are in a position to analyze credit default swaps and related options in a hazard process model
introduced in Section 1. In this section, we maintain the standing Assumption 1.1.
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2.1 Forward CDS

A forward CDS can be initiated at any time s ∈ [0, U ] and it gives default protection over the
future time interval [U, T ]. If the reference entity defaults prior to the start date U the contract is
terminated and no payments are made. In what follows, the recovery process δ and the time period
[U, T ] are fixed.

Definition 2.1 A forward CDS with start date U , maturity T , a constant rate κ and recovery at
default is a defaultable claim (0, A, Z, τ) where At = −κ1[U,T ](t) dLt and Zt = δt1[U,T ](t) for every
t ∈ [0, T ]. An F-predictable process δ : [0, T ] → R represents the default protection and a constant
κ is the CDS rate.

An increasing process L represents the tenor structure of fee payments (see, for instance, [8]-[9] or
[29]). For a stylized forward CDS, we may set Lt = t (cf. [5]-[6]). This convention is not necessary,
however, for the further developments.

Since a forward CDS does not pays any dividends prior to the start date U , its price St(κ) for
any t ∈ [s, U ] can be considered as either the cum-dividend price or the ex-dividend price. Therefore,
the price of a forward CDS at any date t ∈ [s, U ] equals

St(κ) = Sct (κ) = Bt EQ∗
(
1{U≤τ≤T}B−1

τ δτ − κ
∫

]τ∧U,τ∧T ]

B−1
u dLu

∣∣∣Gt
)

(4)

and formula (3) becomes

St(κ) = 1{t<τ}
Bt
Gt
EQ∗

(
−
∫ T

U

B−1
u δu dGu − κ

∫

]U,T ]

B−1
u Gu dLu

∣∣∣Ft
)

= 1{t<τ}S̃t(κ). (5)

We also write
S̃t(κ) = P̃ (t, U, T )− κÃ(t, U, T ), (6)

where P̃ (t, U, T ) represents the pre-default value at time t of the protection leg and the CDS annuity
Ã(t, U, T ) represents the pre-default value at time t of the survival annuity stream per unit of the
rate κ, which is usually expressed in basis points. It is worth noting that Ã is a strictly positive
process. Without loss of generality, we may and do assume that s = 0.

By a forward market CDS at time t ∈ [0, U ] we mean a forward CDS in which the rate is chosen
in such a way that the contract is valueless at time t. The corresponding (pre-default) forward CDS
rate is an Ft-measurable random variable κ(t, U, T ) that solves the equation S̃t(κ(t, U, T )) = 0. It is
thus clear that, for every t ∈ [0, U ],

κ(t, U, T ) =
P̃ (t, U, T )

Ã(t, U, T )
= −

EQ∗
( ∫ T

U
B−1
u δu dGu

∣∣∣Ft
)

EQ∗
( ∫

]U,T ]
B−1
u Gu dLu

∣∣∣Ft
) =

pt
at
, (7)

where the (Q∗,F)-martingales (pt, t ∈ [0, U ]) and (at, t ∈ [0, U ]) are given by the following expres-
sions

pt = −EQ∗
(∫ T

U

B−1
u δu dGu

∣∣∣Ft
)
, at = EQ∗

(∫

]U,T ]

B−1
u Gu dLu

∣∣∣Ft
)
. (8)

Lemma 2.1 For a forward CDS with a constant rate κ we have, for every t ∈ [0, U ],

St(κ) = 1{t<τ}Ã(t, U, T )(κ(t, U, T )− κ). (9)

Proof. It suffices to observe that

St(κ) = St(κ)− St(κ(t, U, T ))

= 1{t<τ}
(
P̃ (t, U, T )− κÃ(t, U, T )− P̃ (t, U, T ) + κ(t, U, T )Ã(t, U, T )

)
,

as required. �
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2.2 Credit Default Swaption

Let us fix some expiry date 0 < R ≤ U and let us consider a call option with zero strike on the value
of a forward start CDS. The swaption’s payoff at its expiry date R thus equals CR = (SR(κ))+.
Using Lemma 2.1, we obtain

CR = 1{R<τ}Ã(R,U, T )(κ(R,U, T )− κ)+.

The formula above shows that a call option with zero strike on the value of a forward CDS with rate
κ is formally equivalent to a call option on a forward CDS rate.

We are thus interested in the value Ct of this claim at time t ∈ [0, R]. It is worth stressing that
a credit default swaption is considered here as a derivative asset in a market model in which CDSs
with maturities R,U and T are assumed to be traded assets. The corresponding forward CDSs can
be easily synthetized by static positions in traded CDSs.

Lemma 2.2 Assume that the claim CT is attainable. Then the price at time t ∈ [0, R] of a credit
default swaption equals

Ct = 1{t<τ}
Bt
Gt
EQ∗

(
GR
BR

Ã(R,U, T )
(
κ(R,U, T )− κ)+

∣∣∣Ft
)
. (10)

Proof. It suffices to use the risk-neutral valuation formula. �

In order to simplify formula (10), we shall now define an equivalent probability measure Q̂ on
(Ω,FR). Towards this end, we recall that the process (at, t ∈ [0, T ]) is a strictly positive (Q∗,F)-
martingale. Then, we take the Radon-Nikodým density of Q̂ with respect to Q∗ to be given as

dQ̂
dQ∗

=
aR
a0
, Q∗-a.s. (11)

Therefore, for every t ∈ [0, R],
dQ̂
dQ∗

∣∣Ft =
at
a0
, Q∗-a.s.

It is advantageous to work under Q̂ since the process (pt = atκ(t, U, T ), t ∈ [0, R]) is a (Q∗,F)-
martingale, so that the forward CDS rate (κ(t, U, T ), t ∈ [0, R]) is a (Q̂,F)-martingale. In addition,
the pricing formula for a credit default swaption takes a simpler form under Q̂, as seen from the
following result (cf. [14] or [29]).

Proposition 2.1 The price of a credit default swaption is given by the following expression, for
every t ∈ [0, R],

Ct = 1{t<τ}Ã(t, U, T )EbQ
(
(κ(R,U, T )− κ)+

∣∣Ft
)

= 1{t<τ}C̃t, (12)

where C̃t is the pre-default value of a credit default swaption at time t.

Proof. Using (10), we obtain

Ct = 1{t<τ}BtG
−1
t EQ∗

(
GRB

−1
R Ã(R,U, T )(κ(R,U, T )− κ)+

∣∣∣Ft
)

= 1{t<τ}Ã(t, U, T )a−1
t EQ∗

(
aR(κ(R,U, T )− κ)+

∣∣∣Ft
)

= 1{t<τ}Ã(t, U, T )EbQ
(
(κ(R,U, T )− κ)+

∣∣Ft
)
,

where the last equality follows from the Bayes formula. �
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To proceed further, we assume that the filtration F is generated by a (possibly multidimensional)
Brownian motion W under Q∗. Since p and a are strictly positive (Q∗,F)-martingales, we deduce
from the predictable representation theorem for a Brownian filtration that

dpt = ptσ
p
t dWt, dat = atσ

a
t dWt,

for some F-predictable processes σp and σa.

Lemma 2.3 Let the filtration F be generated by a Brownian motion W under Q∗. Then the forward
CDS rate (κ(t, U, T ), t ∈ [0, R]) is (Q̂,F)-martingale and

dκ(t, U, T ) = κ(t, U, T )σκt dŴt (13)

where the F-predictable process σκ satisfies σκ = σp − σa and the process Ŵ , which is given by the
formula

Ŵt = Wt −
∫ t

0

σau du, ∀ t ∈ [0, R],

is a (Q̂,F)-Brownian motion.

Proof. It suffices to apply the Itô formula to (7) and use the Girsanov theorem. �

To a large extent, the above result is model independent. In particular, if the process σp − σa
is deterministic so that Black formula can be applied for pricing and hedging. Such an assumption
is quite constraining, as explained, for example, in Brigo and El-Bachir [13]. In Section 4, we shall
present pricing and hedging results for the model in which σp − σa is not deterministic, but in
which hedging and pricing results are still numerically feasible due to special structure of the hazard
process.

2.3 Hedging with a Forward-Start CDS and the Swap Portfolio

In order to get the simplest form of a hedging strategy for a credit default swaption, let us assume
that a forward CDS with a fixed rate κ is traded. As a second traded instrument, we take the bond
portfolio corresponding to the CDS annuity. Note that Ã(t, U, T ) can be seen as the pre-default
value at time t ∈ [0, U ] of a particular portfolio of defaultable bonds with zero recovery, referred to
hereafter as the swap portfolio. If default occurs at some date t ∈ [0, U ], the wealth of this portfolio
will necessarily fall to zero. Of course, the same property holds for the forward CDS as well as
for the credit default swaption. This means that in what follows we will only need to focus on the
dynamics of the pre-default value of the swaption and the pre-default wealth of a hedging portfolio.

Let A(t, U, T ) be the price process of the swap portfolio at time t ∈ [0, U ]. Formally, we set
A(t, U, T ) = 1{t<τ}Ã(t, U, T ). Recall also that St(κ) = 1{t<τ}S̃t(κ).

Let ϕ = (ϕ1, ϕ2) be a trading strategy, where ϕ1 and ϕ2 are G-predictable processes. The wealth
of ϕ equals, for any t ∈ [0, R],

Vt(ϕ) = ϕ1
tSt(κ̂) + ϕ2

tA(t, U, T )

and thus the pre-default wealth satisfies, for any t ∈ [0, T ],

Ṽt(ϕ) = ϕ1
t S̃t(κ̂) + ϕ2

t Ã(t, U, T ).

Of course, the equality Vt(ϕ) = 1{t<τ}Ṽt(ϕ) holds for any t ∈ [0, R] and thus it suffices to examine
a replicating strategy on the interval [0, τ ∧ R]. Therefore, it is enough to search for F-predictable
processes ϕ̃i, i = 1, 2 such that for every t ∈ [0, R] we have that 1{t<τ}ϕit = ϕ̃it for i = 1, 2. We then
say that ϕ replicates a credit default swaption if Ṽt(ϕ̃) = C̃t for every t ∈ [0, R] or, equivalently, if
Vt(ϕ) = Ct for every t ∈ [0, R].
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A replicating strategy ϕ is required to be self-financing, in the sense that

dṼt(ϕ) = dṼt(ϕ̃) = ϕ̃1
t dS̃t(κ̂) + ϕ̃2

t dÃ(t, U, T ).

It can be easily shown by Itô’s formula that the relative pre-default wealth satisfies

d(Ṽt(ϕ̃)/Ã(t, U, T )) = ϕ̃1
t d(S̃t(κ̂)/Ã(t, U, T )). (14)

Proposition 2.2 Assume that the Brownian motion W is one-dimensional. Then the replicating
strategy ϕ̃ = (ϕ̃1, ϕ̃2) for the credit default swaption is given by, for any t ∈ [0, τ ∧R],

ϕ̃1
t =

C̃tσ
C
t

κtσκt
, ϕ̃2

t =
C̃t − ϕ̃1

t S̃t(κ)

Ã(t, U, T )
. (15)

Proof. On the one hand, the predictable representation theorem for a Brownian filtration yields

d(C̃t/Ã(t, U, T )) = C̃tσ
C
t dŴt.

On the other hand, in view of (9), (13) and (14), we obtain

d(Ṽt(ϕ̃)/Ã(t, U, T )) = ϕ̃1
t d(S̃t(κ̂)/Ã(t, U, T )) = ϕ̃1

t dκ(t, U, T ) = ϕ̃1
tκ(t, U, T )σκt dŴt. (16)

A comparison of the formulae above yields the expression for the hedge ratio ϕ̃1. Standard arguments
show that the strategy ϕ̃ given by (15) is self-financing and its pre-default wealth satisfies Ṽt(ϕ̃) = C̃t
for every t ∈ [0, R]. As already mentioned above, it default occurs prior to or at expiration date R
of a swaption then the wealth of the portfolio ϕ falls to zero, and the same property is satisfied by
the price process of the credit default swaption. �

In view of the last result, the problem of searching for a replicating strategy for a credit default
swaption is reduced to explicit computations of processes C̃ and κ appearing in formula (15) and
the respective volatilities σC and σκ. Of course, such computations far from trivial, in general, and
they rarely lead to closed-form analytical results. In the next subsection, we will consider the classic
case where they are fairly standard.

2.4 Black Formula for Credit Default Swaptions

The goal of this section is to examine briefly the case of a deterministic volatility of a forward CDS
rate. For a more detailed discussion of the use of the Black formula in valuing credit default (index)
swaptions, the interested reader is referred to Brigo and Morini [14], Morini and Brigo [27], and
Rutkowski and Armstrong [29]. Let us only mention here that although an arbitrage-free model of a
family of forward CDS rates underpinning Proposition 2.3 is rather difficult to construct, the pricing
formula (17) corresponds to the market convention for valuing credit default swaptions, and thus it
is natural to consider it as a benchmark.

Proposition 2.3 Assume that the Brownian motion W is one-dimensional and the volatility σκ of
the forward CDS rate (κ(t, U, T ), t ∈ [0, R]) is deterministic. Then the pre-default value of a credit
default swaption maturing at R equals, for every t ∈ [0, R],

C̃t = Ã(t, U, T )
(
κtN

(
d+(κt, t, R)

)−N(d−(κt, t, R)
))
, (17)

where we write κt = κ(t, U, T ) and where

d±(κt, t, R) =
ln(κt/κ)± 1

2

∫ R
t

(σκ(u))2 du√∫ R
t

(σκ(u))2 du
.

Equivalently,
C̃t = P̃ (t, U, T )N

(
d+(κt, t, R)

)− Ã(t, U, T )N
(
d−(κt, t, R)

)
. (18)

The replicating strategy ϕ̃ is given by (15) with ϕ̃1
t = N

(
d+(κ(t, U, T ), t, R)

)
.
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Proof. Derivation of the pricing formula (17) relies on standard arguments and thus it is omitted.
To find the hedging strategy, it suffices to observe that, by a straightforward application of the Itô
formula to expression (17), the volatility of the process C̃ equals, for every t ∈ [0, T ],

σCt = (C̃t)−1κtσ
κ
t N

(
d+(κ(t, U, T ), t, R)

)
.

The results now follows by Proposition 2.2. �

In practice, hedging should rather be done by taking positions at any date t in the market
CDS, that is, the just-issued CDS with the fixed spread κ(t, U, T ). An explicit representation for
this strategy in continuous-time is more cumbersome, however, since one needs to deal with an
uncountable family of traded assets (see Section 1.1.3 in [6]).

3 Modeling of Default Time

The goal of this section is to analyze a method of modeling the default time, which, under some
assumptions, will be shown to be consistent with a hazard process model of Section 1. In particular,
we will establish some formulae for the volatilities of F-martingales p and a introduced in Section 2.
To this end, we need to introduce suitable definitions. Let then τ be a random time defined on a
probability space (Ω,G,Q∗).

Definition 3.1 For any fixed u ∈ R+, we define the F-martingale Gut = Q∗(τ > u | Ft) for t ∈ [0, T ].

For conciseness, we shall frequently write Gt instead of Gtt (of course, this convention is con-
sistent with notation introduced in Section 1). Recall that the process (Gt, t ∈ [0, T ]) is an F-
supermartingale. We also assume that G is a strictly positive process.

We will work throughout under the following standing assumption, which also underpins the
papers by El Karoui et al. [16] and Jeanblanc and Le Cam [23].

Assumption 3.1 There exists a family of F-adapted processes (fxt , t ∈ [0, T ]), where x ∈ R+, such
that, for any u ∈ R+,

Gut =
∫ ∞
u

fxt dx, ∀ t ∈ [0, T ].

Assumption 3.1 implies, in particular, that the probability distribution of the random variable
τ has the probability density function f ·0 with respect to Lebesgue measure, so that Q∗(τ ∈ dx) =
fx0 dx. More generally, for any t ∈ [0, T ], the random variable f ·t represents the conditional density
of τ with respect to the σ-field Ft, that is, fxt dx = Q∗(τ ∈ dx | Ft). To alleviate notation, we shall
write f tt = ft and we denote λ̂t = G−1

t ft.

Note that Assumption 3.1 implies that any (Q∗,F)-martingale is a (Q∗,G)-semimartingale (see
Jacod [19] or Jeanblanc and Le Cam [23]). Moreover, we have the following well known result.

Lemma 3.1 Under Assumption 3.1, the process (M̂t, t ∈ [0, T ]), given by the formula

M̂t = Ht −
∫ t∧τ

0

λ̂u du,

is a (Q∗,G)-martingale.

Proof. For the sake of completeness, we provide the proof of the lemma (it can be found in [16] and
[23]). Let us fix 0 ≤ s < t ≤ T . We have

EQ∗(M̂t − M̂s | Gs) = 1{s<τ} EQ∗
(
1{s<τ≤t} −

∫ t∧τ

s

λ̂u du
∣∣∣Gs
)

= 1{s<τ} EQ∗
(
1{s<τ≤t} − 1{t<τ}

∫ t

s

λ̂u du− 1{τ≤t}
∫ t

s

1{u<τ≤t}λ̂u du
∣∣∣Gs
)
.
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For any 0 ≤ s < t ≤ T , the following equalities hold, on the event {s < τ},

EQ∗
(
1{s<τ≤t}

∣∣Gs
)

=
1
Gs

(Gs −Gts),

EQ∗
(
1{t<τ}

∫ t

s

λ̂u du
∣∣∣Gs
)

=
1
Gs
EQ∗

(
Gt

∫ t

s

λ̂u du
∣∣∣Fs

)
,

EQ∗
(
1{τ≤t}

∫ t

s

1{u<τ≤t}λ̂u du
∣∣∣Gs
)

=
1
Gs
EQ∗

(∫ t

s

λ̂u(Gut −Gt) du
∣∣∣Fs

)
,

where two last equalities are obtained by conditioning with respect to Ft. Consequently,

EQ∗(M̂t − M̂s | Gs) = 1{s<τ}
1
Gs

(
Gs −Gts − EQ∗

(∫ t

s

λ̂uG
u
t du

∣∣∣Fs
))

.

To conclude that EQ∗(M̂t − M̂s | Gs) = 0 for s ≤ t, it suffices to note that

EQ∗
(∫ t

s

λ̂uG
u
t du

∣∣∣Fs
)

=
∫ t

s

EQ∗
(
EQ∗

(
λ̂uG

u
t | Fu

) ∣∣∣Fs
)
du

=
∫ t

s

EQ∗
(
λ̂u EQ∗

(
Gut | Fu

) ∣∣∣Fs
)
du =

∫ t

s

EQ∗(λ̂uGu | Fs) du

= EQ∗
(∫ t

s

fu du
∣∣∣Fs

)
= Gs −Gts,

since EQ∗(Gut | Fu) = Q∗(τ > u | Fu) = Gu for u ≤ t. �

The next standing assumption will allow us to make use of the predictable representation property
of the Brownian filtration.

Assumption 3.2 The filtration F is generated by a one-dimensional Brownian motion (Wt, t ∈
[0, T ]) under Q∗.

Under Assumption 3.2, for any fixed u ∈ R+, the (Q∗,F)-martingale Gu admits the following
integral representation, for t ∈ [0, T ],

Gut = Gu0 +
∫ t

0

gus dWs (19)

for some F-predictable, real-valued process (gut , t ∈ [0, T ]). Similarly, for any fixed x ∈ R+, the
process (fxt , t ∈ [0, T ]) is a non-negative (Q∗,F)-martingale and thus there exists an F-predictable
process (σxt , t ∈ [0, T ]) such that, for t ∈ [0, T ],

fxt = fx0 +
∫ t

0

σxs dWs. (20)

Since the stochastic Fubini’s theorem yields

Gut =
∫ ∞
u

fxt dx =
∫ ∞
u

(
fx0 +

∫ t

0

σxs dWs

)
dx = Gu0 +

∫ t

0

dWs

∫ ∞
u

σxs dx,

we conclude that the following relationship is valid, for every u ∈ R+ and t ∈ [0, T ],

gut =
∫ ∞
u

σxt dx.

By applying the Itô-Wentzell-Kunita formula (see Theorem 3.3.1 in Kunita [25] or Section 5
below), we obtain the following auxiliary result, where we denote gss = gs and fss = fs.
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Lemma 3.2 Under Assumptions 3.1-3.2, the Doob-Meyer decomposition of the survival process G
reads, for every t ∈ [0, T ],

Gt = G0 +
∫ t

0

gu dWu −
∫ t

0

fu du. (21)

In particular, G is a continuous process.

The following result shows that under Assumptions 3.1-3.2 we can make use of all results of
Section 1.

Lemma 3.3 Assumptions 3.1-3.2 imply that Assumption 1.1 is satisfied. Moreover, the equality
λ̂ = λ is valid and thus the process M̂ = M is a (Q∗,G)-martingale.

Proof. In view of Lemma 3.2, for the process ν in the Doob-Meyer decomposition of G we obtain
dνt = ft dt = λ̂tGt dt. Therefore, Assumption 1.1 is satisfied and the equality λ̂ = λ holds. This in
turn implies that, for every t ∈ [0, T ],

M̂t = Ht −
∫ t∧τ

0

λ̂u du = Ht −
∫ t∧τ

0

λu du = Mt

and thus M̂ is a (Q∗,G)-martingale since, under Assumption 1.1, the process M given by (2) is
known to be a (Q∗,G)-martingale. �

It is shown in [23] that, under Assumptions 3.1-3.2, the process

W̃t = Wt −
∫ t∧τ

0

gu
Gu

du+
∫ t

t∧τ

στu
fτu

du (22)

is a (Q∗,G)-Brownian motion. We take this result for granted and we refer to [23] for the proof. Let
us note that on the event {t < τ} the process W̃ satisfies

dW̃t = dWt − gtG−1
t dt.

3.1 Price Dynamics of a Defaultable Claim

The following assumption will allow us to establish more explicit representations for (pre-default)
prices.

Assumption 3.3 The quantities Z,X,A and B are deterministic. To emphasize this feature, we
will write Z(t), A(t), B(t) and β(t) = B−1(t), rather than Zt, At, Bt and βt = B−1

t .

The main goal of the next result is to derive a more explicit representation for the volatility term
appearing in the price dynamics.

Proposition 3.1 Under Assumptions 3.1-3.3, the dynamics of the pre-default price S̃ are

dS̃t =
(
(r(t) + λt)S̃t − λtZ(t)

)
dt+ dA(t) + ζt

(
dWt − gtG−1

t dt
)

and the dynamics of the cumulative price Sc are

dSct = r(t)Sct dt+ (Z(t)− S̃t) dMt + (1−Ht)ζt dW̃t,

where the (Q∗,G)-Brownian motion W̃ is given by (22) and the process ζ equals, for every t ∈ [0, T ],

ζt = G−1
t

(
B(t)νt − S̃tgt

)
(23)

with

νt = β(T )XGTt +
∫ T

t

β(u)Z(u)σut du+
∫ T

t

β(u)gut dA(u). (24)
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Proof. Under Assumptions 3.1-3.3, using the martingale properties of the processes Gu and fu, we
obtain from (3)

St = 1{t<τ}
B(t)
Gt

(
β(T )XGTt +

∫ T

t

β(u)
(
Z(u)fut du+Gut dA(u)

))
(25)

and

mt = β(T )XGTt +
∫ t

0

β(u)Z(u)fu du+
∫ T

t

β(u)Z(u)fut du

+
∫ t

0

β(u)Gu du+
∫ T

t

β(u)Gut du.

It follows that

dmt =
(
β(T )XGTt +

∫ T

t

β(u)Z(u)σut du+
∫ T

t

β(u)gut dA(u)
)
dWt = νt dWt,

where the process ν is given by (24). Hence, using the equality µt =
∫ t

0
gs dWs, we obtain

d〈µ〉t = g2
t dt, d〈µ,m〉t = gtνt dt

In view of (23), the asserted formulae follow directly from Proposition 1.1. �

3.2 Price Dynamics of a Forward CDS

In what follows, we shall work under Assumptions 3.1-3.3. Let S(κ) be the price of a forward CDS
with the protection payment δ(τ) at time τ on the event {U ≤ τ ≤ T}, where δ is some function,
κ is the constant spread and L is an increasing function. By the risk-neutral valuation formula (4),
the price St(κ) of a forward CDS equals, for every t ∈ [0, U ],

St(κ) = B(t)EQ∗
(
1{U≤τ≤T}β(τ)δ(τ)− κ

∫

]τ∧U,τ∧T ]

β(u) dL(u)
∣∣∣Gt
)

for a deterministic increasing function L specifying the tenor structure of fee payments.

The following result is a rather straightforward consequence of Proposition 3.1.

Corollary 3.1 Under Assumptions 3.1-3.3, the price S(κ) satisfies, for every t ∈ [0, U ],

St(κ) = 1{t<τ}
B(t)
Gt

(∫ T

U

β(u)δ(u)fut du− κ
∫

]U,T ]

β(u)Gut dL(u)
)
. (26)

The dynamics of the process S̃(κ) are, for t ∈ [0, U ],

dS̃t(κ) = (r(t) + λt)S̃t(κ) dt+ ζt

(
dWt − gt

Gt
dt
)
,

where

ζt =
B(t)
Gt

(∫ T

U

β(u)δ(u)σut du− κ
∫

]U,T ]

β(u)gut dL(u)
)
− S̃t(κ)

gt
Gt
.

Consequently, the ex-dividend prices satisfies, for t ∈ [0, U ],

dSt(κ) = r(t)St(κ) dt− St−(κ) dMt + (1−Ht)ζt
(
dWt − gt

Gt
dt
)

and the cumulative price satisfies, for t ∈ [0, U ],

dSct (κ) = rtS
c
t (κ) dt+

(
δ(t)− St−(κ)

)
dMt − (1−Ht)ζt

(
dWt − gt

Gt
dt
)
.
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The final step is the computation of the volatilities appearing in dynamics (13) of the forward
CDS rate. Of course, the usefulness of Lemma 3.4 depends on the possibility of explicit computations
of these volatilities. In Section 4, we will argue that such computations can be performed in the
CIR intensity model. Recall that the positive (Q∗,F)-martingales p and a are defined by (8).

Lemma 3.4 Under Assumptions 3.1-3.3, the volatilities σp and σa of positive (Q∗,F)-martingales
p and a are given by the following expressions

σpt =
(∫ T

U

β(u)δ(u)σut du
)(∫ T

U

β(u)δ(u)fut du
)−1

,

σat =
(∫

]U,T ]

β(u)gut dL(u)
)(∫

]U,T ]

β(u)Gut dL(u)
)−1

.

Proof. Using the martingale properties of processes Gu and fu, we obtain

pt = −EQ∗
(∫ T

U

β(u)δ(u) dGu
∣∣∣Ft
)

= EQ∗
(∫ T

U

β(u)δ(u)fu du
∣∣∣Ft
)

=
∫ T

U

β(u)δ(u)EQ∗(fu|Ft) du =
∫ T

U

β(u)δ(u)fut du,

at = EQ∗
(∫

]U,T ]

β(u)Gu dL(u)
∣∣∣Ft
)

=
∫

]U,T ]

β(u)EQ∗(Gu|Ft) dL(u) =
∫

]U,T ]

β(u)Gut dL(u).

Therefore,

dpt =
∫ T

U

β(u)δ(u) dtfut du =
(∫ T

U

β(u)δ(u)σut du
)
dWt,

dat =
∫

]U,T ]

β(u) dtGut dL(u) =
(∫

]U,T ]

β(u)gut dL(u)
)
dWt.

We conclude that
dpt = ptσ

p
t dWt, dat = atσ

a
t dWt

with the volatilities σp and σa given in the statement of the lemma. �

3.3 Immersion Property

It is not uncommon to construct a default time τ in such a way that the filtration F is immersed in
G. Recall that a filtration F is said to be immersed in a filtration G under Q∗, where F ⊂ G, if any
(Q∗,F)-martingale is a (Q∗,G)-martingale; this condition is also frequently referred to as the (H)
hypothesis.

Assumption 3.4 The filtration F is immersed in the filtration G = H ∨ F.

In our setting, Assumption 3.4 implies that G is an increasing process and, for any u ∈ [0, T ],
the F-martingale Gu is stopped at time u. The following lemma is thus easy to establish.

Lemma 3.5 Under Assumptions 3.1-3.4, we have that gt = 0 for every t ∈ [0, T ]. Moreover,
fut = fuu = fu for every 0 ≤ u < t ≤ T and thus σut = 0 for every 0 ≤ u < t ≤ T . Consequently, the
equality W = W̃ holds and thus an (Q∗,F)-Brownian motion W is also a (Q∗,G)-Brownian motion.

By combining Proposition 3.1 with Lemma 3.2, we obtain the following result. Of course, this
result can also be applied to a forward CDS.
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Corollary 3.2 Under Assumptions 3.1-3.4, we have that, for every t ∈ [0, T ],

dS̃t =
(

(r(t) + λt)S̃t − λtZ(t)
)
dt+ dA(t) + ζt dWt

and the dynamics of the cumulative price are

dSct = r(t)Sct dt+ (Z(t)− S̃t) dMt + (1−Ht)ζt dWt

with ζt = G−1
t B(t)νTt .

3.4 Modeling of fxt

We are looking for a family of non-negative martingales fx such that
∫∞

0
fxt dx = 1, so that they

can be considered as probability densities in x.

3.4.1 A backward methodology

Assume that, for some T ≤ ∞, a family fxT of FT -measurable non negative random variables is
given, so that ∫ ∞

0

fxT dx = 1.

Then, setting
fxt := E(fxT |Ft) (27)

will provide a family of densities. A family of fxT can be constructed in different ways. We shall
present two possible constructions.

A first example is to start with a family ϕ(x, α) of densities in x ∈ R+, depending on a parameter
α ∈ A ⊂ Rd, so that: ∫

R+

ϕ(x, α)dx = 1.

Then, take X an FT -measurable random variable, taking value in A, and fxT := ϕ(x,X). In
particular we can take ϕ(x, α) = αe−αx. In that case, fxt = E(Xe−xX |Ft) can be computed as
∂xE(e−xX |Ft).

Another example is to assume that

fxT = λxT exp
(
−
∫ x

0

λuT du

)
,

where λuT , u ≥ 0, is a family of non-negative FT -measurable random variables such that
∫∞

0
λuT du =

∞.

3.4.2 A forward construction

Here we consider a random field fxt , x, t ≥ 0, where

fxt = λxt exp
(
−
∫ x

0

λut du
)

for a family of non-negative processes λu, u ≥ 0, that satisfy

dλut = λut
(
aut dt+ σut dWt

)
. (28)

Our aim is to find conditions on the coefficients aut , σut , so that for each x ≥ 0 the process fx is a
non-negative martingale.
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Lemma 3.6 The martingale property of fx is equivalent to the following condition

axt −
∫ x

0

aut λ
u
t du− σxt

∫ x

0

λut σ
u
t du+

1
2

(∫ x

0

σut λ
u
t du

)2

= 0. (29)

Proof. Application Itô’s lemma yields

dfxt = exp
(
−
∫ x

0

λut du
)(

dtλ
x
t − λxt

(∫ x

0

dtλ
u
t du+

1
2

(
∫ x

0

λut σ
u
t du)2

)
dt− σxt

(
λxt

∫ x

0

λut σ
u
t du

)
dt

)

= exp
(
−
∫ x

0

λut du
)
λxt (µxt dt+ Σxt dWt)

with µxt = axt −
∫ x

0
aut λ

u
t du− σxt

∫ x
0
λut σ

u
t du+ 1

2

(∫ x
0
σut λ

u
t du

)2
. �

Condition (29) is satisfied, for example, if axt = σxt
∫ x

0
λut σ

u
t du, in which case equation (28) takes

the form

dλxt = λxt σ
x
t

(∫ t

0

λut σ
u
t du

)
dt+ λxt σ

x
t dWt. (30)

Please note the obvious analogy of the above equation with HJM model for the instantaneous
forward interest rates. Also, please note that it is not guaranteed that the solution of the equation
(30) is non-negative.

We shall provide a general template for models yielding non-negative families λu, u ≥ 0 of
solutions to (30). Towards this end we shall first rewrite the equation as

λxt = λx0 +
∫ t

0

ψxsΨx
s ds+

∫ t

0

ψxs dWs, (31)

where ψxt = λxt σ
x
t and Ψx

t =
∫ x

0
ψut du. Non-negativity of λx is satisfied if

• process ψx is non-negative, and hence the process ψxΨx is non-negative as well,

• the process Zxt := λx0 +
∫ t

0
ψxs dWs is a Doléans-Dade exponential with initial value λx0 > 0, that

is, Zx satisfies Zxt = λx0 +
∫ t

0
Zxs b

x
sdWs, for some process bx. A sufficient for this to happen is

that ψx is such that for every t ≥ 0 we have
∫ t

0

ψxs dWs =
∫ t

0

bxsZ
x
s dWs.

This means that

ψxt = bxtZt = bxt λ
x
0 exp

(∫ t

0

bxsdWs − 1
2

∫ t

0

(bxs )2ds

)
. (32)

We thus obtain the following

Proposition 3.2 Let λx0 > 0 and bx be a non-negative F-adapted process, where x ≥ 0. Define ψxt
by

ψxt = bxt λ
x
0 exp

(∫ t

0

bxs dWs − 1
2

∫ t

0

(bxs )2 ds

)
, (33)

and let

fxt = λxt exp
(
−
∫ x

0

λvt dv

)
,

where

λxt = λx0 +
∫ x

0

ψxs dWs +
∫ t

0

ψxsΨx
s ds.

If the family λx, x ≥ 0, satisfies the property that
∫∞

0
λxt dx = ∞, then the family (fx, x ≥ 0)

satisfies the required assumptions specified in the beginning of this section.



T.R. Bielecki, M. Jeanblanc and M. Rutkowski 17

3.4.3 A Cox process approach

We give another method motivated by construction of the first jump of a Cox processes.

Assume that a non-negative F-adapted process λ is given and set Λt =
∫ t

0
λsds. Let Θ be a

random variable independent of F∞ with unit exponential law, and let V be an F∞-measurable
non-negative random variable. We define:

τ = inf{t : Λt ≥ Θ/V }.
For any x ≥ 0 and t ≥ 0 we have

P(τ > x|Ft) = E (P (ΛxV < Θ| F∞) |Ft) = E (exp−(V Λx)|Ft) =
∫ ∞
x

fut du,

with
fxt = − d

dx
E (exp−(V Λx)| Ft) = E (V λx exp (−V Λx) |Ft) .

It is straightforward to see that the family (fx, x ≥ 0) satisfies the required assumptions specified
in the beginning of this section.

3.4.4 A functional approach

We assume that fxt is a strictly positive random field. Then, we have that for all x ≥ 0

fxt = fx0 +
∫ t

0

fxu Σxu dWu,

for some predictable process Σx. Observe that the normalization condition
∫∞

0
fxt dx = 1, which

needs to be satisfied for all t ≥ 0, implies that
∫ ∞

0

fxt Σxt dx = 0

for all t ≥ 0. A sufficient condition for the random field Σxt to satisfy the above condition is that

Σxt = Ψx
t −

∫ ∞
0

fyt Ψy
t dy,

for some family of predictable processes Ψy
t . Thus, fxt satisfies

fxt = fx0 +
∫ t

0

fxu

(
Ψx
u −

∫ ∞
0

fyu Ψy
u dy

)
dWt. (34)

This indicates a possible method for modeling of fxt in terms of fx0 and Ψx
u starting from the

above equation.

Any family fx satisfying the above equation is obviously a family of local martingales fulfilling
the normalization condition. However, non-negativity and martingale properties of such a family
are not obvious. At the moment we were unable to construct any example of family fx satisfying
the above equation and fulfilling the required assumptions specified in the beginning of this section.
We note that equation of this type has been recently studied by Macrina et. al [17].

4 Intensity-Based Modeling

The goal of this section is to provide an example of a model in which our standing assumptions are
satisfied and to show that this model is amenable for quasi-explicit computations of the price of a
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credit default swaption and its replicating strategy in term of the underlying forward CDS and the
corresponding swap portfolio process.

It is not uncommon to start modeling by specifying the dynamics of the default intensity process.
Following this approach, let us postulate that we are given a non-negative and F-predictable process
λ defined on some probability space (Ω,G,Q∗), which is endowed with a filtration F. The default
time is defined by the formula

τ = inf
{
t ∈ R+ :

∫ t

0

λu du ≥ x
}
, (35)

where x is a random variable with the unit exponential distribution, independent of the filtration F.
Note that τ can be seen as the moment of the first jump of a Cox process with the intensity process
λ. Let us denote Λt =

∫ t
0
λu du. It is easily seen that the (Q∗,F)-martingale (Gut , t ∈ [0, T ]) satisfies

Gut = EQ∗
(
e−Λu

∣∣Ft
)

for t ∈ [0, u[, Gut = e−Λu for t ∈ [u, T ],

so that the process G equals Gt = e−Λt for every t ∈ [0, T ]. Moreover, the (Q∗,F)-martingale
(fxt , t ∈ [0, T ]) satisfies

fxt = EQ∗
(
λxe
−Λx

∣∣Ft
)

for t ∈ [0, x[, fxt = λxe
−Λx for t ∈ [x, T ].

It is well known that the immersion property holds between F and G = H ∨ F. If, in addition, F is
the Brownian filtration then Assumptions 3.1-3.4 are satisfied.

4.1 CIR Intensity Model

For the sake of concreteness, we examine a special case of the Cox process model in which the default
intensity process λ is governed by the CIR dynamics

dλt = µ(λt) dt+ ν(λt) dWt, λ0 > 0,

where µ(λ) = a − bλ, ν(λ) = c
√
λ and W is a one-dimensional Brownian motion, which generates

the filtration F. It is well known that under the assumption that 2a > c the unique solution to this
SDE is strictly positive. We postulate that the default time τ is given by formula (35).

Let us denote, for arbitrary 0 ≤ t ≤ u ≤ T ,

Hu
t = EQ∗

(
e−(Λu−Λt)

∣∣Ft
)

=
Gut
Gt

. (36)

It is known (see, e.g., [28], page 357, or [24], Section 6.3.4) that

Hu
t = em(t,u)−n(t,u)λt = Ĥ(λt, t, u), (37)

where we write
Ĥ(y, t, u) = em(t,u)−n(t,u)y (38)

and where the functions m and n are given by explicit formulae, specifically,

m(t, T ) =
2a
c2

ln
{

γeb(T−t)/2

γ cosh γ(T − t) + 1
2b sinh γ(T − t)

}

and

n(t, T ) =
sinh γ(T − t)

γ cosh γ(T − t) + 1
2b sinh γ(T − t) ,

where in turn 2γ = (b2 + 2c2)1/2. It is important to notice that, for any fixed t ∈ R+, the function
n(t, T ), T ≥ t, is strictly increasing. Moreover, the function n is strictly positive and thus, for any
fixed u and t, the auxiliary function Ĥ(y, t, u) is decreasing and continuous in y ∈ R+.
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Now, let D0(t, T ) be the price at time t of a unit defaultable zero-coupon bond with zero recovery
maturing at T ≥ t, and let B(t, T ) be the price at time t of a unit discount bond maturing at T ≥ t.
It is well known that if interest rates are independent of the intensity process, then D0(t, T ) is given
by the following formula

D0(t, T ) = 1{t<τ}B(t, T )HT
t . (39)

4.2 Volatility of a Forward CDS Rate

Our first goal in the CIR intensity model is to analyze the volatility of the forward CDS rate. To
this end, we need to find the integral representations of F-martingales Gu and fx.

Lemma 4.1 For any fixed 0 < t ≤ T and t < u, we have dGut = gut dWt, where

gut = −e−ΛtHu
t ν(λt)n(t, u). (40)

For any fixed 0 < x ≤ T and every t ≤ x, we have that

fxt = −e−Λt∂xH
x
t = e−ΛtαxtH

x
t , (41)

where
αxt = λt∂xn(t, x)− ∂xm(t, x).

Moreover, for t < x, the equality dtfxt = σxt dWt holds with

σxt = e−ΛtHx
t ν(λt)

(
nx(t, x)− αxt n(t, x)

)
. (42)

Proof. Let us first establish (41). To this end, we note that

fxt = EQ∗(λxe−Λx | Ft) = e−Λt EQ∗(λxe−(Λx−Λt) | Ft) = −e−Λt∂xH
x
t .

Using (38), we obtain

∂xH
x
t = (∂xm(t, x)− λt∂xn(t, x))Hx

t = −αxtHx
t ,

so that equality (41) is valid. Since Gu and fx are F-martingales, to derive (40) and (42), it suffices
to focus on martingale terms in their differentials. Noting that Gut = eΛtHu

t and applying the Itô
formula to (36), we obtain (40). Similarly, to establish (42), it suffices to apply the Itô integration
by parts formula to αxtH

x
t . �

For simplicity of presentation, in the next result we reduce our attention to the case of null
interest rate, that is, we set B ≡ 1.

Proposition 4.1 Assume that δ > 0 is a positive constant and B ≡ 1. Then

σpt = ν(λt)
HT
t n(t, T )−HU

t n(t, U)
HT
t −HU

t

(43)

and

σat = ν(λt)

∫
]U,T ]

Hu
t n(t, u) dL(u)∫

]U,T ]
Hu
t dL(u)

. (44)

Proof. Under the present assumptions, we obtain from Lemma 3.4

σpt =
(∫ T

U

σut du
)(∫ T

U

fut du
)−1
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and
σat =

(∫

]U,T ]

gut dL(u)
)(∫

]U,T ]

Gut dL(u)
)−1

.

Using (41) and (42), we get

σpt =
e−Λtν(λt)

∫ T
U
Hu
t

(
αut n(t, u) + ns(t, u)

)
du

e−Λt
∫ T
U
αutH

u
t du

.

Since
∫ T

U

Hu
t

(
αut n(t, u) + ns(t, u)

)
du =

∫ T

U

∂s(Hu
t n(t, u)) du = HT

t n(t, T )−HU
t n(t, U)

and ∫ T

U

αutH
u
t du = HT

t −HU
t ,

we conclude that (43) holds. For σa, using (36) and (40), we obtain

σat =
−e−Λtν(λt)

∫
]U,T ]

Hu
t n(t, u) dL(u)

e−Λt
∫

]U,T ]
Hu
t dL(u)

.

This completes the proof. �

Remark. In the general case of non-zero interest rates the formulae change accordingly. For example

σpt = ν(λt)
HT
t n(t, T )β(T )−HU

t n(t, U)β(U) +
∫ T
U
r(u)β(u)Hu

t n(t, u)du

HT
t β(T )−HU

t β(U) +
∫ T
U
r(u)β(u)Hu

t du
. (45)

In view of Proposition 4.1, it is natural to conjecture that the volatility σκ of the forward CDS
rate is not deterministic, thereby precluding possibility of justifying the use of Black formula in the
CIR stochastic intensity model.

4.3 Credit Default Swaption

We shall use here the setup of Section 3.2, and we shall build upon the ideas borrowed from [13]
(see also [10] and [20]). Throughout this section, it is assumed that δ(t) = δ, where δ is a positive
constant. Moreover, we assume that the spot rate is a non-negative deterministic function of time
(we refer to [13] for a discussion of this assumption in the context of valuation of default swaptions).

Recall that a credit default swaption is formally equivalent to a defaultable claim (CR, 0, 0, τ),
where CR =

(
SR(κ)

)+. Observe that under present assumptions the price at time t of a unit discount
bond maturing at time u satisfies B(t, u) = B(t)B−1(u) = B(t)β(u). Let us write λut = fut G

−1
t so

that λut = ĥ(λt, t, u), where
ĥ(y, t, u) = −∂uĤ(y, t, u),

and where function Ĥ is given in (38). Hence, in view of (26), we see that

CR = 1{R<τ}

(
δ

∫ T

U

B(R, u)λuR du− κ
∫

]U,T ]

B(R, u)Hu
R dL(u)

)+

.

A straightforward computation leads to the following representation

CR = 1{R<τ}

(
δB(R,U)HU

R −
∫

]U,T ]

Hu
R dχ(u)

)+

, (46)
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where the function χ : R+ → R satisfies

dχ(u) = −δ ∂B(R, u)
∂u

du+ κB(R, u) dL(u) + δB(R, u) d1[T,∞[(u).

Let us define auxiliary functions ζ, ψ : R+ → R+ by setting

ψ(y) =
∫

]U,T ]

Ĥ(y,R, u) dχ(u), ζ(x) = δB(R,U)Ĥ(x,R,U).

We note that χ generates a non-negative measure µχ on (]U, T ],B(]U, T ])) and µχ(]U, T ]) > 0.
Therefore, the strictly positive function ψ is strictly decreasing. In addition, ψ is continuous, and
thus its inverse is continuous too. Moreover, the swaption’s payoff admits the following representation

CR = 1{R<τ}
(
δB(R,U)Ĥ(λR, R, U)− ψ(λR)

)+

. (47)

Our goal now is to examine the representation (47) in more detail. Towards this end we shall
analyze existence of solution to the following equation

ζ(λR) = ψ(y),

or, more explicitly

δB(R,U)Ĥ(λR, R, U) =
∫

]U,T ]

Ĥ(y,R, u) dχ(u), (48)

which needs to be understood as equation in variable y ≥ 0.

Since limy→∞ Ĥ(y,R, u) = 0 and thus limy→∞ ψ(y) = 0, it is clear that if ζ(λR) < ψ(0) a.s.
then there exists a unique positive random variable λ∗R that solves equation (48) almost surely. If
ζ(λR) ≥ ψ(0) a.s., then ζ(λR) > ψ(y) a.s. for any y > 0 and therefore, almost surely, there is no
positive solution to equation (48).1

We now have the following result,

Proposition 4.2 Assume that the inequality ζ(λR) < ψ(0) is valid almost surely. Then

CR = 1{R<τ}

∫

]U,T ]

(
Ĥ(λ∗R, R, u)− Ĥ(λR, R, u)

)+
dχ(u). (49)

If the inequality ζ(λR) ≥ ψ(0) is satisfied almost surely, then

CR = 1{R<τ}

(
δB(R,U)Ĥ(λR, R, U)−

∫

]U,T ]

Ĥ(λR, R, u) dχ(u)
)
. (50)

Proof. If ζ(λR) < ψ(0) a.s. then, in view of (46) and of our discussion following equation (48), we
have that

CR = 1{R<τ}

(∫

]U,T ]

(
Ĥ(λ∗R, R, u)− Ĥ(λR, R, u)

)
dχ(u)

)+

= 1{R<τ}

(∫

]U,T ]

(
Ĥ(λ∗R, R, u)− Ĥ(λR, R, u)

)
µχ(du)

)+

.

To prove (49), it suffices to recall that µχ is a non-negative measure and the sign of the expression
Ĥ(y∗, U, u)− Ĥ(λU , U, u) is constant with respect to u. The validity of (50) is obvious. �

Recalling (39) we thus obtain the following
1The ”intermediate” case, when 0 < Q∗(ζ(λR) < ψ(0)) < 1 can be analyzed accordingly.
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Corollary 4.1 Assume that the inequality ζ(λR) < ψ(0) is valid almost surely. Then the payoff of
a credit default swaption with expiration date U equals

CR =
∫

]U,T ]

(
K(u)D0(R,R)−D0(R, u)

)+
dχ̂(u), (51)

where dχ̂(u) = B−1(R, u) dχ(u) and K(u) = Ĥ(λ∗R, R, u)B(R, u).

If the inequality ζ(λR) ≥ ψ(0) is satisfied almost surely, we have that

CR =
∫

]U,T ]

(
K(u)D0(R,R)−D0(R, u)

)
dχ̂(u). (52)

Let us focus on the case ζ(λR) < ψ(0) a.s.. From Corollary 4.1, we conclude that the credit
default swaption is formally equivalent in the present setup to a weighted portfolio of survival
claims (CuR, 0, 0, τ) maturing at R and indexed by u ∈ [U, T ], where CuR equals

CuR =
(
K(u)D0(R,R)−D0(R, u)

)+ = 1{R<τ}
(
K(u)− D̃0(R, u)

)+

The problem of hedging of a credit default swaption is thus reduced to a problem of hedging of
options on zero-coupon defaultable bonds with zero recovery. For this purpose, we can employ the
techniques developed in Section 4.2.2 of [4]. Specifically, we take as the hedging instruments two
defaultable zero coupon bonds, say Y 1(t) = D0(t, T1) =: 1τ>tỸ 1

t and Y 2(t) = D0(t, T2) =: 1τ>tỸ 2
t ,

with maturities T1, T2 > T , and sensitive to the same default time τ. Now, as shown in [4] if we can
find a constant x(u) and a predictable process (ϕ2

t (u), t ∈ [0, R]) such that

x(u) +
∫ R

0

ϕ2
s(u) dỸ 2,1

s = (K(u)− D̃0(R, u))+,

where Ỹ 2,1
t = Ỹ 2

t /Ỹ
1
t , then we can find a predictable process (ϕ1

t (u), t ∈ [0, R]) such that the pair
ϕ(u) := (ϕ1(u), ϕ2(u)) is a self-financing portfolio replicating the claim 1{R<τ}

(
K(u)− D̃0(R, u)

)+
.

Assuming that x(u) and ϕ(u) are sufficiently regular functions of u, we can apply a stochastic
Fubini theorem (cf. e.g. [24]) to conclude that ϕ = (ϕ1, ϕ2), where ϕit =

∫
]U,T ]

ϕi(u) dχ̂(u), is a
self-financing portfolio replicating CR. Finally, we observe that one can synthesize a zero coupon
corporate bond with a portfolio of coupon paying corporate bonds and a bank account. So, in
conclusion, we see that, at least in principle, the payoff CR can be replicated by a self-financing
portfolio of corporate coupon bonds and a bank account.

In the particular case where R = U , one has Ĥ(y, U, U) = 1 and B(U,U) = 1, therefore ζ(x) = δ
for any x ∈ R+. Then, (48) reduces to

δ =
∫

]U,T ]

Ĥ(y,R, u) dχ(u),

and the solution λ∗R is deterministic. In this case, we may use equality (51) to derive first an explicit
pricing formula for a swaption in terms of the intensity process λ and subsequently to use this formula
for analytical computations of the volatility σC of the swaption’s pre-default price. In principle, this
would allow us to compute the replicating strategy in terms of the underlying forward CDS and the
corresponding swap portfolio, as derived in Proposition 2.2. In fact, the pricing formula for a put
option written on a defaultable bond corresponds here to the well known bond option formula in the
CIR interest rate model and thus it is readily available. Therefore, the computation of the volatility
process σC is also feasible, at least in principle, by an application of the Itô formula to the pricing
formula for Ct, t ∈ [0, U ].

In case of R < U it seems rather difficult to employ (49) for analytical computations of the
volatility of the swaption’s price. That is why, one may want to consider an alternative approach
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involving another possible representation of CR. To obtain this representation, let us recall that
ζ(x) = δB(R,U)Ĥ(x,R,U), and observe that ζ : R+ → R+ is strictly positive and strictly decreas-
ing. Let x∗ > 0 denote a solution (if it exists) to the deterministic equation

ζ(x) = ψ(x). (53)

Lemma 4.2 If the inequality ζ(0) < ψ(0) holds then there exists a unique solution x∗ > 0 to
equation (53) and ζ(x) > ψ(x) for x > x∗. If ζ(0) ≥ ψ(0) then ζ(x) ≥ ψ(x) for every x ∈ R+.

Proof. Recall that the inequality n(R,U) < n(R, u) holds for every u ∈]U, T ]. It is easy to deduce
that ζ ′(x) = −n(R,U)ζ(x) whereas ψ′(x) < −n(R,U)ψ(x) for every x > 0. This implies that a
unique solution x∗ > 0 to equation (53) exists if ζ(0) < ψ(0). It is also clear that there is no strictly
positive solution to this equation if ζ(0) ≥ ψ(0). �

Assume first that ζ(0) ≥ ψ(0). Then (47) becomes

CR = 1{R<τ}
(
δB(R,U)Ĥ(λR, R, U)− ψ(λR)

)
= 1{R<τ}

(
ζ(λR)− ψ(λR)

)
. (54)

If ζ(0) < ψ(0) then (47) can be represented as follows

CR = 1{R<τ}1{λR>x∗}
(
δB(R,U)Ĥ(λR, R, U)−ψ(λR)

)
= 1{R<τ}1{λR>x∗}

(
ζ(λR)−ψ(λR)

)
. (55)

5 Appendix: Itô-Kunita-Wentzell Formula

For the reader’s convenience, we recall here the Itô-Kunita-Wentzell formula. Let Ft(x) be a family
of stochastic processes, continuous in (t, x) ∈ (R+×Rd) a.s., and satisfying the following conditions:
(i) for each t > 0, x→ Ft(x) is C2 from Rd to R,
(ii) for each x, (Ft(x), t ≥ 0) is a continuous semimartingale

dFt(x) =
n∑

j=1

f jt (x) dM j
t ,

where M j are continuous semimartingales, and f j(x) are stochastic processes continuous in (t, x),
such that for every s > 0, the map x → f js (x) is C1, and for every x, f j(x) is an adapted process.
Let X = (X1, · · · , Xd) be a continuous semimartingale. Then

Ft(Xt) = F0(X0) +
n∑

j=1

∫ t

0

f js (Xs) dM j
s +

d∑

i=1

∫ t

0

∂Fs
∂xi

(Xs) dXi
s

+
d∑

i=1

n∑

j=1

∫ t

0

∂fs
∂xi

(Xs) d〈M j , Xi〉s +
1
2

d∑

i,k=1

∫ t

0

∂2Fs
∂xi∂xk

d〈Xk, Xi〉s.
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