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Term structure of credit

(2)

and:

(3)

where W is the Wiener process under P.
It should be stressed that the process:

(4)

does not represent the price process of a tradeable security. In other words,
“the risky bond that is in state i at time t” is not a tradeable asset. In the
present framework, a particular defaultable bond is formally defined by its
face value (by convention, equal to one), the maturity date T, the bond’s
recovery covenants and the bond’s initial rating, which we denote by C1

0.
As a consequence of (2) and (3), we get the following dynamics of B(t, T)
and Di(t, T) under the equivalent risk-neutral probability P:

(5)

and:

(6)

where µi(t) is an F-adapted stochastic process related to a Girsanov trans-
formation, and bi(t, T) = – ∫Tt σi(t, u)du is the bond’s (possibly determin-
istic) volatility. Finally, W* denotes the Wiener process under P*.

Credit migrations
Let Ct = (C1

t, C
2
t ) denote a two-dimensional conditional Markov process

taking values in K × K. In financial interpretation, process C models mi-
grations between credit grades. More specifically, C1

t is the current rating
of a bond and C2

t represents its previous rating grade. It is thus natural to
assume that the states (K, i), i ∈ K are absorbing. This idea of a “twin state”
conditional Markov chain is similar to that suggested in Arvanitis, Grego-
ry & Laurent (1999).

We wish to model the price process of a defaultable bond for a given
initial credit state C0 at time 0. We may therefore assume that (C1

0, C
2
0) =

(i, i) for some i ≠ K). We need to take into account not only the fluctua-
tions of the price due to the presence of the Wiener noise (interest rate
risk), but also the sudden jumps that are due to rating upgrades or down-
grades (credit risk).

Let δi ∈ [0, 1), i = 1, ... , K – 1, denote the recovery rates.This means
that if the T-maturity unit bond defaults before or at time T, its owner is
entitled to the payout δi at maturity date T, provided that the bond be-
longed to class i just before default occurred. Such a recovery scheme is
commonly referred to as the fractional recovery of treasury value in fi-
nancial literature.

To construct the arbitrage-free defaultable term structure, it is impor-
tant to specify appropriately the infinitesimal generator of C1 at time t,
given the σ-field Ft, that is, the K-dimensional matrix:

dD t T D t T r t dt b t T dWi i t i i t, , , *b g b g b gc h b ge j= + +µ

dB t T B t T r dt b t T dWt t, , , *b g b g b gd i= +

D t T g t u dui it

T
, exp ,b g b g= −FH IKz

dg t T t T dt t T dWi i i t, , ,b g b g b g= +α σ

df t T t T dt t T dWt, , ,b g b g b g= +α σ

T
his article presents a new approach to modelling credit risk,
evaluating defaultable debt and pricing credit derivatives.
Our technique, based on Heath-Jarrow-Morton (HJM)
methodology (1992), uses available information about cred-
it spreads and recovery rates to model the intensity of cred-
it migrations between various credit ratings classes. Our

results complement previous work by Arvanitis, Gregory & Laurent (1999),
Duffie & Singleton (1998), Jarrow, Lando & Turnbull (1997), Schönbucher
(1998) and Thomas, Allen & Morkel-Kingsbury (1998), among others. We
should also mention recent papers by Maksymiuk & Gatarek (1999) and Pu-
gachevsky (1999), which deal with various generalisations of the HJM frame-
work that cover credit risk (they do not, however, consider credit ratings).

Default-free and default-risky bonds
Let B(t, T) and DCt(t, T) denote time t prices of default-free and default-
risky (or defaultable) zero-coupon bonds maturing at time T, respectively.
The default-free bond pays $1 at time T. The recovery payment for the de-
fault-risky bond needs to be modelled. The meaning of the subscript Ct in
the notation DCt(t, T) will be explained later. For simplicity of exposition,
in this paper we focus on the recovery scheme in which the recovery pay-
ment is received by the holder of the defaultable bond at the maturity time
of the bond (this is commonly referred to as the fractional recovery of trea-
sury). Of course, if the defaultable bond does not default prior to or on
the maturity date, then it pays $1 at maturity.

We are concerned with modelling the dynamics for the price process
DCt(t, T), as well as with relating B(t, T) and DCt(t, T). This involves deriv-
ing a credit risk model that takes into account available data regarding cred-
it spreads and recovery rates for various credit rating classes. By a credit
risk model we mean a model for probabilities of migrations between vari-
ous credit rating classes (including default). Using our credit risk model we
then construct an arbitrage-free model of the defaultable term structure.

For a fixed horizon date T* > 0, let (Ω, F, P) denote the underlying
probability space, endowed with the filtration F = (Ft)t∈[0, T*]. The process
rt represents the short-term interest rate and:

is the savings account, as usual. In addition, let the default-free instanta-
neous forward rate be f(t, T), so that the price B(t, T) of a unit default-free
zero-coupon bond equals:

(1)

Suppose that there are K credit classes or states, the Kth state denoting the
state of default. The risky bond can be in any of the states i ∈ K = {1, ... ,
K}, which represents its credit quality. For any i < K, we write gi (t, T), the
conditional instantaneous forward rate for the risky bond that is in class i at
time t. We assume the HJM-type dynamics for the instantaneous rates f(t, T)
and gi(t, T), i =1, ... ,K – 1, under the real-world probability P, namely:

B t T f t u du
t

T
, exp ,b g b g= −FH IKz

B r dut u
t

= FH IKzexp
0

HJM with
multiples

Developed in these pages last year, the Heath-Jarrow-Morton approach to hazard rate
models allows arbitrage-free pricing of credit derivatives. By constructing a matrix of

migration hazard rates, Tomasz Bielecki and Marek Rutkowski extend this approach to a
multiple ratings environment
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(7)

where λi,i(t) = –Σj≠i λi,j(t) for i = 1, ... , K – 1, and where λi,j are F-adapt-
ed processes. To this end, we need to postulate that the processes λi,j sat-
isfy the following consistency condition: for each i = 1, ... , K – 1 and for
every t ∈ [0, T]:

(8)

where we set Z(t, T) = B(t, T)/Bt, so that:

Let us stress that the entries of the matrix Λ should be chosen in such a
way that λi,j, i ≠ j follow non-negative processes. In a special case of zero
recovery (ie, when δi = 0 for i = 1, ... , K – 1) we may take, for instance
λiK(t) = µi(t) for i = 1, ... , K – 1 and λij = 0 for each i when j ≤ K – 1. 

To produce a process C with desired properties we need to enlarge the
underlying probability space (Ω

~ 
, F

~
, Q*), where Q* is the extended risk-

neutral probability. The filtration F
~

=(F
~

t)t∈[0, T*] is an enlargement of Wiener
filtration, and also accounts for random shocks leading to credit migrations.

Let us set:

where Hi(t) = I{C1
t = i}, and Hi,j(t) represents the number of transitions from

M t H t s H s ds t Ti j i j i j
t
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0
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i to j by C1 over the time interval (0, t]. It can be shown that the process-
es Mi,j are F

~
-martingales under the extended risk-neutral probability Q*.

To explain the conditional Markov feature of C1, let us denote by FC
t

the σ-field generated by the observation of credit migration process C up
to time t. Then for arbitrary s > t and i,j ∈ K we have:

At the intuitive level, the past and current behaviour of bond prices de-
termines the intensity of jump to another rating grade. The formula above
provides the risk-neutral probability that the bond is in the credit grade i
at time s > t, and the immediately preceding bond’s class as j, given the
bond was in the credit class C1

t at time t, which was immediately preced-
ed by class C2

t. (Note that the event {Ct = (i, i)} indicates that the bond
has never left the credit class i prior to time t.) Our credit risk model will
generate such risk-neutral probabilities after it is calibrated to market data.
It should be stressed that historically observed migration probabilities, re-
ported by rating agencies, are not directly exploited in our approach. The
link between the risk-neutral probabilities and the real-world ones is given,
as expected, by the market prices of credit risk.

Defaultable bond price
We specify the dynamics under the risk-neutral probability Q* of the price
process DCt(t, T) of a defaultable bond by setting:

dD t T D t T D t T dM t B t T D t T dM t

H t D t T b t T dW H t B t T b t T dW

C j i
i j i j

K

i j i i
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i i t i
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, ,
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*
,
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−
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−
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−
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(12)

The last formula makes it apparent that our approach is consistent with
the standard risk-neutral valuation approach to defaultable claims.

Conclusion
We have constructed an arbitrage-free model for the prices of default-free
and defaultable debt in the case of multiple credit rating classes. The model
could be quite adequately – though somewhat lengthily – referred to as
the credit-spreads-based HJM-type arbitrage-free term structure model with
multiple ratings. Let us summarise its most relevant features:
� As the primitive objects (or inputs) in our approach, we have chosen
the default-free and defaultable instantaneous forward rates, as well as the
credit recovery rates. Our arbitrage-free pricing model for defaultable bonds
is constructed so that it supports these data.
� Our fundamental pricing equation (9) represents the price process of
the defaultable debt DCt

(t, T) in terms of: (a) the price process B(t, T) of
default-free debt; (b) the credit recovery rates δi’s; (c) the credit migration
process Ct; and (d) the credit spread processes γi(t, u)’s. This equation is
intuitively clear.
� Other useful representations of the price process DCt

(t, T) have also been
derived. Most notably, equation (12) provides a version of the risk-neutral
valuation formula. The process DCt

(t, T) is represented here in terms of:
(a) the price process B(t, T) of default-free debt; (b) the credit recovery
rates δi’s; (c) the credit migration process Ct; and (d) the equivalent risk-
neutral probability Q* and the enlarged filtration F

~
. It is worth emphasis-

ing that Q* encompasses both the market prices for interest rate risk and
market prices for the credit risk.
� The arbitrage-free property of the model is provided by our consisten-
cy condition (8). The credit migration intensities λi,j’s are not uniquely de-
termined by this condition, in general. Calibration of the model to market
data is required to pick up the right solution. �

Tomasz Bielecki works in the department of mathematics at The North-
eastern Illinois University, Chicago, and Marek Rutkowski works in
the faculty of mathematics at the Warsaw University of Technology
Comments on this article can be posted on the technical discussion forum
on the Risk Web site at http://www.riskpublications.com/risk
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1 1 FNotice that the process DCt
(t, T) follows a (local) martingale under Q*. Fur-

thermore, condition (8) implies that:

where the differentials dB(t, T) and dDi(t, T) are given by (5) and (6).
It appears that the price process of a defaultable bond, for any initial

condition C0, is given by the following intuitively clear expression (notice
that both components of the process C enter the formula below):

(9)

for every t ∈ [0, T]. Put another way:

(10)

Therefore, for any initial condition C0, at any time t we have DCt
(t, T) =

Di(t, T) on the set {C1
t = i} for every i < K. Furthermore, DCt

(t, T) = δiB
(t, T) on the set {(C1

t, C
2
t ) = (K, i)}. We thus see that Di(t, T) does indeed

represent the price at time t of a T-maturity defaultable bond, provided
that the bond is currently in the ith credit class. Due to the conditional Mar-
kovian structure of the model, the value Di(t, T) does not depend on the
history of a particular defaultable bond, so we have a unique price for all
defaultable bonds that are currently in a given credit class. For each i ∈ K,
we define the ith credit spread γi(t, u) by setting γi(t, u) = gi(t, u) – f(t, u).

Combining (1) with (4), we get:

Also:

(11)

To simplify formulas (9) and (11), it is convenient to denote f(t, T) = gK
(t, T), so that γK(t, u) = 0. Then (9) and (11) become:

and:

respectively,where Xt is the promised payout from the defaultable bond,
as at time t:

Finally, let us introduce the default time by setting:

Thus Xt can be represented as follows:

In the case of zero recovery, ie, when δi = 0 for every i < K, we obtain
(cf (10)):

Suppose, on the contrary, that δi = 1 for every i < K. We then expect to
have DCt

(t, T) = B(t, T) for every t. For this to hold, it is enough to as-
sume, quite reasonably, that for any i the “conditional” defaultable rate gi(t,
T) coincides with the risk-free rate f(t, T).

We also obtain other interesting characterisations of the defaultable bond
process. One of them is the following version of the classic risk-neutral
valuation formula:
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t Ct

T

t t
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