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Abstract. Ergodic control of singularly perturbed Markov chains with general
state and compact action spaces is considered. A new method is given for character-
ization of the limit of invariant measures, for perturbed chains, when the perturbation
parameter goes to zero. It is also demonstrated that the limit control principle is sat-
isfied under natural ergodicity assumptions about controlled Markov chains. These
assumptions allow for the presence of transient states, a situation that has not been
considered in the literature before in the context of control of singularly perturbed
Markov processes with long-run-average cost functionals.
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1. Introduction

Numerous dynamic optimization problems are distinguished by the presence of so-
called strong and weak interactions characterizing the dynamics of the problems (see,
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e.g., [DQ], [PG], and [G]). In discrete time many such problems are nicely modeled with
the help of nearly decomposable, controlled Markov chains [BF], [PG], [KT1], [KT2].
The near decomposability of a Markov process is typically expressed in terms of an
appropriately constructed infinitesimal generator of the process. The construction takes
the form of a perturbation of the infinitesimal generator of some other Markov process
[BS1], [BS2]. In the case of Markov processes with discrete time this translates directly
into perturbation of the corresponding transition kernel.

From another perspective, a large number of dynamic optimization problems are
characterized by inadequate knowledge of their parameters, most commonly the param-
eters of the problem’s dynamics. It is often convenient to capture this inadequacy by
incorporating a perturbation of the parameters into the problem description. Again, in
the case of controlled, discrete time Markov processes, the perturbation takes form of
perturbation of the transition kernel.

In both of the above situations the perturbation would typically be “small” in ap-
plications. “Smallness” of the perturbation is usually encoded in the form of a single
parameter, which is a positive real number close to zero. It is therefore a legitimate
question of practical importance to ask what is the behavior of the optimization prob-
lem as the perturbation parameter goes to zero. The study of this question has been
conducted by many authors in recent years ([B], [K], [BF], [ABF], [BS1], [BS2], and
[PG] among others). The problem of the asymptotic behavior of a controlled, perturbed
Markov process in discrete time when the perturbation goes to zero is particularly inter-
esting and challenging when one considers the long-run-average cost criterion and the
perturbation is singular [BF], [BS1], [BS2]. Singularity of perturbation in a discrete time
framework basically means that the perturbation reduces the number of ergodic classes
of the unperturbed problem.

In this paper we extend the results of [BF] to the case of discrete time, singularly
perturbed, controlled Markov processes with general state and compact action spaces.
In particular, we do not impose any restrictions on the measurable structure of the state
space. Moreover we allow for the presence of transient classes for both unperturbed
and perturbed chains. This is an important step forward in the asymptotic analysis of
singularly perturbed Markov processes in our opinion. The proof of our main result,
Theorem 2.1, is based on the approach taken in the book by Korolyuk and Turbin
(see Section 6.6 of [KT1]). Our important contribution is that we extend Korolyuk and
Turbin’s results in two directions: we consider a Markov chain on a general, measurable
state space, and we allow for the presence of transient states.

The paper is organized as follows: In Section 2 we formulate a model for a singularly
perturbed ergodic Markov chain, provide two motivating examples of applications of our
model, and state Theorem 2.1 providing an asymptotic expansion of the chain’s invariant
measure. In Section 3 we introduce a model for a controlled singularly perturbed Markov
chain and motivate it, referring to controlled versions of the two examples introduced
in Section 2. Then we apply Theorem 2.1 in order to verify validity of the so-called
limit control principle for the singularly perturbed, controlled Markov chain that is
considered in this section. We also provide here a result on approximation of the limit
control problem with an appropriately discretized one. Section 4 contains some final
remarks and suggestions for future research. In the Appendix to the paper we provide a
proof of Theorem 2.1.
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Throughout the paper we use the following notation:(E, E) is a measurable space.
For any transition functionQ(x, A) on (E, E) such that

• ∀A ∈ E, x→ Q(x, A) is E measurable,
• ∀x ∈ E, Q(x, ·) is countably additive,

we let||Q(x, ·)||var denote the variation norm forQ(x, ·) and define

|||Q||| = sup
x∈E
||Q(x, ·)||var.

For any f ∈ bE (bounded measurable, real-valued functions on(E, E)) we define

Q f (x) = Q(x, f ) :=
∫

E
f (y)Q(x,dy), x ∈ E.

The identity kernelI (x, A) is defined by

I (x, A) =
{

1 if x ∈ A,
0 if x /∈ A.

2. Asymptotic Expansion of Invariant Measures for a Singularly
Perturbed Doeblin Process

Let x• ≡ (xn)
∞
n=0 be a Markov chain on(E, E)with probability transition kernelP( ·, · ).

We impose the following assumption onx•:

Assumption (D). The transition kernelP( ·, · ) satisfies the Doeblin condition(D)
(see p. 192 of [D]). That is, there is a finite measureϕ, ε > 0 and a positive integern
such that for any setA ∈ E if ϕ(A) < ε, then supx∈E Pn(x, A) ≤ 1− ε, or, equivalently,
the operatorP considered as an operator on the space of bounded Borel functions onE
is quasi-compact [N, Section V-3].

The following consequences of(D) hold:

C1. There exists a finite number, sayr , of disjoint invariant setsEi ∈ E , and
invariant probability measuresπi , πi (Ei ) = 1, for i = 1,2, . . . , r .

C2. Let D = E\⋃r
i=1 Ei ; then

sup
x∈D

Ex{T∪r
i=1Ei } <∞,

whereTA := inf{n ≥ 0 : xn ∈ A} for A ∈ E .
C3. Let, for x ∈ E andA ∈ E ,

5(x, A) :=
r∑

j=1

ρ(x, Ej )πj (A),

where

ρ(x, Ej ) := Px{∃n : xn ∈ Ej }.
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Then there existsN0 > 0 such that for alln ≥ N0 the following operator is
well defined:

8n(x, ·) :=
[

I (x, ·)+5(x, ·)− n−1
n−1∑
i=0

Pi (x, ·)+ n−1(I − P)(x, ·)
]−1

,

for x ∈ E. We also have|||8n||| <∞ for n ≥ N0. Now let

Qn(x, A) := I (x, A)+ n−1
n−1∑
s=1

s−1∑
i=1

(Pi −5)(x, A)

for n ≥ 1, x ∈ E, A ∈ E . Fix n0 ≥ N0, and define the quasi-potential

R0 = 8n0 Qn0.

Then it is easy to see that

R0(I − P +5) = I ,

and therefore, sinceR05 = 5, we have a very important identity:

5 = R0P − R0+ I .

Note that ifP is aperiodic then one can chooseN0 = n0 = 1 in the above, and
R0 coincides with the 0-potential ofP.

We now introduce a perturbed chainxε• ≡ (xεn)∞n=0. For that, we define the probability
transition kernelPε( ·, · ) for xε• by

Pε( ·, · ) := P( ·, · )+ εB( ·, · ),

whereB( ·, · ) := P( ·, · )− I ( ·, · ), P( ·, · ) is a probability transition kernel on(E, E)
and 0< ε < ε0 for someε0 > 0.

The following two examples illustrate the applicability of the above model.

Example 2.1. This is a discrete time version of the continuous time situation considered
in Section 5.9 of [SZ], where a flexible manufacturing system is studied with machine
states admitting strong and weak interactions. Capacity dynamics of a manufacturing
machine are modeled by using a Markov chain with a transition operator

Pε( ·, · ) := P( ·, · )+ εB( ·, · ).

In the above formulaP( ·, · ) corresponds to(I + Q(2)) of [SZ] and models the strong
(or fast) interactions between the states of the machine. On the other hand,B( ·, · )
corresponds toQ(1) of [SZ] and models the weak (or slow) interactions between the
states of the machine. Discrete time counterpart of the ergodic assumptions aboutQ(2)

made in [SZ] implies that the Doeblin condition is satisfied forP( ·, · ).

Example 2.2. This example is motivated by Altman and Gaitsgory [AG].



Ergodic Control of a Singularly Perturbed Markov Process in Discrete Time 265

In queuing networks modeling, a relationship between the number of customers
Xn+1 at time n + 1 and the number of customersXn at time n can be conveniently
expressed as

Xn+1 = f (Xn,Y
ε
n ),

where(Yε
n )n≥0 is a Markov chain of random perturbations whose average time between

transitions is of orderε (fast time transitions), corresponding to fast changes in routing,
flow control, compared with the ordinary time scalen = 0,1,2, . . . of the network itself.
Such a model gives rise to the singular perturbation form of the transition operator for
the Markov chainZεn = (Xn,Yε

n ), where appropriate ergodicity assumptions hold.
To illustrate the point we consider a very simple situation in whichYε

n lives on a
finite state space. In general, the process(Yε

n )n≥0 should be considered on a general
measurable state space. Leta,b be two nonnegative integers. Also, let

Xn ∈ {a,b}, Yε
n ∈ {0,1},

f (a,0) = f (b,0) = b,

f (a,1) = f (b,1) = a,

Prob(Yε
n+1 = i |Yε

n = j ) = 1

2
, i, j ∈ {0,1}.

Then the transition matrix for(Zεn)n≥0 is given by (recall that(Yε
n )n≥0 is the fast chain)

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

+ ε

−1 0 1 0

0 0 0 0
0 0 0 0
1 0 0 −1

 ,
where the states ofZεn are ordered as(a,0), (a,1), (b,0), (b,1).

A crucial role in the asymptotic analysis ofxε0 will be played byP̂, where

P̂( ·, · ) := 5P5( ·, · ).

Clearly, P̂ is a probability transition kernel on(E, E), and we have

• for x ∈ Ei ,

P̂(x, Ej ) =
∫

E

∫
E
5(y, Ej )P(z,dy)5(x,dz)

=
∫

Ei

∫
Ej

5(y, Ej )P(z,dy)πi (dz)+
∫

Ei

∫
D
5(y, Ej )P(z,dy)πi (dz)
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=
∫

Ei

(
P(z, Ej )+

∫
D
ρ(y, Ej )P(z,dy)

)
πi (dz)

=: p(i, j ), (2.1)

• for x ∈ D,

P̂(x, Ej ) =
r∑

i=1

∫
Ei

∫
E
5(y, Ej )P(z,dy)πi (dz)ρ(x, Ei )

=
r∑

i=1

∫
Ei

[
P(z, Ei )+

∫
D
ρ(y, Ei )P(z,dy)

]
πi (dz)ρ(x, Ei )

=: p(x, j ), (2.2)

• for x ∈ E,

P̂(x, D) =
∫

E

∫
E
5(y, D)P(z,dy)5(x,dz) = 0=: p(x, D), (2.3)

with i, j = 1,2, . . . , r .
Let Ê := {1,2, . . . , r } and let Êe := Ê ∪ D, and let p( ·, · ) be as defined in

(2.1)–(2.3).

Definition 2.1.

(a) A Markov chain̂x• ≡ (̂xn)
∞
n=0 on Ê, whose transition probability matrix is

p = [ p(i, j )] i, j∈Ê, is called aggregated in a strict sense.

(b) A Markov chain̂xe
• ≡ (̂xe

n)
∞
n=0 on (Êe, Ee), whose probability transition kernel

is p( ·, · ), is called aggregated in an extended sense.

Clearly, D is a transient class for̂xe
• , and x̂e

• restricted toÊ coincides witĥx•. In
what follows we shall need the following assumption:

Assumption (I). There exists a unique invariant probability measureµ for x̂•, that is,
µ is the unique row vector so that

(i) µ(i ) ≥ 0, i = 1,2, . . . , r,

r∑
i=1

µ(i ) = 1,

(ii)
∑r

i=1µ(i )p(i, j ) = µ( j ), j = 1,2, . . . , r .

It is not difficult to see that the Doeblin condition is satisfied for any finite state
space Markov chain. We may thus conclude that the quasi-potential matrixr0 is well
defined for̂x• by (compare with the discussion in C3)

r0 := ρn0qn0,
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wheren0 ≥ 1 is sufficiently large,ρn0 andqn0 are matrices given by

ρ(−1)
n0

(i, j ) = δ(i, j )+ µ( j )− n−1
0

n0−1∑
n=0

p(n)(i, j )

+ n−1
0 (δ(i, j )− p(n)(i, j )), i, j = 1, . . . , r,

qn0(i, j ) = δ(i, j )+ n−1
0

n0−1∑
s=0

s−1∑
k=0

(p(k)(i, j )− µ( j )),

whereρ(−1)
n0

(i, j ) is the(i, j )th entry of the inverseρ−1
n0

to ρn0, and wherep(n)(i, j ) is
the(i, j )th entry in pn. We have that

r0(Ir − p) = Ir − µ, (2.4)

whereIr is ther × r identity matrix, and

µ :=


µ(1) µ(2) · · · µ(r )
µ(1) µ(2) · · · µ(r )
...

...
...

µ(1) µ(2) · · · µ(r )


r×r

=


µ

µ
...

µ

 .
Before we state Theorem 2.1, below, we need to introduce some more notation. For

A ∈ E , i = 1,2, . . . , r, andm= 0,1,2, . . . , we let

β i
m(A) :=

∫
Ei

B(R0B)m(x, A)πi (dx)

and, additionally, forj = 1,2, . . . , r , we let

βm(i, j ) := β i
m(Ej )+

∫
D
ρ(y, Ej )β

i
m(dy).

Now we inductively define matrices

β(1) := β1,

β(2) := β2+ β(1)r0β1,

· · ·

β(m) := βm + β(1)r0βm−1+ · · · + β(m−2)r0β2+ β(m−1)r0β1,

and row vectors

µ(0) := µ,
µ(m) := µ(0)β(m)r0, m≥ 1.
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Finally, we let, forA ∈ E andm≥ 1,

γ0(A) :=
r∑

i=1

µ(0)(i )πi (A),

γm(A) :=
r∑

i=1

[µ(0)(i )πi (B R0)
m + µ(1)(i )πi (B R0)

m−1+ · · · + µ(m)(i )πi ](A).

The following theorem is inspired by Theorem 6.8 in [KT1].

Theorem 2.1. Let Assumptions D and I be satisfied. Assume also that there exists a
unique invariant measureπε for Pε. Then forε < min{ε0, (3a2bc)−1}, where a=
max{|||B|||,1}, b = max{|||R0|||,1}, c = max{|||r0|||,1}, we have

||γm||var ≤ (3a2bc)m, m≥ 1,

and

πε(·) =
∞∑

m=0

εmγm(·). (2.5)

Proof. See the Appendix.

3. Ergodic Control of Singularly Perturbed Markov Chains

In this section we assume that the transition kernelsP and P depend on a control
parametera ∈ U , whereU is a compact, metric space. We denote this dependence by
Pa andP

a
, respectively.

Let A := B(E,U ), the space of measurable functions fromE to U . For u ∈ A,
with a slight abuse of notation, we denote byPu and P

u
controlled kernels such that,

for eachx ∈ E,

Pu(x, ·) = Pu(x)(x, ·)

and

P
u
(x, ·) = P

u(x)
(x, ·).

We suppose for the time being that the dependence ofPa and P
a

on a ∈ U is such
that for everyu ∈ A the controlled kernelsPu andP

u
are in fact probability transition

kernels. In particular this is true under assumption (A6) that we introduce later in the
text.

The functionsu ∈ A are called stationary Markovian controls. We consider such
controls only. This will not reduce generality, since it is well known that, in view of the



Ergodic Control of a Singularly Perturbed Markov Process in Discrete Time 269

ergodic assumptions made below, optimal nonanticipating controls can be found among
stationary Markovian controls (see [DY] for example).

We impose the following assumptions on{Pu,u ∈ A}:
(A1) There exists a finite sequenceE1, . . . , Er of disjoint subsets ofE, that do not

depend onu and are invariant for eachPu. That is,

∀x ∈ Ei , ∀a ∈ U, Pa(x, Ei ) = 1

for i = 1,2, . . . , r .
(A2) Let D := E\⋃r

i=1 Ei . Then

sup
x∈E

sup
a∈U

Pa(x, D) < 1.

(A3) ∃N<∞, ∃0<ρ<1,∀u ∈ A,∀i = 1,2, . . . , r, ∃n≤N, ∃disjoint setsCu
1(i ), . . . ,C

u
n(i )

such that
(i)

⋃n
j=1 Cu

j (i ) = Ei ,
(ii) Pu(x,Cu

j (i )) = 1 for x ∈ Cu
j−1(i ) and j = 2,3, . . . ,n,

Pu(x,Cu
1(i )) = 1 for x ∈ Cu

n(i ),

(iii) sup
j=1,2,...,n

sup
x,y∈Cu

j (i )
sup
0∈E
|(Pu)n(x, 0)− (Pu)n(y, 0)| < ρ.

Remark 3.1. (a) Assumption (A2) implies that

sup
u∈A

sup
x∈E

Ex{Tu} <∞,

where

Tu = min

{
j ≥ 0 : xu

j ∈
r⋃

i=1

Ei

}

and(xu
j )
∞
j=0 is a controlled Markov chain corresponding toPu.

(b) Assumption (A3) implies that the process(xu
nk)
∞
k=0, with xu

0 ∈ Cu
j (i ), is uniformly

ergodic onCu
j (i ). That is, there exists a probability measureπu

j (i ) such that

sup
x∈Cu

j (i )
‖(Pu)nk(x, ·)− πu

j (i )(·)‖var ≤ 2(1− ρ)k−1.

Consequently, for the quasi-potentialRu
0 we have

|||Ru
0 ||| ≤ M(ρ) <∞.

In addition, we assume what follows aboutP
u
:

(A4) infx∈∪r
i=1Ei infa∈U P

a
(x, Ej ) > 0, j = 1,2, . . . , r .
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(A5) ∃ε0,∀ε<ε0,∀u∈A there is a unique invariant measureπεu for Pu,ε := Pu +
ε(P

u − I ), and

∀x∈E, lim
n→∞n−1

n−1∑
i=0

(Pu,ε)i (x, f ) =
∫

E
f (y)πεu(dy)

for every f ∈ bE .

Remark 3.2. (a) Assumption (A1) indicates that the ergodic structure of the underlying
controlled Markov chain is invariant with respect to the control parameter. There are
examples of controlled systems in which this assumption is not satisfied. Nevertheless,
there are also important examples of controlled systems for which this assumption is
valid (see points (b) and (c) below). The other assumptions, (A2)–(A5), are consistent
with (A1).

(b) In Section 5.8 of their book Sethi and Zhang [SZ] consider machine capacities
dependent on production rate. In the context of our Example 2.1 this would correspond
to considering operatorsP and P depending on control parameteru, as is done in
this section. Note that in view of the interpretation of the perturbed chain in terms of
the presence of strong and weak interactions among the capacity states, assumption
(A1) about uniform (with respect tou) ergodic decomposition of the state space of the
underlying Markov chain is quite natural.

(c) In their paper Altman and Gaitsgory [AG] consider a situation where the perturb-
ing random process is in fact a controlled Markov chain. In the context of our Example 2.2
this would mean that the chainYε

n is a controlled Markov chain. Note that in this case
assumption (A1) would automatically be satisfied.

(d) Time discretized versions of control problems considered in Bensoussan and
Blankenship [BB] satisfy assumption (A1).

In the rest of the paper we use(xu,ε
n ) in order to denote a Markov chain corresponding

to Pu,ε, for u ∈ A. Moreover we let, forx ∈ E andu ∈ A,

Jε(u, x) := lim sup
n→∞

1

n
Ex

{
n−1∑
i=0

c(xu,ε
i ,u(xu,ε

i ))

}
,

wherec: E×U → R is a bounded, measurable function which is continuous ina ∈ U ,
uniformly in x ∈ E. By (A5) we have that

Jε(u, x) = Jε(u) :=
∫

E
c(z,u(z))πεu(dz)

for all u ∈ A andx ∈ E. We are interested in the following optimization problem:

inf
u∈A

Jε(u).
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Let, for u ∈ A,

J(u) :=
r∑

i=1

∫
E

c(x,u(x))πu,i (dx)µu(I ),

whereπu,i , i = 1, . . . , r , are the invariant measures corresponding toPu, andµu is the
unique invariant measure for the controlled, aggregated Markov chain(̂xu

n), which exists
due to (A4).

The following corollary to Theorem 2.1 and Remark 3.1 is a version of what is known
in the literature as the “limit control principle” (see [BF] and [BS1]) corresponding to
the case considered in this paper.

Corollary 3.1. Assume(A1)–(A5). Then for everyδ > 0 there existsεδ > 0 such that,
for all ε < εδ,

sup
u∈A
|Jε(u)− J(u)| < δ.

Proof. By Theorem 2.1 we have, for allu ∈ A,

Jε(u)− J(u) =
∞∑

i=1

∫
E

c(x,u(x))γu,i (dx)εi .

From Remark 3.1 it follows that

sup
u∈A
||γu,i ||var ≤ K i , i = 1,2, . . . ,

for some constantK > 0.

By Corollary 3.1 the minimization problem forJε can be approximated by the
minimization problem forJ. In the remaining part of the paper we simplify the latter
one by approximating it using appropriate discretization of the action spaceA.

LetA1 = B(D,U ) andA2 = B(
⋃r

i=1 Ei ,U ) be the spaces of measurable functions
from D to U and

⋃r
i=1 Ei to U , respectively. Ifu ∈ A is such that

u(x) =


u1(x), x ∈ D,

u2(x), x ∈
r⋃

i=1
Ei ,

for someui ∈ Ai , i = 1,2, then we write

u = u1⊕ u2.
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Note that

inf
u∈A

J(u) = inf
u1∈A1

inf
u2∈A2

J(u1⊕ u2),

and that ergodic assumptions about the aggregated process(̂xu
n) imply that∫

E c(x,u(x))πu,i (dx) depends onu2 alone. Also, if P
u

does not depend onu, then
µu(i ) depends onu2 only through the invariant measuresπu,i . The above observations
can be effectively used in approximations of the minimization problem forJ(u).

Let1 be the metric onU , and let(an) be a dense sequence inU . SinceU is compact
we have that

∀m≥1, ∃n(m), Um := {a1, . . . ,an(m)} is
1

m
net inU .

For anyu ∈ A andx ∈ E let

1u
m(x) := min{1(u(x),ak),ak ∈ Um},

au
m(x) := min{ak ∈ Um : 1u

m(x) = 1(u(x),ak)}.

Define a discretization operatorSm: A→ A by

Smu(·) = au
m(·).

Clearly, we have

sup
x∈E

1(u(x), Smu(x)) ≤ 1

m

for all u ∈ A.
Before we state our final result, Proposition 3.1, we formulate the following technical

assumption:

(A6) Both Pa(x, ·) andP
a
(x, ·) are continuous ina, in variation norm, uniformly

in x. That is to say, we have that,∀η>0, ∃δ>0,∀a,a′εU ,

1(a,a′) < δ ⇒ sup
x∈E
‖Qa(x, ·)− Qa′(x, ·)‖var < η,

whereQ stands forP or P.

Proposition 3.1. Assume(A1)–(A6). Then, for eachδ > 0, there exists mδ such that,
for all m ≥ mδ,

sup
u∈A
|J(u)− J(Smu)| < δ.

Proof. In the proof of Proposition 1 in [S] it has been demonstrated that, for allu ∈ A,
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i = 1, . . . , r , andn ≥ 1,

||πu,i − πSmu,i ||varEi ≤ sup
x∈Ei

‖Pu(x, ·)− PSmu(x, ·)‖varK1,n(i )K2,n(i ),

where

|| · ||varEi

denotes the variation norm onEi , and

K1,n(i ) := sup
u∈A

sup
x∈Ei

∥∥∥∥∥
(

I + πu,i ( · )− n−1
n−1∑
k=0

(Pu)k(x, ·)

+ n−1(I − Pu)(x, ·)
)−1∥∥∥∥∥

varEi

,

K2,n(i ) := sup
n∈A

sup
x∈Ei

∥∥∥∥∥I + n−1
n−1∑
`=1

`−1∑
k=1

(Pu)k(x, ·)− πu,i (·)
∥∥∥∥∥

varEi

.

By (A3), for a sufficiently largen we have that

K1,n(i ) ≤ K1 <∞,

K2,n(i ) ≤ K2 <∞

for someK1 andK2. Therefore we may conclude that

sup
u∈A

sup
i=1,2,...,r

‖πu,i − πSmu,i ‖varEi ≤ K1 · K2 · sup
u∈A
|||Pu − PSmu|||. (3.1)

Similarly, for the aggregated chain(̂xu
n) we have

sup
u∈A

sup
i=1,2,...,r

||µu(i )−µSmu(i )||≤K 1K 2 sup
u∈A

sup
i, j=1,...,r

|pu(i, j )− pSmu(i, j )|, (3.2)

for some positive and finite constantsK 1, K 2. Next, we observe that

|J(u)− J(Smu)| =
∣∣∣∣∣ r∑

i=1

∫
E

c(x,u(x))πu,i (dx)µu(i )

−
r∑

i=1

∫
E

c(x, Smu(x))πSmu,i (dx)µSmu(i )

∣∣∣∣∣
≤
∣∣∣∣∣ r∑

i=1

∫
E

c(x,u(x))(πu,i − πSmu,i )(dx)µu(i )

∣∣∣∣∣
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+
∣∣∣∣∣ r∑

i=1

∫
E

c(x,u(x))πSmu,i (dx)(µu(i )− µSmu(i ))

∣∣∣∣∣
+ sup

x∈E
|c(x, Smu(x))− c(x,u(x))|. (3.3)

Therefore, in view of (3.1)–(3.3) and assumption (A6), in order to complete the proof of
Proposition 3.1 it remains to show that

sup
u∈A

sup
i, j=1,2,...,r

|pu(i, j )− pSmu(i, j )| → 0 (3.4)

asm→∞.
By the definition ofpu(i, j ), taking into account (3.1) and

sup
x∈E

sup
u∈A
‖Pu(x)

(x, ·)− P
Smu(x)

(x, ·)‖var→ 0

asm→∞, we only need to show that, fori = 1,2, . . . , r,

sup
x∈E

sup
u∈A
|ρu(x, Ei )− ρSmu(x, Ei )| → 0 (3.5)

asm→∞. Since by Remark 3.1

sup
x∈E

sup
u∈A

Pu
x {Tu > N} ≤ 2 supx∈E supu∈A Ex{Tu}

N
→ 0

asN →∞, in order to demonstrate (3.5) we need to show that, fork = 1,2, . . .,

sup
x∈E

sup
i=1,2,...,r

sup
u∈A
|Pu

x {xu
0 ∈ D, . . . , xu

k−1 ∈ D, xu
k ∈ Ei }

− PSmu
x {xSmu

0 ∈ D, . . . , xSmu
k−1 ∈ D, xSmu

k ∈ Ei }| → 0 (3.6)

asm→∞.
We prove (3.6) by induction:
For k = 1, (3.6) holds by (A5).
Assume (3.6) is true fork ≥ 1. Then, fork + 1 we have, forx ∈ E, u ∈ A, and

j = 1, . . . , r ,

|Pu
x {xu

0 ∈ D, . . . , xu
k ∈ D, xu

i+1 ∈ Ej } − PSmu
x {xSmu

0 ∈ D, . . . , xSmu
k , xSmu

k+1 ∈ Ej }|

=
∣∣∣∣ ∫

Ej

∫
D
· · ·
∫

D
χD(x)P

u(x,dx1) · · · Pu(xk,dxk+1)

−
∫

Ej

∫
D
· · ·
∫

D
χD(x)P

Smu(x,dx1) · · · PSmu(xk,dxk+1)

∣∣∣∣
≤
∣∣∣∣χD(x)

(∫
Ej

∫
D
· · ·
∫

D
Pu(x,dx1)P

u(x1,dx2) · · · Pu(xk,dxk+1)

−
∫

Ej

∫
D
· · ·
∫

D
Pu(x,dx1)P

Smu(x1,dx2) · · · PSmu(xk,dxk+1)

)∣∣∣∣
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+
∣∣∣∣χD(x)

∫
Ej

∫
D
· · ·
∫

D
(Pu(x,dx1)− PSmu(x,dx1))

· PSmu(x1,dx2) · · · PSmu(xk,dxk+1)

∣∣∣∣
≤ χD(x){sup

x1∈E
|Pu

x1
{xu

0 ∈ D, . . . xu
k−1 ∈ D, xu

k ∈ Ej }

− PSmu
x1
{xSmu

0 ∈ D, . . . , xSmu
k−1 ∈ D, xSmu

k ∈ Ej }| + |||Pu − PSmu|||}
which goes to 0 asm→∞ in view of the induction hypothesis and (A6). The proof of
Proposition 3.1 is complete.

Remark 3.3. In thispaperwehavenotanalyzed thestructureof theoptimal/suboptimal
controls. That is, we have not studied the question of asymptotic expansion for these
controls. It is conceivable that optimal/suboptimal controls can be split into “fast” and
“slow” components, and that approximations to these components can be obtained com-
bining Proposition 3.1 with the results of [ABF], among others. These issues are very
important for applications and are under investigation.

4. Conclusion

In this paper we have considered a situation when the perturbed Markov chain has
only one invariant measure. One step aggregation was enough to deal with asymptotic
expansion of this invariant measure. Construction of an asymptotic expansion becomes
much more difficult if we allow for a singular perturbation that does not reduce the
number of ergodic classes of the original chain to just one. We will be considering
situations of this kind in a forthcoming work.
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Appendix. Proof of Theorem 2.1

Step1. We have

||β i
m||var ≤ |||R0|||m|||B|||m+1,

|||βm||| ≤ 2|||R0|||m|||B|||m+1

for i = 1,2, . . . , r andm≥ 0. Therefore

|||β(1)||| ≤ 2|||R0||| |||B|||2 ≤ 2ba2
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and

|||β(2)||| ≤ 2|||R0||| · |||B|||2+ |||β(1)||| |||r0||| |||β1|||
≤ 2ba2+ |||β(1)|||c · 2ba2 ≤ 6b2a4c.

We shall show by induction that

||β(m)||| ≤ 2a2b(3a2bc)m−1 (A.1)

for m ≥ 1. For m = 1,2, (A.1) has already been verified. Suppose (A.1) holds for
k ≤ m. Then, form+ 1, we have

|||β(m+1)||| ≤ 2bm+1am+2+ 2ba2 · c · 2bmam+1

+ · · · + 2a2b(3a2b · c)m−1 · c · 2b · a2

= a2(m+1)bm+1cm

[
2+ 4

m∑
i=1

3i−1

]

= 2a2b(a2 · b · c)m
(

1+ 2
1− 3m

1− 3

)
= 2a2b(3a2bc)m.

Step2. From Step 1 it follows that

||µ(m)||var ≤ 2 · 3m−1(a2bc)m

for m= 1,2, . . . . Therefore, since||γ0||var = 1, we have, form= 1,2, . . .,

||γm||var ≤ ||µ(0)||var|||B|||m|||R0|||m
+||µ(1)||var|||B|||m−1|||R0|||m−1+ · · · + ||µ(m)||var

≤ a2mbmcm

[
1+ 2

m∑
i=1

3i−1

]
= (3a2bc)m.

Step3. By Step 2 we have that for allε < min(ε0, (3a2bc)−1) the series

m∑
i=0

εi γi

is convergent in variation norm asn→∞. Therefore we can define a countably additive
function

ηε( · ) :=
∞∑

i=0

γi ( · )εi .

Note thatB(E) = 0 impliesγm(E) = 0 for m ≥ 1. Therefore, sinceγ0(E) = 1, we
have thatηε(E) = 1. We demonstrate in Step 4 below that if we suppose that

ηεPε = ηε, (A.2)
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then, sinceηε(E) = 1, we have

ηε = πε. (A.3)

Step4. Assume (A.2) is satisfied. By Jordan decomposition we have

ηε = η+ε − η−ε
and, forA ∈ E , ∗ = +,−,

η∗ε Pε(A)− η∗ε (A) = η∗ε (E\A)− η∗ε Pε(E\A). (A.4)

Sinceη+ε Pε(E) = η+ε (E) andη−ε Pε(E) = η−ε (E), then (A.4) implies

η+ε Pε = η+ε , η−ε Pε = η−ε . (A.5)

Thereforeη+ε , η−ε are invariant measures forPε. By the uniqueness of invariant proba-
bility measure forPε we conclude that

η+ε
η+ε (E)

= πε

and, ifη−ε (E) > 0,

η−ε
η−ε (E)

= πε.

Thus

ηε = (η+ε (E)− η−ε (E))πε
= ηε(E)πε = πε.

Step5. It remains to demonstrate that (A.2) is satisfied. This will take some time. We
start by observing that (A.2) is equivalent to

∞∑
i=0

εi γi (P + εB) =
∞∑

i=0

εi γi , (A.6)

and thus to
∞∑

i=1

(γi P + γi−1B− γi )ε
i + γ0P − γ0 = 0. (A.7)

Now, since

γ0P = γ0

then (A.7) will be verified once we show that

γi P + γi−1B− γi = 0, i = 1,2, . . . . (A.8)
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Applying formulas forγi−1, γi we get

γi P + γi−1B− γi =
r∑

j=1

[µ(0)( j )πj (B R0)
i P + µ(1)( j )πj (B R0)

i−1P

+ · · · + µ(i )( j )πj P + µ(0)( j )πj (B R0)
i−1B

+ µ(1)( j )πj (B R0)
i−2B

+ · · · + µ(i−1)( j )πj B− µ(0)( j )πj (B R0)
i

− µ(1)( j )πj (B R0)
i−1− · · · − µ(i )( j )πj ]

=
r∑

j=1

{[µ(0)( j )πj (B R0)
i−1+ µ(1)( j )πj (B R0)

i−2

+ · · · + µ(i−1)( j )πj ]

× B(R0P + I − R0)+ µ(i )( j )πj (P − I )}. (A.9)

Note that

πj (P − I ) = 0, j = 1, . . . , r, (A.10)

and, for f ∈ bE , by C3 of Section 2 we get

R0P + I − R0 = 5. (A.11)

From (A.9)–(A.11) it follows that we will have demonstrated (A.8) once we have verified
that

r∑
j=1

[µ(0)( j )πj (B R0)
i−1+µ(1)( j )πj (B R0)

i−2+ · · · +µ(i−1)( j )πj ]B5=0 (A.12)

for i = 1,2, . . . .
However, (A.12) means that, for allA ∈ E and fori = 1,2, . . ., we need to have

0 =
r∑

j=1

∫
E
5(y, A)[µ(0)( j )πj B(R0B)i−1(dy)+ µ(1)( j )πj B(R0B)i−2(dy)

+ · · · + µ(i−1)( j )πj B(dy)]

=
r∑

j=1

r∑
k=1

∫
E
ρ(y, Ek)πk(A)[µ

(0)( j )πj B(R0B)i−1(dy)

+ µ(1)( j )πj B(R0B)i−2(dy)

+ · · · + µ(i−1)( j )πj B(dy)]

=
r∑

j=1

r∑
k=1

{
πk(A)[µ

(0)( j )πj B(R0B)i−1(Ek)+ µ(1)( j )πj B(R0B)i−2(Ek)

+ · · · + µ(i−1)( j )πj B(Ek)]
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+
∫

D
ρ(y, Ek)πk(A)[µ

(0)( j )πj B(R0B)i−1(dy)

+ · · · + µ(i−1)( j )πj B(dy)]

}
=

r∑
k=1

πk(A)
r∑

j=1

[
µ(0)( j )

(
πj B(R0B)i−1(Ek)+

∫
D
ρ(y, Ek)πj B(R0B)i−1(dy)

)
+ µ(1)( j )

(
πj B(R0B)i−2(Ek)

+
∫

D
ρ(y, Ek)πj B(R0B)i−2(dy)

)
+ · · · + µ(i−1)( j )

(
πj B(Ek)+

∫
D
ρ(y, Ek)πj B(dy)

)]
=
∞∑

k=1

πk(A)
r∑

j=1

[
µ(0)( j )

(
β

j
i−1(Ek)+

∫
D
ρ(y, Ek)β

j
i−1(dy)

)
+ µ(1)( j )

(
β

j
i−2(Ek)+

∫
D
ρ(y, Ek)β

j
i−2(dy)

)
+ · · · + µ(i−1)( j )

(
β

j
0(Ek)+

∫
D
ρ(y, Ek)β

j
0(dy)

)]
=

r∑
k=1

πk(A)
r∑

j=1

[µ(0)( j )β i−1( j, k)+ µ(1)( j )β i−2( j, k)

+ · · · + µ(i−1)( j )β0( j, k)]. (A.13)

Now, using the definitions ofµ(m), we have that, fori = 1,2, . . ., andk = 1, . . . , r ,

r∑
j=1

[µ(0)( j )β i−1( j, k)+ µ(1)( j )β i−2( j, k)+ · · · + µ(i−1)( j )β0( j, k)]

=
r∑

j=1

[µ(0)( j )β i−1( j, k)+ µ(0)β(1)r0( j )β i−2( j, k)

+ · · · + µ(0)β(i−1)r0( j )β0( j, k)]. (A.14)

Observe that since

r0(I − p) = I − µ

and

β0 = p− I

we have

I = −r0β0+ µ.
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Therefore we may continue (A.14) as

r∑
j=1

[µ(0)( j )β i−1( j, k)+ µ(0)β(1)r0( j )β i−2( j, k)+ · · · + µ(0)β(i−1)r0( j )β0( j, k)]

=
r∑

j=1

r∑
`=1

[µ(0)( j )β i−1( j, `)(−r0β0(`, k)+ µ(k))

+ µ(0)β(1)r0( j )β i−2( j, `)(−r0β0(`, k)+ µ(k))
+ · · · + µ(0)β(i−2)r0( j )β1( j, `)(−r0β0(`, k)+ µ(k))]

+
r∑

j=1

µ(0)β(i−1)r0( j )β0( j, k). (A.15)

Now notice that, form≥ 0 and j = 1, . . . , r ,

r∑
`=1

βm( j, `) =
∫

Ej

B(R0B)m
(

x,
r⋃

s=1

Es

)
πj (dx)+

∫
D
ρ

(
y,

r⋃
s=1

Es

)
β i

m(dy)

=
∫

Ej

B(R0B)m
(

x,
r⋃

s=1

Es

)
πj (dx)+ β i

m(D)

=
∫

Ej

B(R0B)m(x, E)πj (dx) = 0. (A.16)

Finally, (A.15) and (A.16) imply that, fork = 1, . . . , r , we have

r∑
j=1

[µ(0)( j )β i−1( j, k)+ µ(0)β(1)r0( j )β i−2( j, k)+ · · · + µ(0)β(i−1)r0( j )β0( j, k)]

= µ(0)[−β i−1− β(1)r0β i−2− · · · − β(i−2)r0β1+ β(i−1)]r0β0(k) = 0, (A.17)

where the least equality holds by the definition ofβ(I−1). We see now that (A.17) implies
(A.13).

The proof of the theorem is complete.
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