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Abstract. Ergodic control of singularly perturbed Markov chains with general
state and compact action spaces is considered. A new method is given for character-
ization of the limit of invariant measures, for perturbed chains, when the perturbation
parameter goes to zero. It is also demonstrated that the limit control principle is sat-
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1. Introduction

Numerous dynamic optimization problems are distinguished by the presence of so-
called strong and weak interactions characterizing the dynamics of the problems (see,
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e.g., [DQ], [PG], and [G]). In discrete time many such problems are nicely modeled with
the help of nearly decomposable, controlled Markov chains [BF], [PG], [KT1], [KT2].
The near decomposability of a Markov process is typically expressed in terms of an
appropriately constructed infinitesimal generator of the process. The construction takes
the form of a perturbation of the infinitesimal generator of some other Markov process
[BS1], [BS2]. In the case of Markov processes with discrete time this translates directly
into perturbation of the corresponding transition kernel.

From another perspective, a large number of dynamic optimization problems are
characterized by inadequate knowledge of their parameters, most commonly the param-
eters of the problem’s dynamics. It is often convenient to capture this inadequacy by
incorporating a perturbation of the parameters into the problem description. Again, in
the case of controlled, discrete time Markov processes, the perturbation takes form of
perturbation of the transition kernel.

In both of the above situations the perturbation would typically be “small” in ap-
plications. “Smallness” of the perturbation is usually encoded in the form of a single
parameter, which is a positive real number close to zero. It is therefore a legitimate
question of practical importance to ask what is the behavior of the optimization prob-
lem as the perturbation parameter goes to zero. The study of this question has been
conducted by many authors in recent years ([B], [K], [BF], [ABF], [BS1], [BS2], and
[PG] among others). The problem of the asymptotic behavior of a controlled, perturbed
Markov process in discrete time when the perturbation goes to zero is particularly inter-
esting and challenging when one considers the long-run-average cost criterion and the
perturbation is singular [BF], [BS1], [BS2]. Singularity of perturbation in a discrete time
framework basically means that the perturbation reduces the number of ergodic classes
of the unperturbed problem.

In this paper we extend the results of [BF] to the case of discrete time, singularly
perturbed, controlled Markov processes with general state and compact action spaces.
In particular, we do not impose any restrictions on the measurable structure of the state
space. Moreover we allow for the presence of transient classes for both unperturbed
and perturbed chains. This is an important step forward in the asymptotic analysis of
singularly perturbed Markov processes in our opinion. The proof of our main result,
Theorem 2.1, is based on the approach taken in the book by Korolyuk and Turbin
(see Section 6.6 of [KT1]). Our important contribution is that we extend Korolyuk and
Turbin’s results in two directions: we consider a Markov chain on a general, measurable
state space, and we allow for the presence of transient states.

The paper is organized as follows: In Section 2 we formulate a model for a singularly
perturbed ergodic Markov chain, provide two motivating examples of applications of our
model, and state Theorem 2.1 providing an asymptotic expansion of the chain’s invariant
measure. In Section 3 we introduce a model for a controlled singularly perturbed Markov
chain and motivate it, referring to controlled versions of the two examples introduced
in Section 2. Then we apply Theorem 2.1 in order to verify validity of the so-called
limit control principle for the singularly perturbed, controlled Markov chain that is
considered in this section. We also provide here a result on approximation of the limit
control problem with an appropriately discretized one. Section 4 contains some final
remarks and suggestions for future research. In the Appendix to the paper we provide a
proof of Theorem 2.1.
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Throughout the paper we use the following notatid; £) is a measurable space.
For any transition functio®(x, A) on (E, £) such that

e YAc £, x — Q(X, A) is £ measurable,
e VX € E, Q(X, -) is countably additive,

we let]| Q(X, -)||lvar denote the variation norm fa@(x, -) and define

QI = SUEIQ(X, Mvar-

For anyf € b& (bounded measurable, real-valued functiongBnf)) we define

Qf(x) =Q(x, ) :=/E f(y)Q(x, dy), x € E.

The identity kernel (x, A) is defined by

1 if xeA,
'(X’A)z{o it x¢ A

2. Asymptotic Expansion of Invariant Measures for a Singularly
Perturbed Doeblin Process

Letx, = (X)X, be a Markov chain ogE, £) with probability transition kerneP (-, - ).
We impose the following assumption ag

Assumption (D). The transition kerneP( -, - ) satisfies the Doeblin conditio(D)
(see p. 192 of [D]). That is, there is a finite measyre > 0 and a positive integer
such that for any se € £if (A) < ¢, thensup_g P"(x, A) < 1—¢, or, equivalently,
the operatoP considered as an operator on the space of bounded Borel functidais on
is quasi-compact [N, Section V-3].

The following consequences @P) hold:

C1. There exists a finite number, say of disjoint invariant set&; € &, and
invariant probability measures, i (Ej) = 1,fori =1,2,...,r.
C2. LetD = E\ |J;_, Ei; then

SUPE(Tu_ g} < 0.
xeD

whereTa :=inf{n > 0:x, € A} for Ae £.
C3. Let,forx e EandA e €&,

[(x, A) = Zp(x, Epmi (A,
j=1

where

p(X, Ej) := P{3an: x, € Ej}.
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Then there exist®g > 0 such that for alh > Ny the following operator is
well defined:

n—1

-1
(X, ) == [| X, )+ %) =Y Px, )+ 0t = P)(x, .)} ,

i=0
for x € E. We also have||®,]||| < oo for n > Ng. Now let

>S5
=

Qn(X, A) == 1 (x, A)+n? (P — (%, A)

s—1
S: 1

I
N

forn>1,x € E, A e £. Fixng > Np, and define the quasi-potential
Ro = ®n, Qn,-

Then it is easy to see that

Ro(l =P+ 1) =1,

and therefore, sincByI1 = IT, we have a very important identity:
M=RP—-Ry+ 1.

Note that if P is aperiodic then one can choasg = ng = 1 in the above, and
Ry coincides with the 0-potential d?.

We now introduce a perturbed chaii= (x5):2,,. For that, we define the probability
transition kerneP?( -, - ) for x¢ by

Ps(.’.):: P(',-)+EB(-,'),

whereB(-,-) :=P(-,-)—1(-,-), P(-,-) is a probability transition kernel ofE, £)
and O< ¢ < gg for someggp > 0.
The following two examples illustrate the applicability of the above model.

Example 2.1. Thisisadiscrete time version ofthe continuous time situation considered
in Section 5.9 of [SZ], where a flexible manufacturing system is studied with machine
states admitting strong and weak interactions. Capacity dynamics of a manufacturing
machine are modeled by using a Markov chain with a transition operator

Ps(.’.):z P(,)+SB(,)

In the above formul@( -, - ) corresponds tol + Q@) of [SZ] and models the strong
(or fast) interactions between the states of the machine. On the other Béand,)
corresponds t@Q® of [SZ] and models the weak (or slow) interactions between the
states of the machine. Discrete time counterpart of the ergodic assumptionsgBout
made in [SZ] implies that the Doeblin condition is satisfied Rar-, - ).

Example 2.2. This example is motivated by Altman and Gaitsgory [AG].
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In queuing networks modeling, a relationship between the number of customers
Xnht1 at timen + 1 and the number of customelkg, at timen can be conveniently
expressed as

Xnt1 = F(Xn, Y5),
where(Y$)ns0 is @ Markov chain of random perturbations whose average time between
transitions is of ordes (fast time transitions), corresponding to fast changes in routing,
flow control, compared with the ordinary time scale- 0, 1, 2, . . . of the network itself.
Such a model gives rise to the singular perturbation form of the transition operator for
the Markov chairnZ;, = (Xp, Y;), where appropriate ergodicity assumptions hold.

To illustrate the point we consider a very simple situation in whigHives on a

finite state space. In general, the proc€g$),-o should be considered on a general
measurable state space. beb be two nonnegative integers. Also, let

Xn € {a, b}, Y, € {0, 1},

f(a,0) = f(b,0) = b,

fa,l)= f(b,1) =a,
Prot(Y§+l=i|er=j)=%, i,je{01}.

Then the transition matrix fotZ:)n=o is given by (recall thatY;)n>o is the fast chain)

O O NIRkNIE
O O NIRkNIF
NiRENIEFE O O
NIRENIEFE O O
+
™
R OoOOoOR
[cNeoNeoNea!
OO0 OoR
P ooo

where the states dt: are ordered a&@, 0), (a, 1), (b, 0), (b, 1).

A crucial role in the asymptotic analysis x§ will be played byﬁ, where

P(-,-):=0PII(-,-).

Clearly, Pisa probability transition kernel ofE, £), and we have

e forx € Ej,
P(x, Ej) = f/l‘[(y, E)P(z dy)I(x, d2)
EJE

- / / [(y, E))P(z dy)i (d2) + / / M(y. E))P(z dy)m (d2)
i JE Ei /D
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= /E (3(2, Ej) + /D p(Y. Ej)ﬁ(z,dy)> i (d2)
=: p(, j), (2.1)

e forx € D,
P E) = Y [ [ N0 B)P dym @apx E)
i=1 i

= Z/ I:ﬁ(Z, E)+ /l; oy, E )ﬁ(z, dy)] 7 ([d2)p(X, E)
i=1 i
= POe D, 2.2)

e for x € E,

P(X, D)://I'I(y, D)P(z, dy)TI(x,d2) = 0 =: p(X, D), (2.3)
EJE

withi, j=1,2,...,r. R R

LetE = {12 ..., r} and letEe ;= E U D, and letp( -, - ) be as defined in
(2.1)—(2.3).
Definition 2.1.

(@) A Markov chainX, = (X,)%2, on E, whose transition probability matrix is
p=I[pdq, j)]i’jeé, is called aggregated in a strict sense.

(b) A Markov chainkt = (X5), on (Ee, £), Whose probability transition kernel
is p(-,-),Iis called aggregated in an extended sense.

Clearly, D is a transient class fotf, andX¢ restricted toE coincides withg,. In
what follows we shall need the following assumption:

Assumption (I). There exists a unique invariant probability measuffer X,, that is,
wu is the unique row vector so that

() wi)=>0,i=12...r,
Yo =1
i=1

(i) S npl, ) =un(), j=12...,r.

It is not difficult to see that the Doeblin condition is satisfied for any finite state
space Markov chain. We may thus conclude that the quasi-potential maigxvell
defined forx, by (compare with the discussion in C3)

rO = pnoqnoa
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whereng > 1 is sufficiently largep,, andgp, are matrices given by
no—1
PGV, 1) =86, ) + i) —ngt Y p™a )
n=0
+n51(8(i,j)_p<n>(i,j)), ij=1,...r,
no—1s-1

o, ) =86, D +ng" Y > (0% G, ) — (i),

s=0 k=0
wherep{ (i, j) is the(i, j)th entry of the inverse, ! to pn,, and wherep™ i, j) is
the (i, j)th entry inp". We have that
r0(|r - p) = Ir — W, (2-4)
wherel, is ther x r identity matrix, and

u@ w@ -ooop(r) Jz
B u@ w@ - ou(r) W
w=1 . : : —|:
@ p@ -opn)), Iz

Before we state Theorem 2.1, below, we need to introduce some more notation. For
Ac&i=12....,r,andm=0,12, ..., welet

BL(A) == / B(RoB)™(x, A)ri (dx)

Ei

and, additionally, foj = 1,2,...,r, we let

Bl 1) 1= B(E) + [ p(y. EpBiny)
D
Now we inductively define matrices
BY =By,

B? =B, + Brops.

B = B+ BB 1 + -+ BT Pr0B, + B Vropy.

and row vectors

0) .
n® = p,



268 T. R. Bielecki and L. Stettner

Finally, we let, forA € £ andm > 1,

yo(A) =Y O )m (A),
i=1

ym(A) =Y (1@ (BR)™ + n P ()i (BR)™ -+~ + ™ ()il (A).
i=1

The following theorem is inspired by Theorem 6.8 in [KT1].

Theorem 2.1. Let Assumptions D and | be satisfidéssume also that there exists a
unique invariant measure® for P¢. Then fore < min{sp, (3a%bc)~}, where a =
max{|||Bl[[, 1}, b = max]||Roll|, 1}, c = max{||[roll|, 1}, we have

lymllvar < (38%00O™,  m>1,
and
() =Y eMYm(-). (2.5)
m=0

Proof. See the Appendix.

3. Ergodic Control of Singularly Perturbed Markov Chains

In this section we assume that the transition kerrieland P depend on a control
parameten € U, whereU is a compact, metric space. We denote this dependence by
P2 andP”, respectively.

Let A := B(E, U), the space of measurable functions fr&mo U. Foru € A,
with a slight abuse of notation, we denote B andP" controlled kernels such that,
for eachx € E,

PU(x, ) = P'®(x, )

and

—Uu(x)

Pl ) =P, ).
We suppose for the time being that the depenQ%ndéaoandﬁa ona € U is such
that for everyu € A the controlled kernel®" and P are in fact probability transition
kernels. In particular this is true under assumption (A6) that we introduce later in the
text.

The functionsu € A are called stationary Markovian controls. We consider such
controls only. This will not reduce generality, since it is well known that, in view of the
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ergodic assumptions made below, optimal nonanticipating controls can be found among
stationary Markovian controls (see [DY] for example).
We impose the following assumptions pRY, u € A}:

(A1) There exists a finite sequenEs, .. ., E; of disjoint subsets o, that do not
depend oru and are invariant for eacR". That is,

Vx € Ej, VaelU, Pa(x,Ej) =1

fori=1,2,...,r.
(A2) LetD :=E\Ji_, E. Then

sup supP?(x, D) < 1.

xeE aeU

(A3) 3N<OO’ 30</{)<la Vu € Aa VI = 17 27 U] ra anNa Hdisjointset&:il(i )a R C#(I)
such that

(i) Ui_;1 Cli) = Ei,

(i) PY(x, Cj“(i)) =1 for xe Cj“_l(i) and j=23,...,n,
PY(x,C{() =1 for x e Ch(i),

(i) sup sup  supg(PH)"(x,T") — (PH"(y, )| < p.
j=12,...,n x,yecj“(i) re&

Remark 3.1. (a) Assumption (A2) implies that

Sup SUPEL{TY} < oo,
ue A xeE

where

)
T“:min[j zo:xj“eUEi}

i=1
and(xj”)j”i0 is a controlled Markov chain correspondingRd.

(b) Assumption (A3) implies thatthe procesg, )i, With xy € Cj'(i), is uniformly
ergodic oer”(i ). That is, there exists a probability measuft—:(i) such that

?pMPWon—nﬁnwmwsal—m“¥
X€e j“(i)

Consequently, for the quasi-potentRlf we have
IIIRs Il = M(p) < oo.

In addition, we assume what follows abarit:

(Ad) infycur g infacu PY(X, E)) >0, j=12,....r.
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(A5) 3y, Ve<e» Yuea there is a unique invariant measutg for P%¢ = PY +
e(P" — 1), and

n-1
Ve, Jm Y (P D = [ fomdy

for every f € b€.

Remark 3.2. (a) Assumption (Al) indicates that the ergodic structure of the underlying
controlled Markov chain is invariant with respect to the control parameter. There are
examples of controlled systems in which this assumption is not satisfied. Nevertheless,
there are also important examples of controlled systems for which this assumption is
valid (see points (b) and (c) below). The other assumptions, (A2)—(A5), are consistent
with (Al).

(b) In Section 5.8 of their book Sethi and Zhang [SZ] consider machine capacities
dependent on production rate. In the context of our Example 2.1 this would correspond
to considering operator® and P depending on control parameter as is done in
this section. Note that in view of the interpretation of the perturbed chain in terms of
the presence of strong and weak interactions among the capacity states, assumption
(A1) about uniform (with respect to) ergodic decomposition of the state space of the
underlying Markov chain is quite natural.

(c) Intheir paper Altman and Gaitsgory [AG] consider a situation where the perturb-
ing random process is in fact a controlled Markov chain. In the context of our Example 2.2
this would mean that the chalff; is a controlled Markov chain. Note that in this case
assumption (A1) would automatically be satisfied.

(d) Time discretized versions of control problems considered in Bensoussan and
Blankenship [BB] satisfy assumption (Al).

In the rest of the paper we uge-*) in order to denote a Markov chain corresponding
to P%#, for u € A. Moreover we let, foix € E andu € A,

n—-1
J:(u, x) :=1Iim sup%EX {ZC(Xi”"E, u(xi”’g))] ,

n—oo i=0

wherec: E x U — Ris a bounded, measurable function which is continuoasdnU ,
uniformly in x € E. By (A5) we have that

J.(u, X) = J:(u) = / c(z, u(z)r;(d2)
E

forallu € A andx € E. We are interested in the following optimization problem:

i 3.
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Let, foru € A,
J) = Z/ (X, U))myi (dX)pu(l),
i=1/E

wherer,;,i = 1,...,r, are the invariant measures corresponding‘tpandp, is the
unique invariant measure for the controlled, aggregated Markov ¢Riginwhich exists
due to (A4).

The following corollary to Theorem 2.1 and Remark 3.1 is a version of whatis known
in the literature as the “limit control principle” (see [BF] and [BS1]) corresponding to
the case considered in this paper.

Corollary 3.1. Assumd&A1){A5). Then for every > 0 there existg; > 0 such that
forall ¢ < g5,

sup|J.(u) — J(W| < 6.
ue A

Proof. By Theorem 2.1 we have, for alle A,
30 = 3w = Y [ et ut)pu (@’
i=1/E

From Remark 3.1 it follows that

supl [ vu,illvar < Ki, i=12...,
ue A

for some constark > 0. O

By Corollary 3.1 the minimization problem fad, can be approximated by the
minimization problem forJ. In the remaining part of the paper we simplify the latter
one by approximating it using appropriate discretization of the action space

LetA; = B(D,U)andA; = l’>’(U{=1 Ei, U) be the spaces of measurable functions
from D toU and| Ji_, E; to U, respectively. Ifu € A is such that

u1(x), x e D,
u(x) = r
u(x), xelE,
i=1
for someu; € A;, i =1, 2, then we write

U=uj;® Up.
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Note that

inf J(uy= inf inf J(u up),
ue A ( ) uieA; uxeA; ( 19 2)

and that ergodic assumptions about the aggregated progéys imply that
fE C(X, u(x))my, i (dx) depends oru, alone. Also, ifP" does not depend on, then
uu(i) depends omi; only through the invariant measureg;. The above observations
can be effectively used in approximations of the minimization problend taj.

Let A be the metric otV , and let(a,) be a dense sequencddn SinceU is compact
we have that

Vm=1, Inm)> Un:={a1,..., a8 m} is% netinU.
For anyu € 4 andx € E let

AR (X) :=min{A(U(X), &), a € Un},

am(X) ;= min{ax € Uy : A (X) = A(U(X), &)}
Define a discretization operat&,: A — A by

Snu() = ap ().
Clearly, we have

SUPA(U(X), Spu(x)) < =

xeE m

forallu e A.
Before we state our final result, Proposition 3.1, we formulate the following technical
assumption:

(A6) Both P3(x, -) andﬁa(x, -) are continuous im, in variation norm, uniformly
in x. That is to say, we have that, o, 3s-0, Yaacu,

A@a) <8 = supQx,) — Q¥ (X, )llar < 7,

XeE

whereQ stands forP or P.

Proposition 3.1. AssumdgAl1)}{A6). Then for eachs > 0, there exists msuch that
for all m > m;,

supJ(u) — J(Shu)| < 8.

ue A

Proof. Inthe proof of Proposition 1 in [S] it has been demonstrated that, farall4,
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i=1...,r,andn>1,

[l7wui — mspu,illvare, < supll PY(x, ) — PS“U(X, IvarK1,n (1) Kan (i),

XeE;

where

Il lvarg;

denotes the variation norm df, and

n—-1
(| + i () =Y (PR, )
k=0

Kin(i) := sup sup
ue A xeE;

)

-1
+n7 (1 — PY)(x, ~))

varE;
n-1+¢-1
Kan(i) :=sup sup|l +n~* (PY*(X, ) — i ()
neA xeE; =1 k=1 varE,

By (A3), for a sufficiently largen we have that

Kl,n(') S Kl < 00,

Kon(i) < Kz <0
for someK; andK,. Therefore we may conclude that

sup  sup |lmui — msyuilvarg, < Ki- Kz - sup||PY — P (3.1)

ueA i=12,..r ueA

Similarly, for the aggregated cha(®R") we have

sup _sup ||uu(|> sl <KiKzsup  sup |p<| HD—p¥Gi, Dl (3.2
ue A i=12,.. ueA i,j=1,...,

for some positive and finite constarKs, K,. Next, we observe that

[J() — J(SaW)| = C(X, U(X))7ry,i ([dX) ey (i)
i=1

=3 [ et S0y (dx)usnua)‘
-1

=< ZI/EC(X, u(x)) (my,i _”Snu,i)(dx)uu(i)‘
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+> /E C(X, UOO)) g0, (AX) (iu () — pgu(i))
i=1
+ suEp|c(x, Shu(x)) — c(X, u(x))|. (3.3)

Therefore, in view of (3.1)—(3.3) and assumption (A6), in order to complete the proof of
Proposition 3.1 it remains to show that

sup sup [p“d, j)— p™UGi, )l -0 (3.4)
ueA i,j=12,...,r
asm — oo.
By the definition ofp"(i, j), taking into account (3.1) and
S0

sup sup||ﬁu(x) X, )—P
XeE ueA

X, )llvar — 0

asm — oo, we only need to show that, for=1,2,...,r,

sup suppU(x, Ei) — pS(x, E))| — 0 (3.5
XeE ueA

asm — oo. Since by Remark 3.1

0

2su su E,{TY
sup supPY{T" > N} < Ree SURea BX{TT}
XeE ueA N

asN — oo, in order to demonstrate (3.5) we need to show thatkferl, 2, .. .,

sup sup sup|Pl{xgeD,....,xs; €D, x €Ey}
xeE i=1,2,...,r ueA

— P g™ €D, ..., x € D, x™" € Ei}| - 0 (3.6)

asm — oo.
We prove (3.6) by induction:
Fork = 1, (3.6) holds by (A5).
Assume (3.6) is true fok > 1. Then, fork + 1 we have, forx € E, u € A, and
ji=1...,r,

IPYX¢ € D,...,x¢ € D, Xy € Ej} — P (xg™ € D, ..., x", x € )

:‘/ /"'/XD(X)P”(x,dxl)-~-P”(xk,dxku)
Ej /D D

_/ /.../XD(X)PS“”(x,dxl)mPS“”(Xk,kaﬂ)
gJo Jo

=<

XD(X)(/ ff PY(x, dxq) P! (X1, dX2) - - - PY (X, d%c41)
E JD D

_/ // PU(X,dX1)PS“u(X1,dX2)"'PS"U(kakaJrl))‘
E JD D



Ergodic Control of a Singularly Perturbed Markov Process in Discrete Time 275

XD(X)/ / ~-/(P”(x,dxl)— PSU(x, dxq))
E JD D

CPSU(xg, dXg) - - - P (., dXiey1)

+

< xp(X){sup|P;{xy € D,...x_; € D, % € Ej}
X1€E

— PMixg™ € D,..., M € D, x™ € Ej}| +|I|PY — PS|||)

which goes to 0 a;1 — oo in view of the induction hypothesis and (A6). The proof of
Proposition 3.1 is complete. O

Remark 3.3. Inthis paperwe have notanalyzed the structure of the optsubbptimal
controls. That is, we have not studied the question of asymptotic expansion for these
controls. It is conceivable that optimaluboptimal controls can be split into “fast” and
“slow” components, and that approximations to these components can be obtained com-
bining Proposition 3.1 with the results of [ABF], among others. These issues are very
important for applications and are under investigation.

4. Conclusion

In this paper we have considered a situation when the perturbed Markov chain has
only one invariant measure. One step aggregation was enough to deal with asymptotic
expansion of this invariant measure. Construction of an asymptotic expansion becomes
much more difficult if we allow for a singular perturbation that does not reduce the

number of ergodic classes of the original chain to just one. We will be considering
situations of this kind in a forthcoming work.
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Appendix. Proof of Theorem 2.1
Stepl. We have
|| Brallvar < [ RollI™11BI[|™**,
HBmlll < 21IRollI™[1B][|™*
fori =1,2,...,r andm > 0. Therefore

NBMII < 2lIRolll 111BI]]? < 2ba?



276 T. R. Bielecki and L. Stettner

and

HB@II < 2RIl - 1IBIZ+ 1B Hrolll 1B41]
< 2ba® + |||8Y]||c - 2ba® < 6b%a’c.

We shall show by induction that
18™ 11| < 2ab(3a*bo™* (A.1)

form > 1. Form = 1,2, (A.1) has already been verified. Suppose (A.1) holds for
k <m. Then, form + 1, we have

18™V|| < 20™a™2 4 2ba? - ¢ - 2bMa™
+..-+2a’b(3a%b-c)™t.c-2b- a?
— g2M+hpm+1lm |:2 + 4i 3i—1]
i=1

1-3m
1-3

=2a’b@%-b-c)m (1 +2 ) = 2a’b(3a’ho)™.

Step2. From Step 1 it follows that
||l/«(m)||var <2 3m—1(a2bc)m

form=1, 2, .... Therefore, sincyoy|lvar = 1, we have,fom=1,2, ..,

ymllvar < 1@ lvarl [1BI1™] 1] Rol||™
P varl IBI™ I RoH™ 4 -+ [16™ [ lvar

m
< a’™pmc™ [1 +2 Z 3i1} = (3a’bo)™.
i=1
Step3. By Step 2 we have that for all< min(eo, (3a?bc)~1) the series
m .
> en
i=0

is convergent in variation norm as— oo. Therefore we can define a countably additive
function

()= n(-)e.
i=0

Note thatB(E) = 0 impliesyn(E) = 0 for m > 1. Therefore, sinceo(E) = 1, we
have that;.(E) = 1. We demonstrate in Step 4 below that if we suppose that

Ne P = Ne, (A2)
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then, since;. (E) = 1, we have

ne =7°. (A.3)

Step4. Assume (A.2) is satisfied. By Jordan decomposition we have

778277:_775_

and, forAe &, x =+, —,

n: P*(A) — 0 (A) = n;(E\A) — n; P*(E\A). (A.4)
Sincenf P*(E) = n}(E) andn, P*(E) = n_ (E), then (A.4) implies
nePe=nl, 0 P =u,. (A.5)

Thereforen, . are invariant measures fét°. By the uniqueness of invariant proba-
bility measure forP¢ we conclude that
e _ e
n (E)

and, ifn; (E) > 0,

e  _ ot
n; (E)
Thus
ne = (7 (E) — n, (E)7®
=n.(BE)n® = rx°.

Step5. It remains to demonstrate that (A.2) is satisfied. This will take some time. We
start by observing that (A.2) is equivalent to

o0 . o0 X
Ze'y,(P+88)=Zs'yl, (A.6)
i=0 i=0
and thus to
) .
Y P +y1B—y)e' + %P -y =0. (A7)
i=1
Now, since
voP =0

then (A.7) will be verified once we show that
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Applying formulas fory; _1, v we get

yiP+y1B—y =) 1@ (BR) P+ 1P ()7 (BR) P
j=1

+o 4 n O (D P+ @ () (BRy)' B
+ 1P () (BRy)' B

++u P ())m B — 1 ()7 (BR)
— 1P (BRY T = = u ()]

{u® ()7 (BR)' ™ + n P (j)m (BRo)'

r

j=1
+o u 0 ()]
x B(RoP + | — Ry) + " (j)mj (P — 1)}. (A.9)
Note that
mi(P—1)=0, j=1,....1, (A.10)

and, forf € b&, by C3 of Section 2 we get
RoP +1 — Ry =TI. (A.11)

From (A.9)—(A.11) it follows that we will have demonstrated (A.8) once we have verified
that

Y (D (BR) ™ uP(j)m (BRy) 24+ - +u P (j)m]BI=0 (A.12)
j=1

fori=12,....
However, (A.12) means that, for al € £ and fori =1, 2, .. ., we need to have

0= [ 110y Al BRaB) Ly + ¥ (), BORoB) )
j=17E

+ -+ n V()7 Bdy)]

=22 / p(Y. EQmd( A () B(RoB)' ~*(dy)
j=1k=1"E
+ 1 ()7 B(RoB)' 2 (dy)
+ -4+ w7V Bdy)]

r r

= {nk<A>m<°><j )7; B(RoB)' ~1(E) + ¥ (j)7r; B(RoB) ~2(Ex)
j=1 k=1

bt 1Y () BE]



Ergodic Control of a Singularly Perturbed Markov Process in Discrete Time 279
+ /D p(y. EQm(A® ()7 B(RoB) ~L(dy)
+ o+ u V(G B(dy)]}
- krl nk(A)JXr; [u“’)(j) <nj B(RoB) (i) + /D p(y, BT, B<RoB>“l<dy>>
) (7 BORoB) (0
. /D (Y. B B(RoB>‘2<dy>>

+ 4 u () <n,» B(Ek)+/|3p(y’ Eo7; B(dy))}

= Zﬂk(A)Z[M(O)(J) (ﬁﬂ_1<Ek)+ f Py, Ek)ﬂii_l(dy>)
k=1 D

i=1

+uP()) (/39_2<Ek>+ fD oy, Ek)ﬂii_2<dy>)

o+ () <ﬁg<Ek> + /D p(y. OB} (dy)> ]

k=1 j

= > (A Y O (DBi_1(. 0 + 1P (DB _a(). k)
=1

+ o+ 1P (DB K] (A.13)

Now, using the definitions i ™, we have that, for =1,2,...,andk =1, ..., r,

L@ (DB 1. K+ mP (DB 2 K + -+ + 1V (B, K]
-1

J

=Y QDB 1. k) + 1 @BPro()B (. k)
j=1

J
+ o 1OBDro()Bo(, K] (A.14)

Observe that since
ro(l —p=1-1
and
Bo=p—|
we have

| = —roBo + 1.
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Therefore we may continue (A.14) as

L@ (DB 1, K + @ BPro(NBi_2(j, K) + - + @B Pro()Bo(i, K]
=1

J
=YY [P (DBi_1s OToBot, K) + 1K)
j=1t=1
+ 1 BPro())Bi 2], O (=ToBo(t, k) + (k)
+ o4 w @B 2ro())B1()s O (—ToBo(t, K) + 1 (K))]

;
+ 3 OB Pro())Bo(i. k). (A.15)
j=1
Now notice that, fom > Oandj =1,...,r,

> Bu(i 0 = / B(RoB)™ (x, U Es) 7 (d) +/ p (y, U Es) Bin(dy)
=1 Ej s=1 D s=1
- /E B(RoB)™ (x, U ES) 7 (dx) + B,(D)
i s=1

=/ B(RoB)™ (X, E)7; (dX) = O. (A.16)

EJ
Finally, (A.15) and (A.16) imply that, fok = 1, ..., r, we have

r

Y @B -1 0 + 1 @BVro()B; 2. K + -+ @B Pro()Bo(. K]
j=1

= nOl-Bi1 = BYroBio — - — B 7ProBr + B Plrofo(k) = 0, (A.17)

where the least equality holds by the definitiorgéf-2. We see now that (A.17) implies
(A.13).
The proof of the theorem is complete. O
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