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Abstract: This article is concerned with studying the following problem:
Consider a multivariate stochastic process whose law is characterized in terms
of some infinitesimal characteristics, such as the infinitesimal generator in case
of finite Markov chains. Under what conditions imposed on these infinitesimal
characteristics of this multivariate process, the univariate components of the
process agree in law with given univariate stochastic processes. Thus, in a
sense, we study a stochastic processes’ counterpart of the stochastic dependence
problem, which in case of real valued random variables is solved in terms of
Sklar’s theorem.
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1. INTRODUCTION

We study certain aspects of stochastic dependence between some
classes of finite dimensional semimartingale processes in terms of their
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904 Bielecki et al.

infinitesimal characteristics. This is indeed a pilot study, where we
intend to present only some special cases and some special techniques.
This study will be followed by a study of dependence between general
classes of Markov processes and more general classes of semimartingales.

Let ���� �P� be some underlying probability space, and let
Y = �Y1� Y2� � � � � Yn� be an Rn-valued semimartingale with respect to
some filtration, defined on this probability space. Let also X1� X2� � � � � Xn

be a collection of semimartingales on ���� �P�, with respect to some
filtrations. We shall only consider certain classes of semimartingales that
are uniquely characterized, in the sense of their probability laws, by their
characteristics. For the most part, for simplicity of presentation, we shall
only consider the bivariate case, that is the case of n = 2.

Our study is motivated by the following question: What are the
sufficient conditions to be satisfied by the local characteristics of process
Y so that law of Yi is the same as the law of Xi, i = 1� 2� � � � � n.
This question arises naturally in various applications, such as valuation
and hedging of financial derivatives written on baskets of underlying
securities.

As a matter of fact, the question can be posed in a constructive
way: given processes Xi, i = 1� 2� � � � � n construct process Y so that its ith
univariate law, i.e., the law of the ith component Yi, is the same as the law
of Xi, i = 1� 2� � � � � n. In this context, the question reminisces the concept
of copula functions, and the celebrated Sklar’s [4] theorem.

A progress in extending Sklar’s theorem to general product spaces
was made in a paper by Scarsini [3]. In this paper a family of
Polish spaces Li, i = 1� � � � � n is considered, where each Li is endowed
with a �-field �i. A subclass �i ⊂ �i is increasing if it is linearly
ordered by inclusion: ∀A�B ∈ �i� either A ⊂ B, or B ⊂ A, or A = B.
By �×n

i=1Li�
⊗n

i=1 �i�P� we denote a probability space such that for all
i = 1� 2� � � � � n

P�L1 × · · · × Li−1 × Ai × Li+1 × · · · × Ln� = Pi�Ai�� ∀Ai ∈ �i�

where Pi is a probability measure on �Li��i�. The main result in [3] is

Theorem 1.1. There exists a unique sub-copula function C defined on
×n

i=1Range�Ai → Pi�Ai��Ai ∈ �i�, such that

P
(×n

i=1 Ai

) = C
(
P1�A1�� � � � �Pn�An�

)
� ∀Ai ∈ �i�

This is a nice result, but it does not suit well our needs to model
dependence between stochastic processes. The reason is that this result,
as stated, is limited to linearly ordered families �i, a condition, which,
in general, is not satisfied by cylindrical sigma algebras on canonical
spaces. This motivated us to study dependence between processes
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Dependence of Stochastic Processes 905

in terms of infinitesimal characteristics. Consequently, we somewhat
abuse terminology by use of the term “copulae.” We use the term for
historical reasons only. Various “copulae” that we define below aren’t
really copula functions. Nevertheless, we find this terminology useful and
convenient.

It turns out that the key role in our approach is played by
canonical characteristics (canonical compensators, in particular), that is,
characteristics expressed as functions of a trajectory of the process. This
representation is explicit in the case of processes discussed in Sections 2,
3, and 5. In case of the point processes discussed in Section 4 this
canonical representation is semi-explicit, in general.

We shall make the following standing assumption throughout the
article.

Assumption. All filtrations appearing below are supposed to be
appropriately augmented, so that they satisfy the usual conditions.

2. DEPENDENCE BETWEEN MARKOV DIFFUSION
PROCESSES: DIFFUSION COPULAE

Let us consider two diffusion processes X1 and X2 with values in R1 and
driven by the following SDEs:

dXi�t� = �i�Xi�t��dt + �i�Xi�t��dWi�t�� Xi�0� = 1� i = 1� 2� (1)

where W1 and W2 are independent SBMs. We suppose that Xi, i = 1� 2
are strong solutions, although this is not necessary for our needs.

Our problem is to find functions m = �m1�m2	
T 
 R2 → R2 and

� = ��ij	 
 R
2 → L�R2�R2�, so that two dimensional diffusion process Y

given as a strong solution to the SDE

dY�t� = m�Y�t��dt + ��Y�t��dW�t�� Y�0� =
[
1
1

]
� (2)

where WT = �W1�W2�, is such that

��Yi� = ��Xi�� i = 1� 2� (3)

Let F be the filtration generated by W . Suppose that function � satisfies
the following two conditions

�2
11�x� y�+ �2

12�x� y� = �2
1�x�� �2

21�x� y�+ �2
22�x� y� = �2

2�y�� (4)

In addition, suppose that function m satisfies

m1�x� y� = �1�x�� m2�x� y� = �2�y�� (5)
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906 Bielecki et al.

Assuming condition (4), and some mild technical assumptions about the
coefficients �ij and �i, it follows from the Lévy characterization theorem
that the following two process

B1 =
∫ t

0

�11�Y1�u�� Y2�u��

�1�Y1�u��
dW1�u�+

∫ t

0

�12�Y1�u�� Y2�u��

�1�Y1�u��
dW2�u� (6)

and

B2 =
∫ t

0

�21�Y1�u�� Y2�u��

�2�Y2�u��
dW1�u�+

∫ t

0

�22�Y1�u�� Y2�u��

�2�Y2�u��
dW2�u� (7)

are standard Brownian motions with respect to the filtration F.
Consequently, we obtain the following result.

Proposition 2.1. Under conditions (4) and (5) the components of process
Y satisfy:

dYi�t� = �i�Yi�t��dt + �i�Yi�t��dBi�t�� Yi�0� = 1� i = 1� 2� (8)

Thus, property (3) is satisfied.

Note that in view of (5) we have no flexibility in choice of the
function m. However, we do have flexibility in choice of function �.
We shall exploit this flexibility.

In view of (5) dependence between components of Y is fully
described in terms of functions �12 and �21. This observation and
property (3) bring about the following definition,

Definition 2.1. Let functions �12 and �21 be such that

sup
y

�2
12�x� y� ≤ �2

1�x�� and sup
x

�2
21�x� y� ≤ �2

2�y�� (9)

Then, these functions constitute a diffusion copula between Y1 and Y2
in the sense that with function m given by (5), and with function �
given as

��x� y� =
(±√�2

1�x�− �2
12�x� y� �12�x� y�

�21�x� y� ±√�2
2�x�− �2

21�x� y��

)
(10)

the process Y satisfies (2) and (8). In particular, property (3) holds.

Remark 2.1. The above considerations can be generalized to the non-
Markovian case, as long as functions �i, �i are functionals of trajectories
of Xi, and functions m and � are functionals of trajectories of Y .
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Dependence of Stochastic Processes 907

3. DEPENDENCE BETWEEN POISSON RANDOM MEASURES
AND POISSON PROCESSES: POISSON COPULAE

Assume that E is a Polish space with Borel �-field � and let ���� �P�
is a probability space endowed with filtration F. Let � be a homogenous
Poisson measure on R+ × E� that is, � is an integer-valued random
measure such that

i) the intensity measure of �, that is, the positive measure m on
�R+ × E���R+�⊗ �� defined by m�A� = E���A��, is �-finite,

ii) for every s ∈ R+ and every A ∈ ��R+�⊗ � such that A ⊂ �s���× E,
m�A� < �, the variable ��·� A� is independent of �-field �s,

iii) m��s× E� = 0 for every s ∈ R+ and m�dt� dx� = dt × F�dx�, where
F is a positive �-finite measure on �E���.

There exists a one-to-one correspondence between homogenous
Poisson processes Y in Rn and homogenous Poisson measures with
E = �0� 1n\�0� � � � � 0�. The measure F is a measure on finite set,
so it is uniquely determined by values on atoms. Therefore, a
multivariate Poisson process Y in Rn is uniquely determined by function
F�n� 
 E → R+, F�n��x� = F��x�. Dependence between components
of Y is fully described in terms of function F�n�. We shal denote
�k1�����kn = F�n���k1� � � � � kn�� for �k1� � � � � kn� ∈ E.

By �Y we denote the jump measure associated with process Y :

�Y ��� dt� dy� =∑
s

��s��Ys�����dt� dy����Ys����=0� (11)

For simplicity of notation in what follows we assume that n = 2.
We denote Ei = �0� 1, i = 1� 2.

Let us consider two Poisson processes X1 and X2 with values in R1,
determined by their respective intensities �

�1�
1 and �

�2�
1 . Our problem

is to find conditions ensure that two dimensional Poisson process
Y = �Y1� Y2�, determined by F�2�, has given marginals X1 and X2 that is,
condition analogous to (3) is satisfied.

Since, for A1 = �1 we have

�Y1��0� t	× A1� =
∑

0<s≤t

���Y 1
s ∈A1

= ∑
0<s≤t

���Y 1
s ∈A1��Y

2
s ∈E2

= �Y ��0� t	× A1 × E2��

we obtain that �Y1��0� t	× A1� has Poisson distribution with parameter
t�

�1�
1 , so that ��Y1� = ��X1�, provided

�
�1�
1 = F�A1 × E2� = �1�0 + �1�1� (12)
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908 Bielecki et al.

Analogous argument gives

�
�2�
1 = �0�1 + �1�1� (13)

Since �i�j ≥ 0, then

�1�1 ∈
[
0� ��1�1 ∧ �

�2�
1

]
� (14)

Consequently, we obtain the following result.

Proposition 3.1. Let Y = �Y1� Y2� be a two dimensional Poisson process
determined by F�2�, and X1 and X2 be Poisson processes in R1. Under
conditions (12) and (13) the distributions of processes Y1 and Y2 are equal
to distributions of processes X1 and X2, respectively, that is,

��Yi� = ��Xi�� i = 1� 2� (15)

These considerations justify the following definition.

Definition 3.1. By a Poisson copula between X1 and X2 we understand
any function F�2�, which satisfies conditions (12) and (13).

Then, any such function constitutes a Poisson copula between
X1 and X2 in the sense that a two dimensional Poisson process
Y = �Y1� Y2� determined by F�2� has marginal distributions coinciding
with those of X1 and X2.

Example 3.1. Let N = �N 1
t � N

2
t � be a two dimensional Poisson process

determined by F�2�, then

P�N 1
t = k� N 2

t = m� = P��N ��0� t	× E� = �k�m��

=
k∧m∑
l=0

P
(
�N��0� t	× ��1� 1�

) = l� �N ��0� t	× ��1� 0��

= k− l� �N ��0� t	× ��0� 1�� = m− l�

=
k∧m∑
l=0

��1�1t�
l

l! e−�1�0t
��1�0t�

k−l

�k− l�! e
−�1�0t

��0�1t�
m−l

�m− l�! e
−�0�1t�

Remark 3.1. By this method we can obtain n-dimensional Poisson
process with given consistent two-dimensional marginal distributions or
three-dimensional marginal distributions, etc.

In the next section we shall generalize results of this section to the
case of a class of point processes.
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Dependence of Stochastic Processes 909

4. DEPENDENCE BETWEEN POINT PROCESSES:
PP COPULAE

Here we characterize dependence between point processes.
We start with definition of a multivariate point process.1 As

before, we consider ���� �P� – a probability space endowed with some
filtration F. We also consider the space E = �0� 1n\�0� � � � � 0�.

Definition 4.1. A multivariate point process, say Y , is a piece-wise
constant stochastic process on ���� �P� whose associated jump measure,
say �Y � is an integer-valued random measure on R+ × E.

To simplify discussion below we make a standing assumption.

Assumption (A). We assume that E�Y ��0� t	� E� < �, for all t ≥ 0.
From now on the filtration F will be the natural filtration of process

Y , and will be denoted by FY .

Remark 4.1. In a future work we shall consider a more general set-up
where filtration F is given as F = FY ∨ F̃, where F̃ is a filtration
providing some additional information (such filtration F̃ is sometimes
called a reference filtration). For example, Y may be a doubly stochastic
(multivariate) Poisson process (also known as Cox process), and
filtration F̃ may be generated by its (random) hazard process.

It is well known that a point process can be represented as a
sequence of random variables �Tn� Zn�� n = 1� 2� � � � , where Tn’s are FY

stopping times that represent jump times, and Zn’s are corresponding
marks that take values in E and indicate which of the components jump
at any given jump time. In particular, it is known that for each n it
holds that � Y

Tn
= ���Ti� Zi�� i = 1� 2� � � � � n�. It can be shown (cf., e.g.,

[2], Theorem 4.1.11) that the FY compensator of �Y , say �Y , can be
represented as

�Y �dt� A� =∑
n≥0

��Tn<t≤Tn+1

P
(
Tn+1 ∈ dt� Zn+1 ∈ A ��Tn

)
P
(
Tn+1 ≥ t ��Tn

) � (16)

where we use the convention that 0
0 = 0.

Since different processes may be defined on different probability
spaces, then, in general, we are not able to compare distributional

1Some authors (cf. Last and Brandt [2]) refer to marked point process as
to multivariate point process. This is not the definition that we have in mind,
however.
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910 Bielecki et al.

properties of the processes in terms of their compensators. This is
because the compensators themselves will be defined on these different
probability spaces, and therefore we are not in position to assess whether
they are equal to each other or not.

However, one may instead compare so called canonical compensators
of point processes (cf. Last and Brandt [2], section 4.2).

In our set-up we have that any canonical compensator of Y , say �Y ,
can be disintegrated as (cf. [2], Theorem 4.2.2)

�Y �y� dt� dx� = �̄Y �y� dt��Y �y� t� dx�� (17)

where y represents a path of Y , that is, y ∈ E�0���. It, thus, holds that

�Y ��� dt� dx� = �̄Y �Y���� dt��Y �Y���� t� dx�� (18)

A canonical compensator of a point process Y is the same as
the compensator of this process, when process Y is considered on the
canonical space. This in turn implies that canonical compensator is
unique almost surely.

It follows from Theorem 4.3.9 in Last and Brandt [2] that for
a point process Y its canonical compensator uniquely determines
process Y (in the sense of probability law). Consequently, probabilistic
properties of point processes discussed here, such as dependence between
coordinate components, can be entirely characterized in terms of the
respective canonical compensators, which, in view of (18), is equivalent
to characterization in terms of the associated kernels: �̄Y �y� dt� and
�Y �y� t� dx�.

4.1. Two-Dimensional Case

Let us consider a two-dimensional point process Y = �Y 1� Y 2�, so that
mark space is E = ��1� 0�� �0� 1�� �1� 1�. The mark space2 of each
coordinate component Y i is Ei = �0� 1.

In analogy to notation used in the previous section we denote by
�Y i

��� dt� dx� the jump measure of process Y i, so that �Y i
��0� t	� �1�

gives the number of jumps of Y i on the time interval �0� t	.

Remark 4.2. Recall that by definition of the jump measure it holds that
�Y i

�� � �0� = 0 for any Borel subset � in �0���.
We note that �Y 1

��0� t	� A1� = �Y ��0� t	� A1 × E2�, and �Y 2
��0� t	�

A2� = �Y ��0� t	� E1 × A2�, for any Ai ⊂ Ei� i = 1� 2. It is clear that
�Y i

��0� ·	� Ai� is adapted to FY i
(of course, it is also adapted to FY ).

2We slightly abuse the term “mark space” here.
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Dependence of Stochastic Processes 911

4.1.1. Auxiliary Results

We fix i. We shall use the following notation,

• �Y : the compensator of �Y with respect to FY ,
• �Y

i

Y : the compensator of �Y i
with respect to FY ,

• �Y
i
: the compensator of �Y i

with respect to FY i
,

• oiU : the optional projection of a process U on FY i
,

• piU : the predictable projection of a process U on FY i
,

• Upi : the dual predictable projection of a process U on FY i
.

Since �Y
i

Y ��0� ·	� �1� is an increasing process, oi
(
�Y

i

Y ��0� ·	� �1�
)
is an

FYi (local) submartingale, thus it admits a Doob–Meyer decomposition.
Hence, we have

oi
(
�Y

i

Y ��0� ·	� �1�
)
t
= Mi

t + Zi
t�

where Mi is an FYi (local) martingale starting from 0, and
Zi = (oi ��Y i

Y ��0� ·	� �1�
)pi . We now set

�i��� dt� dx� = dZi
t����1�dx�� (19)

Lemma 4.1. Equality (19) defines a predictable random measure on
��R+�⊗ 2E

i
.

Proof. Let 0 ≤ s ≤ t and let A ⊂ Ei. We then have

�i��� �s� t	� A� = �Zi
t���− Zi

s�����1�A� ≥ 0� (20)

Next, let B1 and B2 be disjoint sets from ��R+�. Then, for any A ⊂ Ei

we have

�i��� B1 ∪ B2� A� =
( ∫

B1

dZi
t���+

∫
B2

dZi
t���

)
�1�A�

= �i��� B1� A�+ �i��� B2� A�� (21)

Now, since process Zi is cad-lag3 we see that for any s ≥ 0 and any
A ⊂ Ei we have

lim
n→� �i

(
��

(
s� s + 1

n

]
� A

)
= 0� (22)

3By definition, process Zi is right-continuous; since it is increasing—it is
cad-lag.
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912 Bielecki et al.

We conclude that �i uniquely extends from a random measure on the
algebra of sets of the form �s� t	× A to a random measure, also denoted
as �i, on ��R+�⊗ 2E

i
.

We shall now demonstrate that �i is a predictable measure. Toward
this end let Ŵ be a predictable function of the form

Ŵ ��� t� x� = f��� t�g�x��

where f is a predictable process. Then we have

�Ŵ ∗ �i�t��� = g�1�
∫
�0�t	

f��� s�dZi
s����

Since process Zi is predictable, then it is clear that process Ŵ ∗ �i
is predictable. Finally, since every predictable function W��� t� x� can
be approximated by predictable functions of the form f��� t�g�x�, we
conclude that for any predictable function W the integral W ∗ �i is a
predictable process. Consequently, measure �i is a predictable random
measure. �

We shall see that measure �i is the dual predictable projection of �Y i

on FYi . For this, we shall use the following result.

Lemma 4.2. For each A ⊂ Ei we have that

�Y i

��0� t	� A�− �oi ��Y
i

Y ��0� ·	� A���pit (23)

is an FY i
-local martingale.

Proof. Fix A ⊂ Ei. The process Mt = �Y i
��0� t	� A�− �Y

i

Y ��0� t	� A� is
an FY martingale, thus its optional projection on FYi , denoted as
oiMt, is an FYi martingale, that is, the process oiMt = �Y i

��0� t	� A�−
oi ��Y

i

Y ��0� ·	� A��t is an FYi martingale. Since �Y
i

Y ��0� t	� A� is an increasing
process, oi ��Y

i

Y ��0� ·	� A��t is an FYi submartingale, thus it admits a Doob–
Meyer decomposition. Hence, we have

oi
(
�Y

i

Y ��0� t	� A�
) = Lt +

(
oi
(
�Y

i

Y ��0� t	� A�
))pi �

where Lt is an FYi (local) martingale starting from 0. From the above we
conclude that

�Y i

��0� t	� A�− (
oi
(
�Y

i

Y ��0� ·	� A�
))pi

t
= Lt + oiMt�

so that process �Y i
��0� t	� A�− (

oi
(
�Y

i

Y ��0� ·	� A�
))pi

t
is an FY i

-local
martingale, as requested. �
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Dependence of Stochastic Processes 913

Corollary 4.1. The measure �i is the dual predictable projection of �Y i
on

FYi , so that �Yi ≡ �i.

Proof. It is enough to observe that for A ⊂ Ei we have(
oi
(
�Y

i

Y ��0� ·	� A�
))pi

t
= �i��0� t	� A�

and then to use Theorem II.1.8 in [1]. �

In what follows we give a more direct way of computing the
projections (

oi
(
�Y

i

Y ��0� ·	� A�
))pi

in a special case, namely when the compensator �Y
i

Y is absolutely
continuous.

Lemma 4.3. Assume that �Y
i

Y ��0� t	� A� is absolutely continuous in the sense
that �Y

i

Y ��� �0� t	� A� =
∫ t

0 K
Yi

Y ��� s� A�ds for some measurable kernel KYi

Y .
Then, for any t < �,

(
oi
(
�Y

i

Y ��0� ·	� A�
))pi

t
=
∫ t

0

pi �KY i

Y �s� A��ds� (24)

Proof. In view of our assumption we see that oi ��Y
i

Y ��0� ·	� A��t is
integrable. We just need to show that the process

Mt 
= oi
(
�Y

i

Y ��0� ·	� A�
)
t
−
∫ t

0

pi
(
KYi

Y �s� A�
)
ds

is an FY i
martingale as then the result will follow from uniqueness

of the Doob–Meyer decomposition. Note that since pi �KY i

Y �s� A�� is
predictable it is also progressive and thus the integral

∫ t

0
pi �KY i

Y �s� A��ds
is well defined in the Lebesgue sense. Integrability of the process∫ t

0
pi �KY i

Y �s� A��ds and the martingale property of Mt are then an
immediate consequence of the Fubini theorem. �

In what follows we shall denote by �Yi the canonical compensator
corresponding to �i�

4.1.2. PP Copulae

Let us consider two point processes X1 and X2 with values in R1.
We denote the corresponding compensators by �X

1
and �X

2
, and the

corresponding canonical compensators by �X
1
and �X

2
.
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914 Bielecki et al.

Our problem is to find conditions that ensure that two-dimensional
point process Y = �Y1� Y2�, with the corresponding compensators �Y and
�Y , has given marginals X1 and X2 i.e., condition analogous to (3) is
satisfied.

Given all the above discussion, it turns out that the sufficient
condition for this is

�Yi = �Xi � i = 1� 2� (25)

Consequently, we obtain the following result, where �̃ is a
predictable kernel from the path space to ��R+�⊗ 2E ,

Proposition 4.1. Let Y = �Y1� Y2� be a two dimensional point process with
canonical compensator �Y = �̃, and compensator �Y given through (18). Let
X1 and X2 be point processes in R1. Under condition (25) the marginal
distributions of process Y are equal to X1 and X2 respectively. Thus,
property (3) is satisfied.

These considerations justify the following definition.

Definition 4.2. By a PP copula between X1 and X2 we understand any
predictable kernel �̃, defining a two dimensional point process, which
satisfies condition (25).

Of course, the above definition extends to a multivariate case in a
straightforward way.

4.1.3. Examples

Example 4.1. Let us consider a bivariate Poisson process Y as in
Section 3. Here we have

�Y �y� dt� ��i� j�� = �i�jdt� for �i� j� ∈ E (26)

and

�Y1�y1� dt� �1� = ��1�0 + �1�1�dt� �Y2�y2� dt� �1� = ��0�1 + �1�1�dt� (27)

Given two univariate Poisson processes, X1 and X2, with natural
intensities ��1�1 and �

�2�
1 , respectively, condition (25) takes the form

�1�0 + �1�1 = �
�1�
1 � �0�1 + �1�1 = �

�2�
1 � (28)

Thus, a particular PP copula between X1 and X2 is any triple
��1�0� �0�1� �1�1 of non-negative numbers satisfying (28). This indeed is
the Poisson copula between X1 and X2.
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Dependence of Stochastic Processes 915

Of course any predictable kernel �̃ such that

�Y1�y1� dt� �1� = �
�1�
1 � �Y2�y2� dt� �1� = �

�2�
1 (29)

also constitutes a PP copula between X1 and X2. Thus, a multivariate PP,
which is not a multivariate Poisson process in the sense of Section 3, may
have Poisson processes as marginals.

Example 4.2. Consider a stochastic basis ���� Y �P�, where
� = �1 ×�2 is the canonical space of bivariate point processes. Let
Y = �Y 1� Y 2� denote the canonical process on ���� �. For the illustrative
purpose of this section, we make the simplifying assumption that,
under P, each component is P-a.s bounded by the constant M , that
is, it jumps at most M times. We let Tm

1 and Tn
2 , with T 0

i = 0, denote
the jump times of the coordinate processes Y i. We endow the space
with the natural filtration of the canonical process, FY . We assume
that, under P, we are given the joint density of P�Tm

1 ∈ dt� Tn
2 ∈ dt,

m�n ≤ M�, say f�s11� � � � � s
M
1 � s

1
2� � � � � s

M
2 �. We give here a construction of

the compensator of the jump measure of Y in terms of the the joint
distribution of the jump times of the components. We prove the result
only for the set �1� 1, since the proof is analogous for all other sets in
the mark space. In the following we use the notation:

F
(
t11� � � � � t

m−1
1 � ds� �s���� � � � � �s���� t12� � � � � t

l−1
2 � ds� �s��� � � � � �s���

)



=
∫ �

s
· · ·
∫ �

s
f�t11� � � � � t

m−1
1 � s� sm+1

1 � � � � � sM1 � t
1
2� � � � � t

l−1
2 �

s� sl=1
2 � � � � sM2 �ds

m+1
1 � � � dsM1 ds

l+1
2 � � � dsM2 ds� (30)

Lemma 4.4. Let

�Y �dt� �1� 1� =
∫ t

0

M∑
m�n=1

P
(
Tm
1 ∈ ds� Tn

2 ∈ ds
∣∣�Tm

1 ∨Tn
2

∨ �Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2 
)
�

Then

�Y �dt� �1� 1�

=
∫ t

0

M∑
m�n=1

F�T 1
1 � � � � � T

m−1
1 � ds� �s���� � � � � �s���� T 1

2 � � � � � T
n−1
2 � ds�

�s��� � � � � �s����

F�T 1
1 � � � � � T

m−1
1 � �s���� �s���� � � � � �s���� T 1

2 � � � � � T
n−1
2 �

�s���� � � � � �s����

× ��Tm−1
1 <s≤Tm

1 ��Tn−1
2 <s≤Tn

2 
(31)

and the process ���0� t	� �1� 1�− ∫ t

0 ��ds� �1� 1� is an F martingale.
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916 Bielecki et al.

Proof. Equality (31) is elementary to verify.
To prove the martingale property of ���0� t	� �1� 1�− ∫ t

0 ��ds� �1� 1�
we first note that �Y ��0� t	� �1� 1� =∑

m�n ��Tm
1 ≤t�Tn

2 ≤t�Tm
1 =Tn

2 
, therefore it

suffices to verify that process

Mt 
=
∑
m�n

��Tm
1 ≤t�Tn

2 ≤t�Tm
1 =Tn

2 
−
∫ t

0
��ds� �1� 1�

has the martingale property. By Lemma III.1.29 in [1], on the
event �Tm−1

1 < s ≤ Tm
1 � T

n−1
2 < s ≤ Tn

2 , conditioning on � Y
Tm−1
1 ∨Tn−1

2
∨

�Tm
1 ≥ s� Tn

2 ≥ s is equivalent to conditioning on � Y
s−, thus,

E�Mt

∣∣� Y
u � = Mu + E

(∑
m�n

��u<Tm
1 ≤t�u<Tn

2 ≤t�Tm
1 =Tn

2 

∣∣� Y
u

)

− E
∫ t

u

M∑
m�n=1

P
(
Tm
1 ∈ ds� Tn

2 ∈ ds
∣∣� Y

Tm
1 ∨Tn

2

∨ {Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2

} ∣∣� Y
u

)
= Mu +

M∑
m�n=1

(
P
({
u < Tm

1 ≤ t� u < T 2
n ≤ t� Tm

1 = Tn
2 
∣∣� Y

u

)
−
∫ t

u
P
(
Tm
1 ∈ ds� Tn

2 ∈ ds
∣∣� Y

u

))
= Mu +

M∑
m�n=1

(
P
(
�u < Tm

1 ≤ t� u < T 2
n ≤ t� Tm

1 = Tn
2 
∣∣� Y

u

)
−
∫ t

u
P
(
Tm
1 ∈ ds� Tn

2 ∈ ds� Tm
1 = Tn

2

∣∣� Y
u

))
= Mu� �

In the same way one can proof that �Y ��0� t	� �1� 0�−∫ t

0 �
Y �dt� �1� 0� is a local martingale with

��ds� �1� 0� =
∫ t

0

M∑
m�n=1

P�Tm
1 ∈ ds� Tn

2 > s
∣∣� Y

Tm−1
1 ∨Tn−1

2

∨ �Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2 �

=
∫ t

0

M∑
m�n=1

F�T 1
1 � � � � � T

m−1
1 � ds� �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � �s���� � � � � �s����

F�T 1
1 � � � � � T

m−1
1 � �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � �s���� � � � � �s����

× ��Tm−1
1 <s≤Tm

1 ��Tn−1
2 <s≤Tn

2 
�
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Dependence of Stochastic Processes 917

and similarly �Y ��0� t	� �0� 1�− ∫ t

0 �
Y �ds� �0� 1� is an FY local

martingale, with

��dt� �0� 1� =
∫ t

0

M∑
m�n=1

P�Tm
1 > s� Tn

2 ∈ ds
∣∣�Tm−1

1 ∨Tn−1
2

∨ �Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2 �

=
∫ t

0

M∑
m�n=1

F�T 1
1 � � � � � T

m−1
1 � �s���� �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � ds� � � � � �s����

F�T 1
1 � � � � � T

m−1
1 � �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � �s���� � � � � �s����

× ��Tm−1
1 <s≤Tm

1 ��Tn−1
2 <s≤Tn

2 
�

By uniqueness of the dual predictable projection it follows that �Y

as defined above, is indeed the compensator of �Y . The counting
measure associated to the (canonical) coordinate process Y 1 is given by:
�Y 1

��0� t	� �1� = �Y ��0� t	� �1� 1�+ �Y ��0� t	� �1� 0�. It follows therefore
immediately from Lemma 4.4 (and the discussion that follows Lemma
4.4), that the FY compensator of �Y 1

is given by the predictable random
measure �Y

1

Y defined as:

�Y
1

Y ��0� t	� �1� =
∫ t

0

M∑
m�n=1

P
(
Tm
1 ∈ ds

∣∣� Y
Tm−1
1 ∨Tn−1

2

∨ �Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2 
)

(32)

=
∫ t

0

M∑
m�n=1

F�T 1
1 � � � � � T

m−1
1 � ds� �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � �s���� � � � � �s����

F�T 1
1 � � � � � T

m−1
1 � �s���� � � � � �s����

T 1
2 � � � � � T

n−1
2 � �s���� � � � � �s����

× ��Tm−1
1 <s≤Tm

1 ��Tn−1
2 <s≤Tn

2 
� (33)

We shall now compute the FY 1
compensator of �Y 1

.

Proposition 4.2. The FY 1
compensator of �Y 1

is given by the process

�Y
1
��0� t	� �1�

= P�Tm
1 ∈ ds

∣∣� Y 1

Tm−1
1

∨ �Tm
1 ≥ s > Tm−1

1 � (34)

=
∫ t

0

M∑
m=1

F�T 1
1 � � � � � T

m−1
1 � ds� �s���� � � � � �s���� �0���� � � � � �0����

F�T 1
1 � � � � � T

m−1
1 � �s���� � � � � �s���� �0���� � � � � �0����

× ��Tm−1
1 <s≤Tm

1 � (35)
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918 Bielecki et al.

Proof. In view of Corollary 4.1, it suffices to show that �Y
1
��0� t	� �1� =

�o1��Y
1

Y ��0� t	� �1���p1 . In addition, in view of Lemma 4.3,
�o1��Y

1

Y ��0� t	� �1���p = ∫ t

0
p1��Y

1

Y �ds� �1��ds. Since the process ��Tm−1
1 <s≤Tm

1 

is FY 1
predictable, and thus � Y 1

s− measurable, and by definition of
predictable projection:

�Y
1
��0� t	� �1�

=
∫ t

0

M∑
m�n=1

E
(
P
(
Tm
1 ∈ ds

∣∣� Y
Tm−1
1 ∨Tn−1

2
∨ �Tm

1 ≥ s > Tm−1
1 �

Tn
2 ≥ s > Tn−1

2 
) ∣∣� Y 1

s−
)

=
∫ t

0

M∑
m�n=1

E
(
P�Tm

1 ∈ ds� �Tm
1 ≥ s > Tm−1

1 � Tn
2 ≥ s > Tn−1

2 
∣∣� Y

s−�
∣∣� Y 1

s−
)

=
∫ t

0

M∑
m�n=1

P
(
Tm
1 ∈ ds� �Tn

2 ≥ s > Tn−1
2 

∣∣� Y 1

s−
)
��Tm−1

1 <s≤Tm
1 

=
∫ t

0

M∑
m=1

(
P�Tm

1 ∈ ds�
∣∣� 1

Tm−1 ∨ �Tm−1
1 < s ≤ Tm

1 
)
��Tm−1

1 <s≤Tm
1 �

yielding the result. �

Remark 4.3. The random measures �Y
i

are clearly the canonical
compensators of the components Y i, therefore they uniquely characterize
the respective finite dimensional distribution.

5. DEPENDENCE BETWEEN FINITE MARKOV CHAINS:
MARKOV COPULAE

We shall first discuss some results regarding random measures associated
with finite Markov chains.

5.1. Finite Markov Chains and Related Random Measures

As before, let ���� �P� be an underlying probability space. We consider
on this space a stochastic process X = �Xt�t≥0 with values in a finite set
� = �1� 2� � � � � N. By FX we shall denote the natural filtration generated
by X.

For any two states i� j ∈ � , such that i �= j, we define the following
FX-optional random measure on �0���,

Nij��0� t	� = ∑
0<s≤t

��Xs−=i�Xs=j� (36)
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Dependence of Stochastic Processes 919

We shall simply write Nij�t� in place of Nij��0� t	�. Manifestly, Nij�t�
represents the number of jumps from state i to state j that process
X executes over the time interval �0� t	. Let us denote by �ij the dual
predictable projection w.r.t. FX of the random measure Nij .

Next, let us define a matrix valued function A on �0��� by

A�t� = ��ij�t�	i�j∈�� (37)

where �ij’s are real valued, locally integrable functions on �0��� such
that for t ∈ �0��� and i� j ∈ � , i �= j we have

�ij�t� ≥ 0

and

�ii�t� = −∑
j �=i

�ij�t��

�ij�t� is the time-t intensity of jump from state i to state j.
Then, we have the following well known result (we provide the proof

for the convenience of the reader).

Lemma 5.1. Process X is a Markov chain (with respect to FX) with
infinitesimal generator A�t� = ��ij�t�	 iff the dual predictable projections
w.r.t. FX of the counting measures Nij�dt�, i� j ∈ � are of the form:

�ij�dt� = ��Xt−=i�
i
j�t�dt� (38)

Proof. Let us first assume that X is a Markov chain with generator
function A. It is then standard to verify that for any i� j ∈ � , such that
i �= j, process Mij defined as

Mij
t = Nij�t�−

∫ t

0
�ij�ds�

is an FX martingale. Thus, letting n = 1� 2� � � � and denoting by Tn the
time of the nth jump of process X, we easily deduce that process Mij

stopped at Tn is in fact a uniformly integrable FX martingale. Since �ij

given in (38) is FX-predictable, then, in view of Theorem 4.1.9 in Last
and Brandt [2], we conclude that �ij is the compensator of Nij .

Now, let us assume that �ij given in (38) is the compensator of Nij ,
for any i� j ∈ �� i �= j, and define

Ni�t� =∑
k �=i

N ki�t�� �Ni�t� =∑
k �=i

N ik�t�
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920 Bielecki et al.

and

�i�dt� =∑
k �=i

�ki�dt�� �̄i�dt� =∑
k �=i

�ik�dt��

Thus, the processes

Mi
t = Ni�t�−

∫ t

0
�i�ds�� and �Mi

t = �Ni�t�−
∫ t

0
�̄i�ds� (39)

are FX martingales, as they are each equal to a finite sum of FX

martingales. As usual, we denote by �i�·� the Dirac delta function. Now,
observe that the following identities are satisfied for t ≥ 0 and i ∈ � ,

�i�Xt� = Ni�t�− �Ni�t�� if X0 = j �= i�

1− �i�Xt� = Ni�t�− �Ni�t�� if X0 = i (40)

and

�i�dt�− �̄i�dt� = �
Xt−
i �t�dt� (41)

Recall that, considered as a linear operator, matrix A�t� acts on any
function f 
 � → R in the following way

A�t�f�k� = ∑
j∈�

�kj �t�f�j�� (42)

Consequently, we obtain that

A�t��i�k� = �ki �t�� (43)

so that

A�t��i�Xt−� dt = �i�dt�− �̄i�dt�� (44)

We have then demonstrated that for any i ∈ � the process M�i

given as

M
�i
t = �i�Xt�−

∫ t

0
A�s��i�Xs−�ds (45)

is an FX martingale. Consequently, for any function f 
 � → R the
process Mf given as

Mf
t = f�Xt�−

∫ t

0
A�s�f�Xs−�ds = f�Xt�−

∫ t

0
A�s�f�Xs�ds (46)

is an FX martingale. In view of the martingale characterization of
Markov chains this verifies that X is a Markov chain w.r.t. FX . �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
s
t
y
t
u
t
 
M
a
t
e
m
a
t
y
c
z
n
y
 
P
A
N
]
 
A
t
:
 
2
1
:
2
4
 
7
 
O
c
t
o
b
e
r
 
2
0
0
8



Dependence of Stochastic Processes 921

5.2. Markov Copulae

To simplify notation we shall only consider the case of bivariate Markov
chains. The general multivariate case can be treated accordingly.

We want to answer the following questions. Given a bivariate
processes Z = �X� Y�, which is a finite Markov chain with respect to to
its natural filtration FZ = FX�Y :

(Q1): What are the sufficient and necessary conditions on the
infinitesimal generator of Z so that the components X and Y are
Markov chains with respect to their natural filtrations?

(Q2): How do we construct a bivariate Markov chain, whose
components are themselves Markov chains w.r.t. their natural
filtration and have desired infinitesimal characteristics?

(Q3): What kind of dependence structure can we impose on �X� Y� and
how do we do this?

In the rest of this section we denote by 	 and 
 two finite sets. Let
Z = �X� Y� denote a two dimensional Markov chain on � = 	 × 
,
with generator function AZ�t� = [

�ihjk�t�
]
i�j∈	 �k�h∈
 . Consider the following

condition
Condition (M)∑

k∈

�ihjk�t� =

∑
k∈


�ih
′

jk �t�� ∀h� h′ ∈ 
� ∀i� j�∈ 	 � i �= j�

and ∑
j∈	

�ihjk�t� =
∑
j∈	

�i
′h
jk �t�� ∀i� i′ ∈ 	 � ∀k� h ∈ 
 h �= k�

The following proposition addresses the sufficiency part in
question (Q1).

Proposition 5.1. Suppose that condition (M) holds, and define

f i
j �t� 
=

∑
k∈


�ihjk�t�� i� j ∈ 	 � i �= j� f i
i �t� = − ∑

j∈	 �j �=i

f i
j �t�� ∀i ∈ 	 �

and

ghk �t� 
=
∑
j∈	

�ihjk�t�� k� h ∈ 
� h �= k� ghh�t� = − ∑
k∈
�k �=h

ghk �t�� ∀h ∈ 
�

Then the components X and Y of the Markov chain Z are Markov chains
with respect to their natural filtrations with generator functions AX�t� =
�f i

j �t�	i�j∈	 and AY �t� = �ghk �t�	k�h∈
 , respectively.
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922 Bielecki et al.

Proof. Let Nih�jk
Z be the counting measure associated to the process Z

counting jumps from state ih to state jk (cf. (36)). It follows from Lemma
5.1 that the compensator of Nih�jk

Z is given by the random measure

�
ih�jk
Z �dt� = ��Xt−=i�Yt−=h�

ih
jk�t�dt�

The random measure counting the number of jumps of the component
X from state i to state j is given as

N
ij
X �t� =

∑
k∈


∑
h∈


N
ih�jk
Z �t��

The FZ compensator of Nij
X is given by

�
ij
X�dt� =

∑
k∈


∑
h∈


�ihjk�dt�

= ∑
k∈


∑
h∈


��Xt−=i�Yt−=h�
ih
jk�t�dt

= ∑
h∈


��Xt−=i�Yt−=hf
i
j �t�dt

= ��Xt−=if
i
j �t�dt

Note that this is also the FX compensator of N
ih�jk
Z . Thus, invoking

Lemma 5.1 again, we see that X is a Markov chain with respect to FX

and that its generator function is AX�t�. Analogous argument verifies
that the Y component of Z is a Markov chain w.r.t. FY with generator
function AY �t�. �

For the necessity part of question (Q1) we have

Proposition 5.2. For the components X and Y of the Markov chain Z to
be Markov chains with respect to their natural filtrations, with generator
functions AX�t� = �f i

j �t�	i�j∈	 and AY �t� = �ghk �t�	k�h∈
 , respectively, it is
necessary that the following conditions hold for almost all t ≥ 0, P-a.s.:

(
ox�ij

)px
t

=
∫ t

0
��Xu−=if

i
j �u�du� (47)

(
oy�hk

)py
t

=
∫ t

0
��Yu−=ig

h
k �u�du� (48)

where ox �·� [�·�px] and oy �·� [�·�py] denote the optional [predictable]
projection on FX and FY respectively, and where

�ij
t =

∫ t

0

∑
k∈


∑
h∈


��Xu−=i�Yu−=h�
ih
jk�u�du
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Dependence of Stochastic Processes 923

and

�hk
t =

∫ t

0

∑
j∈	

∑
i∈	

��Xu−=i�Yu−=h�
ih
jk�u�du�

Proof. Similarly as in Corollary 4.1 one can show that �ox�ij�px

determines the FX compensator of Nij
X , and that �oy�hk�py determines FY

compensator of Nij
Y . Thus, the result follows from Lemma 5.1. �

The following corollary addresses question (Q2).

Corollary 5.1. Consider two Markov chains X and Y , with respect to their
own filtrations, and with values in 	 and 
, respectively. Suppose that
their respective generators are AX�t� = ��ij�t�	i�j∈	 and AY �t� = ��h

k�t�	h�k∈
 .
Next, consider the system of equations in the unknowns �ihjk�t�, where i� j ∈
	 , h� k ∈ 
 and �i� h� �= �j� k�:∑

k∈

�ihjk�t� = �ij�t�� ∀h ∈ 
� ∀i� j ∈ 	 � i �= j (49)

∑
j∈	

�ihjk�t� = �h
k�t�� ∀i ∈ 	 � ∀h� k ∈ 
� h �= k� (50)

Suppose that the above system admits solution such that the matrix function
A�t� = ��ihjk�t�	i�j∈	 �k�h∈
 , with

�ihih�t� = − ∑
�j�k�∈	×
��j�k��=�i�h�

�ihjk�t�� (51)

properly defines an infinitesimal generator function of a Markov chain with
values in 	 × 
. Consider, a bivariate Markov chain Z 
= �Z1� Z2� on 	 ×

 with generator function AZ�t� = A�t�. Then, the components Z1 and Z2 are
Markov chains with respect to to their own filtrations, and their generators
are AZ1�t� = AX�t� and AZ2�t� = AY �t�.

Note that, typically, system (49)–(50) contains many more unknowns
than equations. In fact, given that cardinalities of 	 and 
 are K	

and K
 , respectively, the system consists of K	 �K	 − 1�+ K
�K
 − 1�
equations in K	K
�K	K
 − 1� unknowns.

Thus, in principle, one can create several bivariate Markov chains
Z with the given margins X and Y . Thus, indeed, the system (49)–(50)
essentially serves as a “copula” between the Markovian margins X, Y and
the bivariate Markov chain Z. This observation leads to the following
definition,

Definition 5.1. A Markov copula between the Markov chains X and
Y is any solution to system (49)–(50) such that the matrix function
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924 Bielecki et al.

A�t� = ��ihjk�t�	i�j∈	 �k�h∈
 , with �ihih�t� given in (51), properly defines an
infinitesimal generator function of a Markov chain with values in 	 × 
.

Different Markov copulae will entail different dependence structure
between the margins X and Y . This relates to our third question, that is
(Q3) above, which we shall discuss elsewhere.
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