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1.1 Introduction

In this note, we provide a rather detailed and comprehensive study of the ba-
sic properties of self-financing trading strategies in a general security market
model driven by discontinuous semimartingales. Our main goal is to analyze
the issue of replication of a generic contingent claim using a self-financing
trading strategy that is additionally subject to an algebraic constraint, re-
ferred to as the balance condition. Although such portfolios may seem to be
artificial at the first glance, they appear in a natural way in the analysis of
hedging strategies within the reduced-form approach to credit risk.

Let us mention in this regard that in a companion paper by Bielecki et al.
[1] we also include defaultable assets in our portfolio, and we show how to use
constrained portfolios to derive replicating strategies for defaultable contin-
gent claims (e.g., credit derivatives). The reader is also referred to Bielecki et
al. [1], where the case of continuous semimartingale markets was studied, for
some background information regarding the probabilistic and financial set-up,
as well as the terminology used in this note. The main emphasis is put here
on the relationship between completeness of a security market model with
unconstrained trading and completeness of an associated model in which only
trading strategies satisfying the balance condition are allowed.

∗ The research of the first author was supported in part by NSF Grant 0202851
and by Moody’s Corporation grant 5-55411.

† The research of the second author was supported in part by Moody’s Corporation
grant 5-55411.
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1.2 Trading in Primary Assets

Let Y 1
t , Y

2
t , . . . , Y

k
t represent cash values at time t of k primary assets. We

postulate that the prices Y 1, Y 2, . . . , Y k follow (possibly discontinuous) semi-
martingales on some probability space (Ω,F ,P), endowed with a filtration F
satisfying the usual conditions. Thus, for example, general Lévy processes,
as well as jump-diffusions are covered by our analysis. Note that obviously
FY ⊆ F, where FY is the filtration generated by the prices Y 1, Y 2, . . . , Y k

of primary assets. As it is usually done, we set X0− = X0 for any stochastic
process X, and we only consider semimartingales with càdlàg sample paths.
We assume, in addition that at least one of the processes Y 1, Y 2, . . . , Y k, say
Y 1, is strictly positive, so that it can be chosen as a numeraire asset. We
consider trading within the time interval [0, T ] for some finite horizon date
T > 0. We emphasize that we do not assume the existence of a risk-free asset
(a savings account).

1.2.1 Unconstrained Trading Strategies

Let φ = (φ1, φ2, . . . , φk) be a trading strategy; in particular, each process φi

is predictable with respect to the reference filtration F. The component φi
t

represents the number of units of the ith asset held in the portfolio at time t.
Then the wealth Vt(φ) at time t of the trading strategy φ = (φ1, φ2, . . . , φk)
equals

Vt(φ) =
k∑

i=1

φi
tY

i
t , ∀ t ∈ [0, T ], (1.1)

and φ is said to be a self-financing strategy if

Vt(φ) = V0(φ) +
k∑

i=1

∫ t

0

φi
u dY

i
u, ∀ t ∈ [0, T ]. (1.2)

Let Φ be the class of all self-financing trading strategies. By combining the
last two formulae, we obtain the following expression for the dynamics of the
wealth process of a strategy φ ∈ Φ

dVt(φ) =
(
Vt(φ)−

k∑
i=2

φi
tY

i
t

)
(Y 1

t )−1 dY 1
t +

k∑
i=2

φi
t dY

i
t .

The representation above shows that the wealth process V (φ) depends only
on k−1 components of φ. Note also that, in our setting, the process

(
Vt(φ)−∑k

i=2 φ
i
tY

i
t

)
(Y 1

t )−1 is predictable.

Remark 1. Let us note that Protter [4] assumes that the component of a strat-
egy φ that corresponds to the savings account (which is a continuous process)
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is merely optional. The interested reader is referred to Protter [4] for a thor-
ough discussion of other issues related to the regularity of sample paths of
processes φ1, φ2, . . . , φk and V (φ).

Choosing Y 1 as a numeraire asset, and denoting V 1
t (φ) = Vt(φ)(Y 1

t )−1,
Y i,1

t = Y i
t (Y 1

t )−1, we get the following well-known result showing that the
self-financing feature of a trading strategy is invariant with respect to the
choice of a numeraire asset.

Lemma 1. (i) For any φ ∈ Φ, we have

V 1
t (φ) = V 1

0 (φ) +
k∑

i=2

∫ t

0

φi
u dY

i,1
u , ∀ t ∈ [0, T ]. (1.3)

(ii) Conversely, let X be an FT -measurable random variable, and let us assume
that there exists x ∈ R and F-predictable processes φi, i = 2, 3, . . . , k such that

X = Y 1
T

(
x+

k∑
i=2

∫ T

0

φi
t dY

i,1
t

)
.

Then there exists an F-predictable process φ1 such that the strategy φ =
(φ1, φ2, . . . , φk) is self-financing and replicates X. Moreover, the wealth pro-
cess of φ satisfies Vt(φ) = V 1

t Y
1
t , where the process V 1 is given by formula

(1.4) below.

Proof. The proof of part (i) is given, for instance, in Protter citeProtter. We
shall thus only prove part (ii). Let us set

V 1
t = x+

k∑
i=2

∫ t

0

φi
u dY

i,1
u , ∀ t ∈ [0, T ], (1.4)

and let us define the process φ1 as

φ1
t = V 1

t −
k∑

i=2

φi
tY

i,1
t = (Y 1

t )−1

(
Vt −

k∑
i=2

φi
tY

i
t

)
,

where Vt = V 1
t Y

1
t . From (1.4), we have dV 1

t =
∑k

i=2 φ
i
t dY

i,1
t , and thus

dVt = d(V 1
t Y

1
t ) = V 1

t−dY
1
t + Y 1

t−dV
1
t + d[Y 1, V 1]t

= V 1
t−dY

1
t +

k∑
i=2

φi
t

(
Y 1

t− dY
i,1
t + d[Y 1, Y i,1]t

)
.

From the equality

dY i
t = d(Y i,1

t Y 1
t ) = Y i,1

t− dY
1
t + Y 1

t−dY
i,1
t + d[Y 1, Y i,1]t,
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it follows that

dVt = V 1
t−dY

1
t +

k∑
i=2

φi
t

(
dY i

t − Y i,1
t− dY

1
t

)
=
(
V 1

t− −
k∑

i=2

φi
tY

i,1
t−

)
dY 1

t +
k∑

i=2

φi
t dY

i
t ,

and our aim is to prove that

dVt =
k∑

i=1

φi
t dY

i
t .

The last equality holds if

φ1
t = V 1

t −
k∑

i=2

φi
tY

i,1
t = V 1

t− −
k∑

i=2

φi
tY

i,1
t− , (1.5)

i.e., if ∆V 1
t =

∑k
i=2 φ

i
t∆Y

i,1
t , which is the case from the definition (1.4) of V 1.

Note also that from the second equality in (1.5) it follows that the process φ1

is indeed F-predictable. Finally, the wealth process of φ satisfies Vt(φ) = V 1
t Y

1
t

for every t ∈ [0, T ], and thus VT (φ) = X. ut

1.2.2 Constrained Trading Strategies

In this section, we make an additional assumption that the price process Y k is
strictly positive. Let φ = (φ1, φ2, . . . , φk) be a self-financing trading strategy
satisfying the following constraint:

k∑
i=l+1

φi
tY

i
t− = Zt, ∀ t ∈ [0, T ], (1.6)

for some 1 ≤ l ≤ k − 1 and a predetermined, F-predictable process Z. In
the financial interpretation, equality (1.6) means that the portfolio φ should
be rebalanced in such a way that the total wealth invested in securities
Y l+1, Y l+2, . . . , Y k should match a predetermined stochastic process (for in-
stance, we may assume that it is constant over time or follows a deterministic
function of time). For this reason, the constraint (1.6) will be referred to as
the balance condition.

Our first goal is to extend part (i) in Lemma 1 to the case of constrained
strategies. Let Φl(Z) stand for the class of all self-financing trading strategies
satisfying the balance condition (1.6). They will be sometimes referred to as
constrained strategies. Since any strategy φ ∈ Φl(Z) is self-financing, we have

∆Vt(φ) =
k∑

i=1

φi
t∆Y

i
t = Vt(φ)−

k∑
i=1

φi
tY

i
t−,
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and thus we deduce from (1.6) that

Vt−(φ) =
k∑

i=1

φi
tY

i
t− =

l∑
i=1

φi
tY

i
t− + Zt.

Let us write Y i,1
t = Y i

t (Y 1
t )−1, Y i,k

t = Y i(Y k
t )−1, Z1

t = Zt(Y 1
t )−1. The follow-

ing result extends Lemma 1.7 in Bielecki et al. [1] from the case of continuous
semimartingales to the general case. It is apparent from Proposition 1 that the
wealth process V (φ) of a strategy φ ∈ Φl(Z) depends only on k−2 components
of φ.

Proposition 1. The relative wealth V 1
t (φ) = Vt(φ)(Y 1

t )−1 of a strategy φ ∈
Φl(Z) satisfies

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)
+

+
∫ t

0

Z1
u

Y k,1
u−

dY k,1
u . (1.7)

Proof. Let us consider discounted values of price processes Y 1, Y 2, . . . , Y k,
with Y 1 taken as a numeraire asset. By virtue of part (i) in Lemma 1, we thus
have

V 1
t (φ) = V 1

0 (φ) +
k∑

i=2

∫ t

0

φi
u dY

i,1
u . (1.8)

The balance condition (1.6) implies that

k∑
i=l+1

φi
tY

i,1
t− = Z1

t ,

and thus

φk
t = (Y k,1

t− )−1

(
Z1

t −
k∑

i=l+1

φi
tY

i,1
t−

)
. (1.9)

By inserting (1.9) into (1.8), we arrive at the desired formula (1.7). ut

Let us take Z = 0, so that φ ∈ Φl(0). Then the balance condition becomes∑k
i=l+1 φ

i
tY

i
t− = 0, and (1.7) reduces to

dV 1
t (φ) =

l∑
i=2

∫ t

0

φi
t dY

i,1
t +

k−1∑
i=l+1

φi
t

(
dY i,1

t −
Y i,1

t−

Y k,1
t−

dY k,1
t

)
. (1.10)
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1.2.3 Case of Continuous Semimartingales

For the sake of notational simplicity, we denote by Y i,k,1 the process given by
the formula

Y i,k,1
t =

∫ t

0

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)
(1.11)

so that (1.7) becomes

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u dY

i,k,1
u +

+
∫ t

0

Z1
u

Y k,1
u−

dY k,1
u . (1.12)

In Bielecki et al. [1], we postulated that the primary assets Y 1, Y 2, . . . , Y k

follow strictly positive continuous semimartingales, and we introduced the
auxiliary processes Ŷ i,k,1

t = Y i,k
t e−αi,k,1

t , where

αi,k,1
t = 〈lnY i,k, lnY 1,k〉t =

∫ t

0

(Y i,k
u )−1(Y 1,k

u )−1 d〈Y i,k, Y 1,k〉u.

In Lemma 1.7 in Bielecki et al. [1] (see also Vaillant [5]), we have shown that,
under continuity of Y 1, Y 2, . . . , Y k, the discounted wealth of a self-financing
trading strategy φ that satisfies the constraint

∑k
i=l+1 φ

i
tY

i
t = Zt can be

represented as follows:

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φ̂i,k,1
u dŶ i,k,1

u +

+
∫ t

0

Z1
u

Y k,1
u

dY k,1
u , (1.13)

where we write φ̂i,k,1
t = φi

t(Y
1,k
t )−1eαi,k,1

t . The following simple result recon-
ciles expression (1.12) established in Proposition 1 with representation (1.13)
derived in Bielecki et al. [1].

Lemma 2. Assume that the prices Y 1, Y i and Y k follow strictly positive con-
tinuous semimartingales. Then we have

Y i,k,1
t =

∫ t

0

(Y 1,k
u )−1eαi,k,1

u dŶ i,k,1
u

and
dY i,k,1

t = (Y 1,k
t )−1

(
dY i,k

t − Y i,k
t dαi,k,1

t

)
.
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Proof. In the case of continuous semimartingales, formula (1.11) becomes

Y i,k,1
t =

∫ t

0

(
dY i,1

u − Y i,1
u

Y k,1
u

dY k,1
u

)
=
∫ t

0

(
dY i,1

u − Y i,k
u d(Y 1,k

u )−1
)
.

On the other hand, an application of Itô’s formula yields

dŶ i,k,1
t = e−αi,k,1

t
(
dY i,k

t − (Y 1,k
t )−1d〈Y i,k, Y 1,k〉t

)
and thus

(Y 1,k
t )−1eαi,k,1

t dŶ i,k,1
u = (Y 1,k

t )−1
(
dY i,k

t − (Y 1,k
t )−1d〈Y i,k, Y 1,k〉t

)
.

One checks easily that for any two continuous semimartingales, say X and Y ,
we have

Y −1
t

(
dXt − Y −1

t d〈X,Y 〉t
)

= d(XtY
−1
t )−Xt dY

−1
t ,

provided that Y is strictly positive. To conclude the derivation of the first
formula, it suffices to apply the last identity to processes X = Y i,k and Y =
Y 1,k. For the second formula, note that

dY i,k,1
t = (Y 1,k

t )−1eαi,k,1
t dŶ i,k,1

t = (Y 1,k
t )−1eαi,k,1

t d(Y i,k
t e−αi,k,1

t )

= (Y 1,k
t )−1

(
dY i,k

t − Y i,k
t dαi,k,1

t

)
,

as required. ut

It is obvious that the processes Y i,k,1 and Ŷ i,k,1 are uniquely specified
by the joint dynamics of Y 1, Y i and Y k. The following result shows that the
converse is also true.

Corollary 1. The price Y i
t at time t is uniquely specified by the initial value

Y i
0 and either

(i) the joint dynamics of processes Y 1, Y k and Ŷ i,k,1, or
(ii) the joint dynamics of processes Y 1, Y k and Y i,k,1.

Proof. Since Ŷ i,k,1
t = Y i,k

t e−αi,k,1
t , we have

αi,k,1
t = 〈lnY i,k, lnY 1,k〉t = 〈ln Ŷ i,k,1, lnY 1,k〉t,

and thus
Y i

t = Y k
t Ŷ

i,k,1
t eαi,k,1

t = Y k
t Ŷ

i,k,1
t e〈ln

bY i,k,1,ln Y 1,k〉t .

This completes the proof of part (i). For the second part, note that the process
Y i,1 satisfies

Y i,1
t = Y i,1

0 + Y i,k,1
t +

∫ t

0

Y i,1
u

Y k,1
u

dY k,1
u . (1.14)

It is well known that the SDE
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Xt = X0 +Ht +
∫ t

0

Xu dYu,

where H and Y are continuous semimartingales (with H0 = 0) has the unique,
strong solution given by the formula

Xt = Et(Y )
(
X0 +

∫ t

0

E−1
u (Y ) dHu −

∫ t

0

E−1
u (Y ) d〈Y,H〉u

)
.

Upon substitution, this proves (ii). ut

1.3 Replication with Constrained Strategies

The next result is essentially a converse to Proposition 1. Also, it extends part
(ii) of Lemma 1 to the case of constrained trading strategies. As in Section
1.2.2, we assume that 1 ≤ l ≤ k − 1, and Z is a predetermined, F-predictable
process.

Proposition 2. Let an FT -measurable random variable X represent a con-
tingent claim that settles at time T . Assume that there exist F-predictable
processes φi, i = 2, 3, . . . , k − 1 such that

X = Y 1
T

(
x+

l∑
i=2

∫ T

0

φi
t dY

i,1
t +

k−1∑
i=l+1

∫ T

0

φi
t dY

i,k,1
t +

∫ T

0

Z1
t

Y k,1
t−

dY k,1
t

)
.

(1.15)
Then there exist the F-predictable processes φ1 and φk such that the strategy
φ = (φ1, φ2, . . . , φk) belongs to Φl(Z) and replicates X. The wealth process of
φ equals, for every t ∈ [0, T ],

Vt(φ) = Y 1
t

(
x+

l∑
i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u dY

i,k,1
u +

∫ t

0

Z1
u

Y k,1
u−

dY k,1
u

)
.

(1.16)

Proof. As expected, we first set (note that φk is F-predictable)

φk
t =

1
Y k

t−

(
Zt −

k−1∑
i=l+1

φi
tY

i
t−

)
(1.17)

and

V 1
t = x+

l∑
i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u dY

i,k,1
u +

∫ t

0

Z1
u

Y k,1
u−

dY k,1
u .

Arguing along the same lines as in the proof of Proposition 1, we obtain
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V 1
t = V 1

0 +
k∑

i=2

∫ t

0

φi
u dY

i,1
u .

Now, we define

φ1
t = V 1

t −
k∑

i=2

φi
tY

i,1
t = (Y 1

t )−1

(
Vt −

k∑
i=2

φi
tY

i
t

)
,

where Vt = V 1
t Y

1
t . As in the proof of Lemma 1, we check that

φ1
t = V 1

t− −
k∑

i=2

φi
tY

i,1
t− ,

and thus the process φ1 is F-predictable. It is clear that the strategy φ =
(φ1, φ2, . . . , φk) is self-financing and its wealth process satisfies Vt(φ) = Vt for
every t ∈ [0, T ]. In particular, VT (φ) = X, so that φ replicates X. Finally,
equality (1.17) implies (1.6), and thus φ ∈ Φl(Z). ut

Note that equality (1.15) is a necessary (by Proposition 1) and sufficient
(by Proposition 2) condition for the existence of a constrained strategy repli-
cating a given contingent claim X.

1.3.1 Modified Balance Condition

It is tempting to replace the constraint (1.6) by a more convenient condition:

k∑
i=l+1

φi
tY

i
t = Zt, ∀ t ∈ [0, T ], (1.18)

where Z is a predetermined, F-predictable process. If a self-financing trading
strategy φ satisfies the modified balance condition (1.18) then for the relative
wealth process we obtain (cf. (1.7))

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u

(
dY i,1

u − Y i,1
u

Y k,1
u−

dY k,1
u

)
+

+
∫ t

0

Z1
u

Y k,1
u−

dY k,1
u . (1.19)

Note that in many cases the integrals above are meaningful, so that a counter-
part of Proposition 1 with the modified balance condition can be formulated.
To get a counterpart of Proposition 2, we need to replace (1.15) by the equality

X = Y 1
T

(
x+

l∑
i=2

∫ T

0

φi
t dY

i,1
t +

k−1∑
i=l+1

∫ T

0

φi
t

(
dY i,1

t − Y i,1
t

Y k,1
t−

dY k,1
t

)
+

+
∫ T

0

Z1
t

Y k,1
t−

dY k,1
t

)
, (1.20)
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where φ3, φ4, . . . , φk are F-predictable processes. We define

V 1
t = x+

l∑
i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u

(
dY i,1

u − Y i,1
u

Y k,1
u−

dY k,1
u

)
+

+
∫ t

0

Z1
u

Y k,1
u−

dY k,1
u ,

and we set

φk
t =

1
Y k

t

(
Zt −

k−1∑
i=l+1

φi
tY

i
t

)
, φ1

t = V 1
t −

k∑
i=2

φi
tY

i,1
t .

Suppose, for the sake of argument, that the processes φ1 and φk defined
above are F-predictable. Then the trading strategy φ = (φ1, φ2, . . . , φk) is
self-financing on [0, T ], replicates X, and satisfies the constraint (1.18). Note,
however, that the predictability of φ1 and φk is far from being obvious, and
it is rather difficult to provide non-trivial and practically appealing sufficient
conditions for this property.

1.3.2 Synthetic Assets

Let us fix i, and let us analyze the auxiliary process Y i,k,1 given by formula
(1.11). We claim that this process can be interpreted as the relative wealth
of a specific self-financing trading strategy associated with Y 1, Y 2, . . . , Y k.
Specifically, we will show that for any i = 2, 3, . . . , k − 1 the process Ȳ i,k,1,
given by the formula

Ȳ i,k,1
t = Y 1

t Y
i,k,1
t = Y 1

t

∫ t

0

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)
,

represents the price of a synthetic asset. For brevity, we shall frequently write
Ȳ i instead of Ȳ i,k,1. Note that the process Ȳ i is not strictly positive (in fact,
Ȳ i

0 = 0).

Equivalence of Primary and Synthetic Assets

Our goal is to show that trading in primary assets is formally equivalent to
trading in synthetic assets. The first result shows that the process Ȳ i can be
obtained from primary assets Y 1, Y i and Y k through a simple self-financing
strategy. This justifies the name synthetic asset given to Ȳ i.

Lemma 3. For any fixed i = 2, 3, . . . , k − 1, let an FT -measurable random
variable Ȳ i

T be given as
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Ȳ i
T = Y 1

T Y
i,k,1
T = Y 1

T

∫ T

0

(
dY i,1

t −
Y i,1

t−

Y k,1
t−

dY k,1
t

)
. (1.21)

Then there exists a strategy φ ∈ Φ1(0) that replicates the claim Ȳ i
T . Moreover,

we have, for every t ∈ [0, T ],

Vt(φ) = Y 1
t Y

i,k,1
t = Y 1

t

∫ t

0

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)
= Ȳ i

t . (1.22)

Proof. To establish the existence of a strategy φ with the desired properties,
it suffices to apply Proposition 2. We fix i and we start by postulating that
φi = 1 and φj = 0 for any 2 ≤ j ≤ k − 1, j 6= i. Then equality (1.21) yields
(1.15) with X = Ȳ i

T , x = 0, l = 1 and Z = 0. Note that the balance condition
becomes

k∑
j=2

φj
tY

j
t− = Y i

t− + φk
t Y

k
t− = 0.

Let us define φ1 and φk by setting

φk
t = −

Y i
t−
Y k

t−
, φ1

t = V 1
t − Y i,1

t − φk
t Y

k,1
t .

Note that we also have

φ1
t = V 1

t− − Y i,1
t− − φk

t Y
k,1
t− = V 1

t−.

Hence, φ1 and φk are F-predictable processes, the strategy φ = (φ1, φ2, . . . , φk)
is self-financing, and it satisfies (1.6) with l = 1 and Z = 0, so that φ ∈ Φ1(0).
Finally, equality (1.22) holds, and thus VT (φ) = Ȳ i

T . ut

Note that to replicate the claim Ȳ i
T = Ȳ i,k,1

T , it suffices to invest in primary
assets Y 1, Y i and Y k. Essentially, we start with zero initial endowment, we
keep at any time one unit of the ith asset, we rebalance the portfolio in such
a way that the total wealth invested in the ith and kth assets is always zero,
and we put the residual wealth in the first asset. Hence, we deal here with
a specific strategy such that the risk of the ith asset is perfectly offset by
rebalancing the investment in the kth asset, and our trades are financed by
taking positions in the first asset.

Note that the process Y i,1 satisfies the following SDE (cf. (1.14))

Y i,1
t = Y i,1

0 + Ȳ i,1
t +

∫ t

0

Y i,1
u−

Y k,1
u−

dY k,1
u , (1.23)

which is known to possess a unique strong solution. Hence, the relative price
Y i,1

t at time t is uniquely determined by the initial value Y i,1
0 and processes

Ȳ i,1 and Y k,1. Consequently, the price Y i
t at time t of the ith primary asset

is uniquely determined by the initial value Y i
0 , the prices Y 1, Y k of primary

assets, and the price Ȳ i of the ith synthetic asset. We thus obtain the following
result.
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Lemma 4. Filtrations generated by the primary assets Y 1, Y 2, . . . , Y k and by
the price processes Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k coincide.

Lemma 4 suggests that for any choice of the underlying filtration F (such
that FY ⊆ F), trading in assets Y 1, Y 2, . . . , Y k is essentially equivalent to
trading in Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k. Let us first formally define the
equivalence of market models.

Definition 1. We say that the two unconstrained models, M and M̃ say,
are equivalent with respect to a filtration F if both models are defined on a
common probability space and every primary asset in M can be obtained by
trading in primary assets in M̃ and vice versa, under the assumption that
trading strategies are F-predictable.

Note that we do not assume that models M and M̃ have the same number
of primary assets. The next result justifies our claim of equivalence of primary
and synthetic assets.

Corollary 2. Models M = (Y 1, Y 2, . . . , Y k;Φ) and M̄ = (Y 1, Y 2, . . . , Y l,
Ȳ l+1, . . . , Ȳ k−1, Y k;Φ) are equivalent with respect to any filtration F such that
FY ⊆ F .

Proof. In view of Lemma 3, it suffices to show that the price process of each
primary asset Y i for i = l, l + 1, . . . , k − 1 can be mimicked by trading in
Y 1, Ȳ i and Y k. To see this, note that for any fixed i = l, l + 1, . . . , k − 1, we
have (see the proof of Lemma 3)

Ȳ i
t = Vt(φ) = φ1

tY
1
t + Y i

t + φk
t Y

k
t

with
dȲ i

t = dVt(φ) = φ1
t dY

1
t + dY i

t + φk
t dY

k
t .

Consequently,
Y i

t = −φ1
tY

1
t + Ȳ i

t − φk
t Y

k
t

and
dY i

t = −φ1
t dY

1
t + dȲ i

t − φk
t dY

k
t .

This shows that the strategy (−φ1, 1,−φk) in Y 1, Ȳ i and Y k is self-financing
and its wealth equals Y i. ut

Replicating Strategies with Synthetic Assets

In view of Lemma 3, the replicating trading strategy for a contingent claim
X, for which (1.15) holds, can be conveniently expressed in terms of primary
securities Y 1, Y 2, . . . , Y l and Y k, and synthetic assets Ȳ l+1, Ȳ l+2, . . . , Ȳ k−1.
To this end, we represent (1.15)-(1.16) in the following way:
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X = Y 1
T

(
x+

l∑
i=2

∫ T

0

φi
t dY

i,1
t +

k−1∑
i=l+1

∫ T

0

φi
t dȲ

i,1
t +

∫ T

0

Z1
t

Y k,1
t−

dY k,1
t

)
(1.24)

where Ȳ i,1
t = Ȳ i

t /Y
1
t = Y i,k,1

t , and

Vt(φ) = Y 1
t

(
x+

l∑
i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑
i=l+1

∫ t

0

φi
u dȲ

i,1
u +

∫ t

0

Z1
u

Y k,1
u−

dY k,1
u

)
.

(1.25)

Corollary 3. Let X be an FT -measurable random variable such that (1.24)
holds for some F-predictable process Z and some F-predictable processes
φ2, φ3, . . . , φk−1. Let ψi = φi for i = 2, 3, . . . , k − 1,

ψk
t =

Z1
t

Y k,1
t−

=
Zt

Y k
t−
,

and

ψ1
t = V 1

t −
l∑

i=2

ψi
tY

i,1
t −

k−1∑
i=l+1

ψi
tȲ

i,1
t − ψk

t Y
k,1
t

= V 1
t− −

l∑
i=2

ψi
tY

i,1
t− −

k−1∑
i=l+1

ψi
tȲ

i,1
t− − ψk

t Y
k,1
t− .

Then ψ = (ψ1, ψ2, . . . , ψk) is a self-financing trading strategy in assets
Y 1, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k. Moreover, ψ satisfies ψk

t Y
k
t− = Zt, t ∈ [0, T ],

and it replicates X.

Proof. In view of (1.24), it suffices to apply Proposition 2 with l = k − 1. ut

1.4 Model Completeness

We shall now examine the relationship between the arbitrage-free property
and completeness of a market model in which trading is restricted a priori to
self-financing strategies satisfying the balance condition.

1.4.1 Minimal Completeness of an Unconstrained Model

Let M = (Y 1, Y 2, . . . , Y k;Φ) be an arbitrage-free market model. Unless ex-
plicitly stated otherwise, Φ stands for the class of all F-predictable, self-
financing strategies. Note, however, that the number of traded assets and
their selection may be different for each particular model. Consequently, the
dimension of a strategy φ ∈ Φ will depend on the number of traded assets
in a given model. For the sake of brevity, this feature is not reflected in our
notation.
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Definition 2. We say that a model M is complete with respect to F if any
bounded FT -measurable contingent claim X is attainable in M. Otherwise, a
model M is said to be incomplete with respect to F.

Definition 3. A model M = (Y 1, Y 2, . . . , Y k;Φ) is minimally complete with
respect to F if M is complete, and for any i = 1, 2, . . . , k the reduced model
Mi = (Y 1, Y 2, . . . , Y i−1, Y i+1, . . . , Y k;Φ) is incomplete with respect to F, so
that for each i there exists a bounded, FT -measurable contingent claim, which
is not attainable in the model Mi. In this case, we say that the degree of
completeness of M equals k.

Let us stress that trading strategies in the reduced model Mi are pre-
dictable with respect to F, rather than with respect to the filtration generated
by price processes Y 1, Y 2, . . . , Y i−1, Y i+1, . . . , Y k. Hence, when we move from
M to Mi, we reduce the number of traded asset, but we preserve the original
information structure F. Minimal completeness of a model M means that all
primary assets Y 1, Y 2, . . . , Y k are needed if we wish to generate the class of
all (bounded) FT -measurable claims through F-predictable trading strategies.
The following lemma is thus an immediate consequence of Definition 3.

Lemma 5. Assume that a model M is complete, but not minimally complete,
with respect to F. Then there exists at least one primary asset Y i, which is
redundant in M, in the sense that it corresponds to the wealth process of some
trading strategy in the reduced model Mi.

Complete models that are not minimally complete do not seem to describe
adequately the real-life features of financial markets (in fact, it is frequently
argued that the real-life markets are not even complete). Also, from the theo-
retical perspective, there is no advantage in keeping a redundant asset among
primary securities. For this reasons, in what follows, we shall restrict our at-
tention to market modelsM that are either incomplete or minimally complete.
Lemma 6 shows that the degree of completeness is a well-defined notion, in
the sense that it does not depend on the choice of traded assets, provided that
the model completeness is preserved.

Lemma 6. Let a model M = (Y 1, Y 2, . . . , Y k;Φ) be minimally complete
with respect to F. Let M̃ = (Ỹ 1, Ỹ 2, . . . , Ỹ k;Φ), where the processes Ỹ i =
V (φi), i = 1, 2, . . . , k represent the wealth processes of some trading strate-
gies φ1, φ2, . . . , φk ∈ Φ. If a model M̃ is complete with respect to F then it is
also minimally complete with respect to F, and thus its degree of completeness
equals k.

Proof. The proof relies on simple algebraic considerations. By assumption, for
every i = 1, 2, . . . , k, we have

dỸ i
t =

k∑
j=1

φij
t dY

j
t ,
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for some family φij , i, j = 1, 2, . . . , k of F-predictable stochastic processes. By
assumption, the market M̃ is complete. To check that it is minimally complete,
it suffices to show that the market M̃1 = (Ỹ 2, . . . , Ỹ k;Φ) is incomplete (the
same proof will work for any reduced model M̃i). Suppose, on the contrary,
that M̃1 is complete with respect to F. In particular, the price of each primary
asset Y l, l = 1, 2, . . . , k can be replicated in M̃1 by means of some trading
strategy ψl = (ψl2, . . . , ψlk). In other words, there exists a family ψli, l =
1, 2, . . . , k, i = 2, 3, . . . , k of F-predictable stochastic processes such that

dY l
t =

k∑
i=2

ψli
t dỸ

i
t . (1.26)

Since ψ1, ψ2, . . . , ψk are F-predictable processes with values in Rk−1, it is
rather clear that there exists a family α1, α2, . . . , αk−1 of F-predictable pro-
cesses such that we have, for every t ∈ [0, T ],

ψ1
t = (ψ12

t , ψ13
t , . . . , ψ1k

t ) =
k∑

j=2

αj
t (ψ

j2
t , ψ

j3
t , . . . , ψ

jk
t ) =

k∑
j=2

αj
tψ

j
t .

Consequently, using (1.26), we obtain

dY 1
t =

k∑
i=2

ψ1i
t dỸ i

t =
k∑

i=2

k∑
j=2

αj
tψ

ji
t dỸ i

t =
k∑

j=2

αj
t

k∑
i=2

ψji
t dỸ i

t =
k∑

j=2

αj
t dY

j
t .

We conclude that Y 1 is redundant in M, and thus the reduced model M1 is
complete. This contradicts the assumption that M is minimally complete. ut

By combining Lemma 6 with Corollary 2, we obtain the following result.

Corollary 4. A model M = (Y 1, Y 2, . . . , Y k;Φ) is minimally complete if and
only if a model M̄ = (Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k;Φ) has this prop-
erty.

As one might easily guess, the degree of a model completeness depends
on the relationship between the number of primary assets and the number of
independent sources of randomness. In the two models examined in Sections
1.5.1 and 1.5.2 below, we shall deal with k = 4 primary assets, but the number
of independent sources of randomness will equal two and three for the first
and the second model, respectively.

1.4.2 Completeness of a Constrained Model

Let M = (Y 1, Y 2, . . . , Y k;Φ) be an arbitrage-free market model, and let us
denote byMl(Z) = (Y 1, Y 2, . . . , Y k;Φl(Z)) the associated model in which the
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class Φ is replaced by the class Φl(Z) of constrained strategies. We claim that
if M is arbitrage-free and minimally complete with respect to the filtration
F = FY , where Y = (Y 1, Y 2, . . . , Y k), then the constrained model Ml(Z) is
arbitrage-free, but it is incomplete with respect to F. Conversely, if the model
Ml(Z) is arbitrage-free and complete with respect to F, then the original
model M is not minimally complete. To prove these claims, we need some
preliminary results.

The following definition extends the notion of equivalence of security mar-
ket models to the case of constrained trading.

Definition 4. We say that the two constrained models are equivalent with
respect to a filtration F if they are defined on a common probability space and
the class of all wealth processes of F-predictable constrained trading strategies
is the same in both models.

Corollary 5. The constrained model

Ml(Z) = (Y 1, Y 2, . . . , Y k;Φl(Z))

is equivalent to the constrained model

M̄k−1(Z) = (Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k;Φk−1(Z)).

Proof. It suffices to make use of Corollaries 2 and 3. ut

Note that the model M̄k−1(Z) is easier to handle than Ml(Z). For this
reason, we shall state the next result for the model Ml(Z) (which is of our
main interest), but we shall focus on the equivalent model M̄k−1(Z) in the
proof.

Proposition 3. (i) Assume that the model M is arbitrage-free and minimally
complete. Then for any F-predictable process Z and any l = 1, 2, . . . , k− 1 the
constrained model Ml(Z) is arbitrage-free and incomplete.
(ii) Assume that the constrained model Ml(Z) associated with M is arbitrage-
free and complete. Then M is either not arbitrage-free or not minimally com-
plete.

Proof. The arbitrage-free property of Ml(Z) is an immediate consequence
of Corollary 5 and the fact that Φk−1(Z) ⊂ Φ. In view of Corollary 4, it
suffices to check that the minimal completeness of M̄ implies that M̄k−1(Z)
is incomplete. By assumption, there exists a bounded, FT -measurable claim X
that cannot be replicated in M̄k = (Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1;Φ) (i.e.,
when trading in Y k is not allowed). Let us consider the following random
variable

Y = X +
∫ T

0

Zt

Y k
t

dY k
t .

We claim that Y cannot be replicated in M̄k−1(Z). Indeed, for any trading
strategy φ ∈ Φk−1(Z), we have
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VT (φ) = V0(φ) +
l∑

i=1

∫ T

0

φi
t dY

i
t +

k−1∑
i=l+1

∫ T

0

φi
t dȲ

i
t +

∫ T

0

Zt

Y k
t

dY k
t ,

and thus the existence of a replicating strategy for Y in M̄k−1(Z) will imply
the existence of a replicating strategy for X in M̄k, which contradicts our
assumption. Part (ii) is a straightforward consequence of part (i). ut

It is worth noting that the arbitrage-free property ofMl(Z) does not imply
the same property for M. As a trivial example, we may take l = k − 1 and
Z = 0, so that trading in the asset Y k is in fact excluded in Ml(Z), but it is
allowed in the larger model M.

1.5 Jump-Diffusion Case

In order to make the results of Sections 1.2-1.4 more tangible, we shall now
analyze the case of jump-diffusion processes. For the sake of concreteness and
simplicity, we shall take k = 4. Needless to say that this assumption is not
essential, and the similar considerations can be done for any sufficiently large
number of primary assets.

We consider a model M = (Y 1, Y 2, . . . , Y 4;Φ) with discontinuous asset
prices governed by the SDE

dY i
t = Y i

t−
(
µi dt+ σi dWt + κi dMt

)
(1.27)

for i = 1, . . . , 4, where Wt = (W 1
t ,W

2
t , . . . ,W

d
t ), t ∈ [0, T ], is a d-dimensional

standard Brownian motion and Mt = Nt − λt, t ∈ [0, T ], is a compensated
Poisson process under the actual probability P. Let us stress thatW andN are
a Brownian motion and a Poisson process with respect to F, respectively. This
means, in particular, that they are independent processes. We shall assume
that F = FW,N is the filtration generated by W and N .

The coefficients µi, σi = (σ1
i , σ

2
i , . . . , σ

d
i ) and κi in (1.27) can be constant,

deterministic or even stochastic (predictable with respect to the filtration
F). For simplicity, in what follows we shall assume that they are constant.
In addition, we postulate that κ1 > −1, so that Y 1

t > 0 for every t ∈ [0, T ],
provided that Y 1

0 > 0. Finally, let Z be a predetermined F-predictable process.
Recall that Φ1(Z) is the class of all self-financing strategies that satisfy the
balance condition

4∑
i=2

φi
tY

i
t− = Zt, ∀ t ∈ [0, T ]. (1.28)

Our goal is to present examples illustrating Proposition 3 and, more impor-
tantly, to show how to proceed if we wish to replicate a contingent claim using
a trading strategy satisfying the balance condition. It should be acknowledged
that in the previous sections we have not dealt at all with the issue of admis-
sibility of trading strategies, and thus some relevant technical assumptions
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were not mentioned. Also, an important tool of an (equivalent) martingale
measure was not yet employed.

1.5.1 Complete Constrained Model

In this subsection, it it assumed that d = 1, so that we have two independent
sources of randomness, a one-dimensional Brownian motion W and a Poisson
process N . We shall verify directly that, under natural additional conditions,
the model M1(Z) is arbitrage-free and complete with respect to F, but the
original model M is not minimally complete, so that a redundant primary
asset exists in M.

Lemma 7. Assume that δ := detA 6= 0, where

A =
[
σ2 − σ4 κ2 − κ4

σ3 − σ4 κ3 − κ4

]
.

Then there exists a unique probability measure P̃, equivalent to P on (Ω,FT ),
and such that the relative prices Ȳ 2,1 = Ȳ 2/Y 1 and Ȳ 3,1 = Ȳ 3/Y 1 of synthetic
assets Ȳ 2 and Ȳ 3 are P̃-martingales.

Proof. Let us write Ŵt = Wt − σ1t and M̂t = Mt − λκ1t. By straightforward
calculations, the relative value of the synthetic asset Ȳ i satisfies, for i = 2, 3,

dȲ i,1
t = dY i,4,1

t = Y i,1
t−

(
(µi − µ4) dt+

+(σi − σ4)(dWt − σ1dt) +
κi − κ4

1 + κ1
(dMt − λκ1dt)

)
, (1.29)

or equivalently,

dȲ i,1
t = Y i,1

t−

(
(µi − µ4) dt+ (σi − σ4) dŴt +

κi − κ4

1 + κ1
dM̂t

)
.

By virtue of Girsanov’s theorem, there exists a unique probability measure
P̂, equivalent to P on (Ω,FT ), and such that the processes Ŵ and M̂ follow
F-martingales under P̂. Under our assumption δ := detA 6= 0, the equations

µ4 − µi = (σ4 − σi)θ +
κ4 − κi

1 + κ1
νλ, i = 2, 3, (1.30)

uniquely specify θ and ν. Using once again Girsanov’s theorem, we show that
there exists a unique probability measure P̃, equivalent to P on (Ω,FT ), and
such that the processes W̃t = Ŵt − θt = Wt − (σ1 + θ)t and

M̃t = M̂t − λνt = Nt − λ(1 + κ1 + ν)t

are F-martingales under P̃. We then have, for i = 2, 3 and every t ∈ [0, T ],
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dȲ i,1
t = Y i,1

t−

(
(σi − σ4) dW̃t +

κi − κ4

1 + κ1
dM̃t

)
.

Note that N follows under P̃ a Poisson process with the constant intensity
λ(1+κ1 +ν), and thus M̃ is the compensated Poisson process under P̃. More-
over, under the present assumptions, the processes W̃ and M̃ are independent
under P̃. ut

From now on, we postulate that δ = detA 6= 0 and κi > −1 for every
i = 1, 2, . . . , 4. Under this assumption, the filtration F coincides with the
filtration FY generated by primary assets.

In the next result, we provide sufficient conditions for the existence of a
replicating strategy satisfying the balance condition (1.28). Essentially, Propo-
sition 4 shows that the model M1(Z) = (Y 1, Ȳ 2, Ȳ 3, Y 4;Φ1(Z)) is complete
with respect to F .

Proposition 4. Let X be an FT -measurable contingent claim that settles at
time T . Assume that the random variable X̂, given by the formula

X̂ =
X

Y 1
T

−
∫ T

0

Zt

Y 4
t−
dY 4,1

t , (1.31)

is square-integrable under P̃, where P̃ is the unique probability measure equiv-
alent to P on (Ω,FT ) such that the relative prices Ȳ 2,1 and Ȳ 3,1 are P̃-
martingales. Then X can be replicated in the model M1(Z).

Proof. To prove the existence of a replicating strategy for X in the class
Φ1(Z), we may use either Proposition 2 (if we wish to work with traded
assets Y 1, Y 2, Y 3, Y 4) or Corollary 3 and Lemma 7 (if we prefer to work with
Y 1, Ȳ 2, Ȳ 3, Y 4). The second choice seems to be more convenient, and thus
we shall focus on the existence a trading strategy ψ = (ψ1, ψ2, . . . , ψ4) with
the properties described in Corollary 3. In view of (1.24) and Corollary 3, it
suffices to check that there exist a constant x, and F-predictable processes φ2

and φ3 such that

X̂ = x+
3∑

i=2

∫ T

0

φi
t dȲ

i,1
t . (1.32)

To show that such processes exist, we shall use Lemma 7. It is crucial to
observe that the pair (W̃ , M̃), which was obtained in the proof of Lemma 8
from the original pair (W,M) by means of Girsanov’s transformation, enjoys
the predictable representation property (see, for example, Jacod and Shiryaev
[3], Sections III.4 and III.5). Since X̂ is square-integrable under P̃, there exists
a constant x and F-predictable processes ξ and ς such that

X̂ = x+
∫ T

0

ξt dW̃t +
∫ T

0

ςt dM̃t.
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Observe that

dW̃t = δ−1

(
(κ3 − κ4)

dȲ 2,1
t

Y 2,1
t−

− (κ2 − κ4)
dȲ 3,1

t

Y 3,1
t−

)
=: Θ2

t dȲ
2,1
t +Θ3

t dȲ
3,1
t

and

dM̃t = (1+κ1)δ−1

(
(σ2−σ4)

dȲ 3,1
t

Y 3,1
t−

− (σ3−σ4)
dȲ 2,1

t

Y 2,1
t−

)
=: Ψ2

t dȲ
2,1
t +Ψ3

t dȲ
3,1
t .

Hence, upon setting

φ2
t = ξtΘ

2
t + ςtΨ

2
t , φ3

t = ξtΘ
3
t + ςtΨ

3
t ,

we obtain the desired representation (1.32) for X̂. To complete the proof of
the proposition, it suffices to make use of Corollary 3. ut

Remark 2. If we take the class Φ2(Z) of constrained strategies, instead of the
class Φ1(Z), then we need to show the existence of F-predictable processes φ2

and φ3 such that

X̂ = x+
∫ T

0

φ2
t dY

2,1
t +

∫ T

0

φ3
t dȲ

3,1
t . (1.33)

To this end, it suffices to focus on an equivalent probability measure under
which the relative prices Y 2,1 and Ȳ 3,1 are F-martingales, and to follow the
same steps as in the proof of Proposition 4.

In view of Lemma 7, the reduced model M̄4 = (Y 1, Ȳ 2, Ȳ 3;Φ) admits a
martingale measure P̃ corresponding to the choice of Y 1 as a numeraire asset,
and thus it is arbitrage-free, under the usual choice of admissible trading
strategies (e.g., the so-called tame strategies). By virtue of formula (1.7) in
Proposition 1, for the arbitrage-free property of the model M1(Z) to hold, it
suffices, in addition, that the process∫ t

0

Zu

Y 4
u−

dY 4,1
u , ∀ t ∈ [0, T ],

follows a martingale under P̃.
Note, however, that the above-mentioned property does not imply, in gen-

eral, that the probability measure P̃ is a martingale measure for the relative
price Y 4,1. Since

dY 4,1
t = Y 4,1

t−

(
(µ4−µ1) dt+(σ4−σ1)(dWt−σ1dt)+

κ4 − κ1

1 + κ1
(dMt−λκ1dt)

)
,

(1.34)
a martingale measure for the relative prices Ȳ 2,1, Ȳ 3,1 and Y 4,1 exists if and
only if for the pair (θ, ν) that solves (1.30), we also have that
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µ1 − µ4 = (σ4 − σ1)θ +
κ4 − κ1

1 + κ1
νλ.

This holds if and only if det Â = 0, where Â is the following matrix

Â =

µ1 − µ4 σ1 − σ4 κ1 − κ4

µ2 − µ4 σ2 − σ4 κ2 − κ4

µ3 − µ4 σ3 − σ4 κ3 − κ4

 .
Hence, the model M̄ (or, equivalently, the model M) is not arbitrage-free,
in general. In fact, M is arbitrage-free if and only if the primary asset Y 4 is
redundant in M. The following result summarizes our findings.

Proposition 5. Let M be the model given by (1.27). Assume that κi > −1
for every i = 1, 2, . . . , 4 and δ = detA 6= 0. Moreover, let the process∫ t

0

Zu

Y 4
u−

dY 4,1
u

follow a martingale under P̃. Then the following statements hold.
(i) The model M1(Z) is arbitrage-free and complete, in the sense of Proposi-
tion 4.
(ii) If the model M is arbitrage-free then it is complete, in the sense that any
FT -measurable random variable X such that X(Y 1

T )−1 is square-integrable
under P̃ is attainable in this model, but M is not minimally complete.

Example 1. Consider, for instance, a call option written on the asset Y 4, so
that X = (Y 4

T −K)+, and let us assume that Zt = Y 4
t−. Under assumptions of

Proposition 5, models M and M1(Z) are arbitrage-free and the asset Y 4 is
redundant. It is thus rather clear that the option can be hedged by dynamic
trading in primary assets Y 1, Y 2, Y 3 and by keeping at any time one unit of
Y 4. Of course, the same conclusion applies to any European claim with Y 4 as
the underlying asset.

1.5.2 Incomplete Constrained Model

We now assume that d = 2, so that the number of independent sources of
randomness is increased to three. In view of (1.27), we have, for i = 1, . . . , 4,

dY i
t = Y i

t−
(
µi dt+ σ1

i dW
1
t + σ2

i dW
2
t + κi dMt

)
.

We are going to check that under the set of assumptions making the un-
constrained model M arbitrage-free and minimally complete, the constrained
model Ml(Z) is also arbitrage-free, but it is incomplete. To this end, we first
examine the existence and uniqueness of a martingale measure associated with
the numeraire Y 1.
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Lemma 8. Assume that det Ã 6= 0, where the matrix Ã is given as

Ã =

σ1
1 − σ1

4 σ
2
1 − σ2

4 κ1 − κ4

σ1
2 − σ1

4 σ
2
2 − σ2

4 κ2 − κ4

σ1
3 − σ1

4 σ
2
3 − σ2

4 κ3 − κ4

 .
Then there exists a unique probability measure P̃, equivalent to P on (Ω,FT ),
and such that the relative prices Ȳ 2,1 = Ȳ 2/Y 1, Ȳ 3,1 = Ȳ 3/Y 1 of synthetic
assets Ȳ 2, Ȳ 3, and the relative price Y 4,1 of the primary asset Y 4 follow mar-
tingales under P̃.

Proof. Let us write

Ŵt = Wt − σ1t = (W 1
t ,W

2
t )− (σ1

1 , σ
2
1)t

and M̂t = Mt − λκ1t. By straightforward calculations, the relative values
Ȳ i,1, i = 2, 3 and Y 4,1 satisfy

dȲ i,1
t = Y i,1

t−

(
(µi − µ4) dt+ (σi − σ4) dŴt +

κi − κ4

1 + κ1
dM̂t

)
and

dY 4,1
t = Y 4,1

t−

(
(µ4−µ1) dt+(σ4−σ1)(dWt−σ1dt)+

κ4 − κ1

1 + κ1
(dMt−λκ1dt)

)
.

By virtue of Girsanov’s theorem, there exists a unique probability measure
P̂, equivalent to P on (Ω,FT ), and such that the processes Ŵ and M̂ follow
F-martingales under P̂. Now, let θ = (θ1, θ2) and ν be uniquely specified by
the conditions

µ4 − µi = (σi − σ4)θ +
κi − κ4

1 + κ1
νλ, i = 2, 3, 4.

Another application of Girsanov’s theorem yields the existence of a unique
probability measure P̃, equivalent to P on (Ω,FT ), such that the processes
W̃t = Ŵt − θt = Wt − (σ1 + θ)t and

M̃t = M̂t − λνt = Nt − λ(1 + κ1 + ν)t

are F-martingales under P̃. We then have, for i = 2, 3 and every t ∈ [0, T ],

dȲ i,1
t = Y i,1

t−

(
(σi − σ4) dW̃t +

κi − κ4

1 + κ1
dM̃t

)
(1.35)

while
dY 4,1

t = Y 4,1
t−

(
(σ4 − σ1)dW̃t +

κ4 − κ1

1 + κ1
dM̃t

)
. (1.36)

Note that N follows under P̃ a Poisson process with the constant intensity
λ(1+κ1 +ν), and thus M̃ is the compensated Poisson process under P̃. More-
over, under the present assumptions, the processes W̃ and M̃ are independent
under P̃. ut



1 Completeness of a General Semimartingale Market 23

It is clear that the inequality det Ã 6= 0 is a necessary and sufficient condi-
tion for the arbitrage-free property of the model M. Under this assumption,
we also have F = FY and, as can be checked easily, the model M is minimally
complete.

In the next result, we provide sufficient conditions for the existence of a
replicating strategy satisfying the balance condition (1.28) with some prede-
termined process Z. In particular, it is possible to deduce from Proposition 6
that the model M1(Z) is incomplete with respect to F.

Proposition 6. Assume that det Ã 6= 0. Let X be an FT -measurable contin-
gent claim that settles at time T . Assume that the random variable X̂, given
by the formula

X̂ :=
X

Y 1
T

−
∫ T

0

Zt

Y 4
t−
dY 4,1

t , (1.37)

is square-integrable under P̃, where P̃ is the unique probability measure, equiv-
alent to P on (Ω,FT ), such that the relative prices Ȳ 2,1, Ȳ 3,1 and Y 4,1 follow
martingales under P̃. Then X can be replicated in M1(Z) if and only if the
process φ4 given by formula (1.41) below vanishes identically.

Proof. We shall use similar arguments as in the proof of Proposition 4. In
view of Corollary 3, we need to check that there exist a constant x, and F-
predictable processes φ2 and φ3 such that

X̂ = x+
3∑

i=2

∫ T

0

φi
t dȲ

i,1
t . (1.38)

Note that the pair (W̃ , M̃) introduced in the proof of Lemma 8 has the pre-
dictable representation property. Since X̂ is square-integrable under P̃, there
exists a constant x and F-predictable processes ξ and ς such that

X̂ = x+
∫ T

0

ξt dW̃t +
∫ T

0

ςt dM̃t. (1.39)

In view of (1.35)-(1.36), we havedW̃ 1
t

dW̃ 2
t

dM̃t

 = Ã−1

 (Y 2,1
t− )−1 dȲ 2,1

t

(Y 3,1
t− )−1 dȲ 3,1

t

(Y 4,1
t− )−1 dY 4,1

t

 ,
so that there exist F-predictable processes Ψ i, Λi, Θi, i = 2, 3, 4 such that

dW̃ 1
t = Θ2

t dȲ
2,1
t +Θ3

t dȲ
3,1
t +Θ4

t dY
4,1
t ,

dW̃ 2
t = Λ2

t dȲ
2,1
t + Λ3

t dȲ
3,1
t + Λ4

t dY
4,1
t , (1.40)

dM̃t = Ψ2
t dȲ

2,1
t + Ψ3

t dȲ
3,1
t + Ψ4

t dY
4,1
t .
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Let us set, for i = 2, 3, 4,

φi
t = ξ1tΘ

i
t + ξ2tΛ

i
t + ςtΨ

i
t , ∀ t ∈ [0, T ]. (1.41)

Suppose first that φ4
t = 0 for every t ∈ [0, T ]. Then, by combining (1.39),

(1.40) and (1.41), we end up with the desired representation (1.38) for X̂. To
show the existence of a replicating strategy forX inM1(Z), it suffices to apply
Corollary 3. If, on the contrary, φ4 does not vanish identically, equality (1.38)
cannot hold for any choice of φ2 and φ3. The fact that φ4 is non-vanishing for
some claims follows from Proposition 3. ut

In general, i.e., when the component φ4 does not vanish, we get the fol-
lowing representation

X

Y 1
T

= x+
3∑

i=2

∫ T

0

φi
t dȲ

i,1
t +

∫ T

0

φ̃4
t dY

4,1
t , (1.42)

where we set φ̃4
t = φ4

t + Zt(Y 4
t−)−1. Hence, as expected any contingent claim

satisfying a suitable integrability condition is attainable in the unconstrained
model M.

Example 2. To get a concrete example of a non-attainable claim in M1(Z),
let us take X = (Y 4

T − K)+ and Zt = Y 4
t−. Then, for K = Y 4

0 , we obtain
X̂ = (Y 4

0 − Y 4
T )+(Y 1

T )−1, and thus we formally deal with the put option
written on Y 4 with strike Y 4

0 . We claim that X̂ does not admit representation
(1.38). Indeed, equality (1.38) implies that the hedge ratio of a put option
with respect to the underlying asset equals zero. This may happen only if the
underlying asset is redundant so that hedging can be done with other primary
assets, and this is not the case in our model.
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