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Abstract

This paper provides a unified framework, which allows, in particular, to study the structure of dynamic
monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use
here, and which allows us to significantly generalize existing results is the theory of L0-modules. In the
first part of the paper we develop the general theory and provide a robust representation of conditional
assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on
stochastic processes.
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“Each definition is a piece of secret ripped from Nature by the human spirit. I insist on this:
any complicated thing being illumined by definitions, being laid out in them, being broken up
in pieces, will be separated into pieces completely transparent even to a child, excluding foggy
and dark parts that our intuition whispers to us while acting, separating the object into logical
pieces, then only can we move further towards new success due to definitions.”

Nikolai N. Luzin (quote from Loren R. Graham’s “Naming Infinity”)

Introduction

This paper provides a study of Assessment Indices (AIs) in a discrete time dynamic framework. Assessment
indices are meant to evaluate the trade-off between reward opportunities and danger of losses.1 Consequently,
the two basic operational paradigms, that underlie the mathematical theory of assessment indices, are well
appreciated truths that in any kind of economic/financial activities:

(A) Diversification is better than concentration;
(B) Greater success is better than lesser success.

These two stylized key paradigms translate mathematically into quasiconcavity and monotonicity properties
of an AI. In the static case, these two paradigms were studied in the context of preferences in Cerreia-Vioglioa
et al. [12], Cerreia-Vioglio et al. [11], Drapeau and Kupper [22]. The numerical representations corresponding
to preference orderings satisfying properties (A) and (B) cover, among others, risk measures (cf. Artzner et al.
[3], Föllmer and Schied [25], Frittelli and Rosazza Gianin [29]), as well as acceptability indices (cf. Cherny
and Madan [19]).

Since the main motivation for our study of assessment indices comes from the area of analysis of risks
and rewards propagating in time then, as stated already, we are engaging in this paper in study of AIs in
the dynamic set-up. Thus, just as in the case of dynamic (classical) risk measures and dynamic acceptability
indices, we call them Dynamic Assessment Indices (DAIs). In contrast to the static case, the study of DAIs
bears additional conceptual difficulties related to the conditionality and to the need for adequate intertemporal
assessment of risk and rewards propagating in time.

1In fact, assessment indices can be used to assess (to measure) various risks in the classical sense, for example just as monetary risk
measures, such as V@R, do, but they can also be used to assess the trade-off between monetary risks and corresponding rewards, just
as acceptability indices, such as Gain-to-Loss Ratio, do. Thus, the universe of AIs encompasses both the classical risk measures and the
classical acceptability indices. However, here we adopt the universal interpretation of risk in the spirit of Drapeau and Kupper [22], thus
we look at risks as appreciation of danger of losses vis-a-vis the potential rewards, which renders our understanding of the assessment
indices.
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In the present work, we significantly extend previous studies regarding assessment indices to the condi-
tional/dynamic setting, which, in particular, allows us to apply our theory to study DAIs acting on discrete
time stochastic processes. The main mathematical tool, which we use here in order to derive extension results
of Drapeau and Kupper [22] to the conditional setting, is the theory of L0–modules that was originated in
Filipovic et al. [24] and in Kupper and Vogelpoth [32]. Similar extension problem has been also studied in
Frittelli and Maggis [27, 28], Bion-Nadal [10], Biagini and Bion-Nadal [6]. Here, we provide a study in the
general setting of locally convex topological L0-modules inspired by the methods and techniques of [22].

In many ways, the present paper continues and builds upon research of other people that has been pre-
sented in numerous works. For obvious reasons we can’t provide here the comprehensive list of all these
works. Besides the papers that we have already mentioned above, we think that the following works should
be brought to the reader’s attention: Cheridito and Kupper [13], Acciaio et al. [2], Frittelli and Rosazza Gianin
[30], Bion-Nadal [9], Bion-Nadal [10], Biagini and Bion-Nadal [6], Cherny and Madan [18], Bielecki et al.
[7], Detlefsen and Scandolo [20], Cheridito et al. [15, 14, 16], Frittelli and Maggis [27, 28], Cerreia-Vioglioa
et al. [12], Cerreia-Vioglio et al. [11], Frittelli and Scandolo [31], Penot and Volle [33].

The paper is organized as follows. In Section 1 we introduce a set of some underlying concepts that
will be used throughout the paper. Section 2 provides the main contribution of our work in the context
of general theory of conditional assessment indices defined on locally convex topological L0-modules and
taking values in L̄0. In particular, Theorem 2.12 furnishes robust representation, characterization indeed,
for an upper semicontinuous conditional assessment index. This is a novel and important result, which
generalizes corresponding result obtained in the static (not conditional) setting in [22]. The road leading to
Theorem 2.12, which at first sight seems to be similar to what was done in [22], has not been an easy one, as
is seen from all the technical results (cf. Appendix, in particular) that we needed to obtain this robust dual
representation. In particular, we provide a full duality result for conditionally increasing functions and their
general left and right inverses. The main hurdle lies in the central issue of locality, that is delicate and had to
be handled with outmost care. The results regarding scale invariant indices and the results regarding certainty
equivalents, presented in Section 2.3 and in Section 2.4, respectively, are new, interesting, and useful. In
Section 3 we apply our general theory to study DAIs for discrete time stochastic processes. This comes in
two flavors. First, in Section 3.1, we apply the results of Section 2 almost verbatim, considering dynamic
assessment index mapping processes into sequence of processes, and by making a very natural choice of
L0 space to be the space of stopped processes. Analysis of the robust representation result derived in this
section brings about an interesting insight regarding the nature of the locality property: indeed, requiring
locality relative to Ot (cf. Section 3.1) implies that αtt assess only the future (relative to t) of the process
and, for s < t, αts is just a function of the value at time s of the assessed process. This is a drawback as
for some applications this may be an unwanted feature. To overcome this drawback we adapt in Section 3.2
the theory of Section 2, to the case of so called path dependent DAI, which maps processes into processes.
They may, in particular, help a decision maker (eg. investor, or regulator), who is willing to design a DAI
that at each time explicitly accounts for the past evolution of the underlying process that is being assessed
(see Example 3.10). In Section 4 we study strongly time consistent path dependent assessment indices,
that satisfy some additional properties. The corresponding certainty equivalent is used to derive a relevant
version of the dynamic programming principle, which characterizes the strong time consistency in this case.
Section 5 provides illustrating examples that we consider both interesting and important. We examine here a
version of dynamic gain-to-loss ratio, which is a scale invariant DAI, and, in particular, we provide a robust
representation for it. Two additional examples are given as well. Finally, in the Appendix, we present a
variety of mathematical results, which underlie our theory. Appendix also contains proofs of some auxiliary
technical results stated in the main body of the paper.
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1 Preliminaries

Let (Ω,G , P ) be a probability space. By G+ we denote the set of all events A ∈ G with P [A] > 0. If
not otherwise specified, the notation [Ai] ⊆ G stands for a countable partition (Ai)i∈N ⊆ G of Ω. By L0,
and L̄0 we denote the spaces of all G -measurable random variables with values in (−∞,∞) and [−∞,∞],
respectively. As usual, we identify random variables, which are equal P -almost surely. The relations m > n

and m ≥ n for two random variables m,n ∈ L̄0 are to be understood in the P -almost sure sense, that
is, P [m > n] = 1 and P [m ≥ n] = 1 respectively. We also define L0

+ := {m ∈ L0 | m ≥ 0} and
L0

++ := {m ∈ L0 | m > 0}.
As already stated in the Introduction, we are working in the setting of L0-modules. We refer to [24, 32],

where this theory was initiated, for further details. The space L0 is a lattice ordered ring on which we,
throughout the paper, consider the topology induced by the balls

Bε (m) :=
{
n ∈ L0 : |m− n| ≤ ε

}
, m ∈ L0, and ε ∈ L0

++,

making L0 to be a topological ring2.
From this point on, X denotes an L0-module. Given a set C ⊆ X , its σ-stable hull is defined as

σ (C) :=
{∑

1AiXi : [Ai] ⊆ G and (Xi) ⊆ C
}
. (1.1)

It holds C ⊆ σ(C). A set C ⊆ X is called σ-stable if C = σ(C). A set C ⊆ X is called L0-convex if
λX + (1− λ)Y ∈ C for any λ ∈ L0 with 0 ≤ λ ≤ 1 and X,Y ∈ C. By definition, C is σ-stable if and only
if
∑

1AiXi ∈ C for every [Ai] ⊆ G and (Xi) ⊆ C. Note that any L0-convex set C ⊆ X is σ-stable. In the
following, K ⊆ X will be an L0-convex cone3 containing 0. Such an L0-convex cone defines an L0-module
preorder4 < on X , given by X < Y if X − Y ∈ K. We say a set C ⊆ X is monotone with respect to K, or
just monotone if there is no ambiguity about K, if C +K = C.

Working with (quasi)concave functions, we adopt the convention,∞−∞ := −∞ and 0 · ±∞ = 0. We
say that a function F : X → L̄0 is

• L0-local if F (1AX + 1AcY ) = 1AF (X) + 1AcF (Y );

• L0-quasiconcave if F (λX + (1− λ)Y ) ≥ F (X) ∧ F (Y );

• L0-concave if F (λX + (1− λ)Y ) ≥ λF (X) + (1− λ)F (Y );

• monotone with respect to K if F (X) ≥ F (Y ), whenever X < Y ;

for any X,Y ∈ X , λ ∈ L0 and 0 ≤ λ ≤ 1, and any A ∈ G . It can be shown that F is local if and only if

F
(∑

1AiXi

)
=
∑

1AiF (1AiXi) =
∑

1AiF (Xi) , (1.2)

for every [Ai] ⊆ G and (Xi) ⊆ X , as well as if and only if

1AF (X) = 1AF (1AX) , (1.3)

for every A ∈ G and X ∈ X . A local function F of two arguments is called jointly local.
We further say that F is

2That is, both the addition and scalar multiplication are continuous mappings with respect to the product topology.
3That is, λX ∈ K for any λ ∈ L0

++ and X ∈ K.
4That is, λX + Z < λY + Z for any λ ∈ L0

+ and Z ∈ X , whenever X < Y for X,Y ∈ X .
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• L0-linear if F takes values in L0 and F (mX + nY ) = mF (X) + nF (Y );

• positive homogeneous if F (λX) = λF (X);

• scale invariant if F (λX) = F (X);

• cash additive in direction of κ ∈ K \ 0 if F (X +mκ) = F (X) +m;

for any X,Y ∈ X , any m,n ∈ L0, and any λ ∈ L0
++.

We now suppose that X is a locally L0-convex topological L0-module, see [24, Definition 2.2]. We
denote by X ∗ its L0-dual, that is, the set of all continuous L0-linear functionals from X to L0. The L0-dual
X ∗ is an L0-module itself. The weak topology, denoted by L0-σ (X ,X ∗), is the coarsest topology in X for
which the mappings

X 7→ Z (X) , X ∈ X ,

are continuous for any Z ∈ X ∗.
For a function F : X → L̄0 and for m ∈ L̄0, we denote by Am the corresponding upper level set, that is

Am := {X ∈ X | F (X) ≥ m}. A function F : X → L̄0 is upper semicontinuous if its upper level sets Am
are closed for all m ∈ L̄0.

It was shown in [24, 32] that F : X → L̄0 is L0-quasiconcave or monotone if and only if its upper level
setsAm are L0-convex or monotone, for any m ∈ L̄0. It is also known that F is L0-concave (resp. L0-local)
if and only if its hypograph hypo (F ) := {(X,m) ∈ X × L̄0 | α(X) ≥ m} is L0-convex5 (resp. σ-stable).

A set B ⊆ L0 is upward directed, respectively downward directed, if X ∧ Y , respectively X ∨ Y ,
belongs to B, for any X,Y ∈ B. In case of an upward directed, respectively downward directed, set, its
essential supremum, respectively essential infimum, is attained by an increasing, respectively decreasing,
sequence in this set, see [26, Appendix A5]. Similar results hold true for family of sets. If (Ai) ⊆ G is
upward, respectively downward, directed with respect to the inclusion preorder, then there exists essential
supremum6, respectively essential infimum, A ∈ G, see [24, Lemma 2.9].

Throughout this paper, if no confusion may arise, we will often drop the reference to L0 for all concepts
from convex analysis.

2 Robust Representation of Conditional Assessment Indices

In this section we follow the lines of [22], extending the setup and the results presented therein to the condi-
tional case. In the rest of this section we fix a cone K ⊆ X , and the monotonicity will be understood with
respect to this cone.

2.1 Conditional Assessment Indices and Conditional Risk Acceptance Family

The main object studied in this paper is the conditional assessment index defined as follows.

Definition 2.1. A conditional assessment index is a function α : X → L̄0, which is local, quasiconcave, and
monotone.7

Analogously to the one-to-one relation between risk measures and risk acceptance families discussed in
[22], we also obtain a one-to-one relation, stated in Theorem 2.4, between conditional assessment indices and
conditional risk acceptance families defined below.

5Even if L̄0 is not an L0-module, using the convention∞−∞ =∞ and 0 · ∞ = 0 on L̄0 we get the analogous results.
6That is, if B ∈ G is such that Ai ⊆ B ⊆ A for all i, it holds P [A∆B] = 0.
7Recall that all concepts, such as quasiconcave, local, etc., are understood in the L0-sense.
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Definition 2.2. A conditional risk acceptance family is a family A := (Am)m∈L̄0 of sets in X , which is

• convex: Am is convex, for any m ∈ L̄0;

• decreasing: Am ⊆ An, for any n,m ∈ L̄0 such that m ≥ n;

• monotone: Am +K = Am, for any m ∈ L̄0;

• jointly σ-stable: A = (Am)m∈L̄0 = {(X,m) ∈ X × L̄0 : X ∈ Am} ⊆ X × L̄0 is σ-stable;

• left-continuous: for every m ∈ L̄0, the following identity holds true

Am = 1B(m)

⋂
n<m onB(m)

n=−∞ onBc(m)

An + 1Bc(m)X ,

where B(m) = {m > −∞}.

Remark 2.3. Note that the joint σ-stability of A is equivalent to the property that∑
1AiAmi = A

∑
1Aim

i

,

for any sequence (mi) ⊆ L̄0, and any [Ai] ⊆ G . In particular, taking mi = m, i ∈ N, we get that∑
1AiAm = Am, and consequently we obtain that the set Am is σ-stable.

We are ready now to state and prove a one-to-one relationship between conditional assessment indices and
conditional risk acceptance family. This result will play a central role in the proof of the robust representation
theorem (cf. Section 2.2).

Theorem 2.4. Given a conditional assessment index α, the family Aα = (Amα )m∈L̄0 of sets defined by

Amα := {X ∈ X : α (X) ≥ m} , m ∈ L̄0, (2.1)

is a conditional risk acceptance family.
Conversely, given a conditional risk acceptance family A = (Am)m∈L̄0 , the function αA : X → L̄0

defined by
αA (X) := ess sup

{
m ∈ L̄0 : X ∈ Am

}
, X ∈ X , (2.2)

is a conditional assessment index.
Furthermore, with the previous notation, αAα = α and AαA = A.

Remark 2.5. In the above result, Am has to be indexed by m ∈ L̄0 rather than m ∈ L0 to get a one-to-
one correspondence. Indeed, suppose that our probability measure P can be extended to G1 ⊇ G . Let
X := LpG (G1), for some p ≥ 1, where LpG (G1) is defined as LpF (E) in [32, Section 4.2]. We take an A ∈ G ,
with 0 < P [A] < 1. It is straightforward to check that the function

α(X) := E[X|G ]1A −∞1Ac ,

is a conditional assessment index. However, since {X ∈ X : α(X) ≥ m} = ∅ for all m ∈ L0, it follows that
αAα = −∞ 6= α.

Similar conclusion holds true for more general and economically sound examples. Let u1 and u2 be
utility functions, such that 1AE[u1(X0)|G ] > −∞ and 1AcE[u2(X0)|G ] = −∞ for some X0 ∈ X , and
some A ∈ G with 0 < P [A] < 1. For example, one can take exponential utility u1(x) = 1 − e−x, and
log utility u2(x) = ln (1 + x). We consider the state dependent utility function u = 1Au1 + 1Acu2. Then,
α(X) := E[u(X)|G ], X ∈ X , is a conditional assessment index. However, by similar arguments as above,
αAα 6= α.
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Remark 2.6. Note that a version of Theorem 2.4 has been derived in [28]. However, for a risk acceptance
family we require joint σ-stability and an indexing by L̄0 rather than L0; see also Remark 2.5.

In contrast to the approach in the proof of the robust representation in [28], here the starting point for the
Robust Representation Theorem 2.12 will be the one-to-one correspondence between conditional assessment
indices and conditional risk acceptance families stated in Theorem 2.4. We also note that Theorem 2.4 is the
conditional version of [22, Theorem 1.7].

Proof. Step 1: Let α be a conditional assessment index, and let the family of acceptance sets Amα , where
m ∈ L̄0, be defined as in (2.1). By definition, Aα is decreasing. Furthermore, for any m ∈ L̄0, the set Amα is
convex and monotone, since it is an upper level set of a quasiconcave and monotone function.

Next we show that Aα is jointly σ-stable. Let [Ai] ⊆ G and (Xi,mi)i∈N ⊆ Aα, in particular α(Xi) ≥
mi, i ∈ N. By definition of Aα, by locality of α, and by (1.2), it follows that (X,m) :=

∑
1Ai(Xi,mi) =

(
∑

1AiXi,
∑

1Aimi) fulfills

α(X) = α
(∑

1AiXi

)
=
∑

1Aiα (1AiXi) =
∑

1Aiα (Xi) ≥
∑

1Aimi = m,

so that (X,m) ∈ Aα, which shows the joint σ-stability of Aα.

Finally we prove the left-continuity of Aα. Let m ∈ L̄0 and B(m) = {m > −∞}. We start by observing
that ⋂

n<m onB(m)
n=−∞ onBc(m)

An =
⋂
n<m

onB(m)

A1B(m)n−1Bc(m)∞
α .

Next, we note that,

1B(m)

⋂
n<m

onB(m)

A1An−1Bc(m)∞
α + 1Bc(m)X

= 1B(m)

⋂
n<m

onB(m)

{
X ∈ X : α(X) ≥ 1B(m)n− 1Bc(m)∞

}
+ 1Bc(m) {Y ∈ X : α(Y ) ≥ −∞}

=
{

1B(m)X + 1Bc(m)Y ∈ X : α(X) ≥ 1B(m)n− 1Bc(m)∞ for all n < m on B(m),

and α(Y ) ≥ −∞
}
.

Since α is local, it follows that{
1B(m)X + 1Bc(m)Y ∈ X : α(X) ≥ 1B(m)n− 1Bc(m)∞ for all n < m on B(m) and α(Y ) ≥ −∞

}
=
{

1B(m)X + 1Bc(m)Y ∈ X : 1B(m)α(X) + 1Bc(m)α(Y ) = α(1B(m)X + 1Bc(m)Y )

≥ 1B(m)n− 1Bc(m)∞ for all n < m on B(m)
}

=
{
X ∈ X : α(X) ≥ 1B(m)n− 1Bc(m)∞ for all n < m on B(m)

}
= Am.

Hence, left-continuity of Aα is proved.

Step 2: Conversely, assumeA = (Am)m∈L̄0 to be an acceptance family, and consider αA defined as in (2.2).
First we prove that αA is monotone. Take X,Y ∈ X such that X < Y . By monotonicity of A, if Y ∈ Am,
then X ∈ Am. Hence

{m ∈ L̄0 : Y ∈ Am} ⊆ {m ∈ L̄0 : X ∈ Am}.

Taking ess sup of both sides in the last inclusion, the monotonicity of αA follows.
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Next we will show that αA is quasiconcave. In order to do this, we consider X,Y ∈ X and we let m,n ∈ L̄0

be such that X ∈ Am and Y ∈ An. Such m,n exist, since by the left-continuity of A we have A−∞ = X .
Next, we set m̃ = m∧n, and from the decreasing property ofA we conclude thatX,Y ∈ Am̃. Now, we take
λ ∈ L0 such that 0 ≤ λ ≤ 1. By convexity ofA, we get that the convex combination Z := λX+(1−λ)Y ∈
Am̃, and hence αA(Z) ≥ m̃. Consequently,

αA(Z) ≥ ess sup{m ∈ L̄0 : X ∈ Am} ∧ ess sup{n ∈ L̄0 : Y ∈ An}.

Thus, we conclude that αA(Z) ≥ αA(X) ∧ αA(Y ), which proves quasiconcavity of αA.

It remains to prove locality of αA. For this, let A ∈ G , X ∈ X , and consider m ∈ L̄0 such that X ∈ Am.
Again, such m exists since by the left-continuity of A we have A−∞ = X . From σ-stability of A, and from
the fact that 0 ∈ A−∞, we have 1AX ∈ A1Am−1Ac∞, which implies that αA(1AX) ≥ 1Am − 1Ac∞.
Hence, 1AαA(1AX) ≥ 1Am, and thus, taking the essential supremum with respect to m in this inequality,
we get

1AαA(1AX) ≥ 1AαA(X). (2.3)

Now, let n ∈ L̄0 such that 1AX ∈ An. Since X ∈ A−∞, we get by σ-stability of A, see Remark 2.3,

X = 1A(1AX) + 1AcX ∈ A1An−1Ac∞.

This implies that αA(X) ≥ 1An − 1Ac∞, and consequently 1AαA(X) ≥ 1An. Taking the essential supre-
mum with respect to n in the last inequality, we get 1AαA(X) ≥ 1Aα(1AX), which, jointly with (2.3),
demonstrates locality of αA.

Thus αA is a conditional assessment index.

Step 3: We finally prove the last statement of Theorem 2.4. Assume that α is a conditional assessment index.
Then,Aα is a conditional risk acceptance family, and therefore αAα is a conditional assessment index. Note,
that for any X ∈ X we have

αAα(X) = ess sup
{
m ∈ L̄0 : X ∈ Amα

}
= ess sup

{
m ∈ L̄0 : α(X) ≥ m

}
= α(X),

and so α = αAα .

Assume now that A is a conditional risk acceptance family. We will show that AmαA = Am for any m ∈ L̄0,
from which we deduce that AαA = A.

If m = −∞, then A−∞αA = {X ∈ X : αA (X) ≥ −∞} = X , and by the left-continuity of A we get that
A−∞αA = A−∞.

Next, assume that m > −∞. Given ε ∈ L0
++, we claim that αA(X) ≥ m implies that X ∈ Am−ε. Indeed,

A being jointly σ-stable, {n ∈ L̄0 : X ∈ An} is upward directed. Hence, there exists an increasing sequence
(ni) ⊆ {n ∈ L̄0 : X ∈ An}, such that ni ↑ αA(X). Let Ai := {ni ≥ m − ε} and Bi := Ai \ Ai−1,
for i ∈ N, and put B0 := A0. Then [Bi] ⊆ G , and X ∈ Ani for every i ∈ N. By σ-stability of A, we get
that

∑
1Bi(X,ni) = (X,

∑
1Bini) ∈ A. However, by construction, m̃ :=

∑
1Bini ≥ m − ε, and thus

X ∈ Am−ε. Consequently, we deduce

AmαA = {X ∈ X : αA(X) ≥ m}
=
{
X ∈ X : ess sup{n ∈ L̄0 : X ∈ An} ≥ m

}
=
{
X ∈ X : X ∈ Am−ε for all ε ∈ L0

++

}
=
⋂
n<m

An.
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Finally, since in view of the left-continuity of A we have ∩n<mAn = Am, see Remark 2.3, we obtain that
AmαA = Am.

For the general case m ∈ L̄0, we write m = −1Ac∞ + 1Am, with A = {m > −∞}, and using σ-stability
we conclude that AmαA = Am. Thus, AαA = A.

2.2 Robust representation

In this subsection we prove a robust representation theorem for conditional assessment indices, which is one
of the main results of this paper. From now on we suppose that X is a conditional locally convex topological
module.8 We further suppose that the cone K is closed, and we define the associated polar cone by

K◦ := {X∗ ∈ X ∗ : 〈X∗, X〉 ≥ 0 for all X ∈ K} .

We will now introduce two concepts, which are pivotal for our studies.

Definition 2.7. A conditional risk function is a function R : K◦ × L̄0 → L̄0 such that

(i) it is jointly local;

(ii) the map s 7→ R(X∗, s) is increasing and right-continuous for any X∗ ∈ K◦.

A conditional risk function R is called minimal if

(iii) it is jointly quasiconvex, and R(λX∗, s) = R (X∗, s/λ) for all λ ∈ L0
++;

(iv) it has a uniform asymptotic maximum, which means

ess sup
s∈L0

R (X∗, s) = ess sup
s∈L0

R (Y ∗, s) ,

for any X∗, Y ∗ ∈ K◦;

(v) the left-continuous version (in the second argument) R− (X∗, s) is jointly lower semicontinuous.

The set of all conditional minimal risk functions is denoted byRmin.

Remark 2.8. Note that Condition (iv) is equivalent to

(iv′) it has a uniform asymptotic maximum, which means

R− (X∗,∞) = R− (Y ∗,∞) ,

for any X∗, Y ∗ ∈ K◦;

Definition 2.9. A conditional maximal penalty function is a function π : K◦ × L̄0 → L̄0 such that

(a) it is jointly local;

(b) the map m 7→ π (X∗,m) is increasing and right-continuous for any X∗ ∈ K◦;

(c) it is positive homogeneous in the first argument9 and concave in the first argument;

8See [24] and Appendix A for background on conditional modules.
9π (λX∗,m) = λπ (X∗,m) for all λ ∈ L0

++ and X∗,m ∈ K◦, L̄0.
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(d) it is maximal invariant, that is, if π (X∗,m) = ∞ for some X∗ ∈ K◦ and m ∈ L̄0, then π (Y ∗,m) =

∞ for all Y ∗ ∈ K◦;

(e) it is upper semicontinuous in the first argument.

The set of all conditional maximal penalty functions is denoted by Pmax.

Proposition 2.10. The set of conditional minimal risk functionsR ∈ Rmin and the set of conditional maximal
penalty functions π ∈ Pmax are related in the following manner

π(−1,r) (X∗, s) ∈ Rmin, (2.4)

R(−1,r) (X∗,m) ∈ Pmax, (2.5)

where π(−1,r) (X∗, s) andR(−1,r) (X∗,m) denote the right-inverse10 in the second argument for fixedX∗ ∈
X ∗. Moreover, the relationship is one-to-one.

The proof of this proposition is deferred to the Appendix A.3.

Proposition 2.11. Let C ⊆ X be a closed, convex, monotone and σ-stable set. Then, there exists a unique
local function π : K◦ → L̄0 such that it is

(a) positive homogeneous and concave;

(b) maximal invariant;

(c) upper semicontinuous,

and such that
X ∈ C ⇐⇒ 〈X,X∗〉 ≥ π (X∗) , for all X∗ ∈ K◦. (2.6)

Moreover, this function is explicitly given by the relation

π (X∗) = χ?C (X∗) := ess inf
X∈C

〈X∗, X〉, for all X∗ ∈ K◦.

The proof of this proposition is also deferred to the Appendix A.4.
Finally, we are in the position to prove the main result of this section.

Theorem 2.12.

(i) Let α : X → L̄0 be an upper semicontinuous conditional assessment index. Then, α has the robust
representation of the form

α (X) = ess inf
X∗∈K◦

R (X∗, 〈X∗, X〉) , (2.7)

for a unique R ∈ Rmin;

(ii) For any conditional risk function R, the right hand-side of (2.7) defines an upper semicontinuous
conditional assessment index.

Proof. (i) According to Theorem 2.4,

α (X) = ess sup
{
m ∈ L̄0 : X ∈ Am

}
, X ∈ X , (2.8)

10For further details apply Definition A.5 for the second argument of π and R, respectively.
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where A = (Am)m∈L̄0 is the corresponding conditional risk acceptance family in the sense of (2.1). In
particular, each of the sets Am, m ∈ L̄0, is monotone, convex, and, in view of Remark 2.3, it is also σ-
stable. In addition, since α is upper-semicontinuous then each set Am, m ∈ L̄0 is closed. Thus, defining
π : K◦ × L̄0 → L̄0 by

π (X∗,m) := ess inf
X∈Am

〈X∗, X〉, (2.9)

we have by Proposition 2.11 that π satisfies properties (c)-(e) of Definition 2.9. Moreover, from (2.6), we
conclude that

X ∈ Am ⇐⇒ 〈X,X∗〉 ≥ π (X∗,m) for all X∗ ∈ K◦, (2.10)

which in combination with (2.8) yields

α (X) = ess sup
{
m ∈ L̄0 : 〈X,X∗〉 ≥ π (X∗,m) , for all X∗ ∈ K◦

}
. (2.11)

Furthermore, π fulfills (a) of Definition 2.9. Indeed, let X∗, Y ∗ ∈ K◦, m, m̃ ∈ L̄0 and A ∈ G . Since, A is
jointly σ-stable, it follows that A1Am+1Acm̃ = 1AAm + 1AcAm̃. Hence

π (1AX
∗ + 1AcY

∗, 1Am+ 1Acm̃) = ess inf
X̃∈A1Am+1Acm̃

〈1AX∗ + 1AcY
∗, X̃〉

= ess inf
X̃∈1AAm+1AcAm̃

〈1AX∗ + 1AcY
∗, X̃〉 = ess inf

X∈Am,Y ∈Am̃
〈1AX∗ + 1AcY

∗, 1AX + 1AcY 〉

= ess inf
X∈Am,Y ∈Am̃

(1A〈X∗, X〉+ 1Ac〈Y ∗, Y 〉) = 1A ess inf
X∈Am

〈X∗, X〉+ 1Ac ess inf
Y ∈Am̃

〈Y ∗, Y 〉

= 1Aπ (X∗,m) + 1Acπ (Y ∗, m̃) ,

hence π is jointly local.

Since the map m 7→ π (·,m) is increasing11, the left- and right-continuous version of it, say, π− and π+

respectively, are given as in (A.2) and (A.3). Moreover, it is rather clear that π+ fulfills12 the conditions
(a)-(e) of Definition 2.9, and thus π+ ∈ Pmax.

Next we show that
α(X) = β− (X) = β+(X), X ∈ X , (2.12)

where

β− (X) := ess sup
{
m ∈ L̄0 : 〈X,X∗〉 ≥ π− (X∗,m) for all X∗ ∈ K◦

}
, (2.13)

β+ (X) := ess sup
{
m ∈ L̄0 : 〈X,X∗〉 ≥ π+ (X∗,m) for all X∗ ∈ K◦

}
. (2.14)

Since π− (X∗,m) ≤ π (X∗,m) ≤ π+ (X∗,m) for all X∗,m ∈ K◦ × L̄0, it follows that

β− (X) ≥ α(X) ≥ β+ (X) , X ∈ X . (2.15)

If β− (X) is equal to−∞ on some set A ∈ G+, then equality (2.12) holds true on A. Hence, using locality, it
is enough to prove that (2.12) holds true for β− (X) > −∞. By the definition of β−, there exists an increas-
ing sequence (mn) ⊆ L0 converging to β− (X), and such that mn < mn+1 < β− (X). By the definition of
the left-and right-continuous version of an increasing function, we get π+ (X∗,mn) ≤ π−

(
X∗,mn+1

)
, for

all X∗ ∈ K◦, and all n ∈ N. Hence, mn ≤ β+ (X) for all n ∈ N, and therefore β+ (X) ≥ β− (X). This,
combined with (2.15), implies (2.12).

11Due to the fact thatA is decreasing.
12In particular, notice that an essential infimum of a family of upper semicontinuous functions is an upper semicontinuous, and in

view of (A.3) π+ is upper semicontinuous.
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Denote by R the right-inverse of π+. By Proposition A.9, see Remark A.10, we have that R = (π−)(−1,r).
Thus, by (2.12) and (A.14) we conclude that

α (X) = ess sup
{
m ∈ L̄0 : R (X∗, 〈X,X∗〉) ≥ m for all X∗ ∈ K◦

}
,

and, consequently,

α (X) = ess sup

{
m ∈ L̄0 : ess inf

X∗∈K◦
R (X∗, 〈X,X∗〉) ≥ m

}
= ess inf
X∗∈K◦

R (X∗, 〈X∗, X〉) .

Finally, we show the uniqueness of R ∈ Rmin. Using Proposition 2.10 and (2.12), it is sufficient to show that

α(X) = ess sup
{
m ∈ L̄0 : 〈X,X∗〉 ≥ π̃ (X∗,m) for all X∗ ∈ K◦

}
. (2.16)

holds true for a unique π̃ ∈ Pmax. We assume, that (2.16) is satisfied for πi ∈ Pmax, i = 1, 2. For every
n ∈ L̄0 and i = 1, 2, we consider the sets

An,i := {X ∈ X : 〈X∗, X〉 ≥ πi (X∗, n) for all X∗ ∈ K◦}

=
⋂

X∗∈K◦
{X ∈ X : 〈X∗, X〉 ≥ πi(X∗, n)}. (2.17)

For every X∗ ∈ K◦, m ∈ L̄0, the set {X ∈ X : 〈X∗, X〉 ≥ m} is clearly closed, convex, and σ-stable and
monotone. By (2.17), we conclude that An,i are closed, convex, monotone and σ-stable, for every n ∈ L̄0

and i = 1, 2. Let A = {m =∞}. By Proposition 2.11, we have that, for i = 1, 2,

πi (X∗,m) = ess inf
n≥m

n>m onA

πi (X∗, n) = ess inf
n≥m

n>m onA

ess inf
X∈An,i

〈X∗, X〉 = ess inf
X∈

⋃
n≥m

n>m onA

An,i
〈X∗, X〉. (2.18)

on Ac.

Next we will show that⋃
n≥m

n>m onA

An,i = {X ∈ X : α(X) ≥ m and α (X) > m on A} , i = 1, 2. (2.19)

If X belongs the left hand side, then X ∈ An0,i for some n0 ≥ m with n0 > m on A, and hence, by (2.12)
together with (2.14), we get that α(X) ≥ n0, and consequently we conclude that X belongs to the right hand
side. Conversely, if α (X) ≥ m with α(X) > m on A, then by (2.12) together with (2.14), there exists
n0 ≥ m with n0 > m on A such that 〈X∗, X〉 ≥ πi (X∗, n0) for all X∗ ∈ K◦. Hence, X ∈ An0,i and
therefore X is in the left hand side of (2.19). Finally, (2.18) combined with (2.19) imply that π1 = π2 on Ac.
Since πi are right-continuous, π1 = π2 =∞ on A, and thus π1 = π2.

(ii) If the function R is a conditional risk function, i.e. it satisfies (i) and (ii) from Definition 2.7, it follows
immediately that for every X∗ ∈ K◦, the function R (X∗, 〈X∗, ·〉) is local, quasiconcave, monotone, and
upper-semicontinuous. All these properties are preserved under ess inf , and this concludes the proof.

Remark 2.13. Similarly to [22], if there exists κ ∈ K such that 〈X∗, κ〉 > 0 for any X∗ ∈ K◦, the robust
representation (2.7) can be achieved on the normalized set

K◦κ := {X∗ ∈ K◦ : 〈X∗, π〉 = 1} , (2.20)

for a unique minimal risk function R : K◦κ × L0 → L̄0. In this case the condition (iii) from Definition 2.7 is
replaced by
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(iii)′ it is jointly quasiconvex.

Additional properties of α are shared by the corresponding dual minimal risk function, as stated in the fol-
lowing result.

Proposition 2.14. An upper semicontinuous assessment index α is concave, positive homogeneous, scale
invariant, or κ-cash additive if and only if the corresponding minimal risk function R is convex, positive
homogeneous, scale invariant or κ-cash additive in the second argument, respectively.

The proof is similar to that from the static case (cf. [21, 22]), and we omit it here.

2.3 Scale Invariant Conditional Assessment Indices

In this section we specify how the robust representation looks like in the specific case of scaling invariance.
Note that the acceptance sets Am, m ∈ L0, corresponding to a scale invariant assessment index are closed
and convex cones. We denote their polar sets as

Am,◦ := {X∗ ∈ X ∗ : 〈X∗, X〉 ≥ 0 for all X ∈ Am} , m ∈ L̄0. (2.21)

Proposition 2.15. Let α : X → L̄0 be an upper semicontinuous scale invariant conditional assessment
index. Then, the unique conditional minimal risk function R ∈ Rmax from the representation (2.7) has the
form

R (X∗, s) =


−∞ on {s = −∞}
ess inf

{
m ∈ L̄0 : X∗ ∈ Am,◦

}
on {−∞ < s < 0}

+∞ on {s ≥ 0}
, X∗ ∈ K◦ and s ∈ L̄0. (2.22)

Proof. Similar to Theorem 2.12.(i), we consider the function

π (X∗,m) := ess inf
X∈Am

〈X∗, X〉 = χ?Am (X∗) , (2.23)

where the last equality follows as in (A.25). Since Am is a cone, it follows that

χ?Am = χAm,◦ , (2.24)

for any m ∈ L̄0.13 Indeed, by definition, X∗ ∈ Am,◦ if and only if 〈X∗, X〉 ≥ 0 for every X ∈ Am. Using
the fact that Am is a cone, we scale X with λ ∈ L0

++ converging to 0 in the essential infimum (2.23) It
follows that X∗ ∈ Am,◦ if and only if χ?Am (X∗) = 0. On the other hand, if 1BX

∗ 6∈ 1BAm,◦ for every
B ∈ G+, it follows by definition of Am,◦ that there exists X ∈ Am,◦ such that 〈X∗, X〉 < 0. Scaling with
λ ∈ L0

++ tending to∞, it follows that 1BX
∗ 6∈ 1BAm,◦ for every B ∈ G+ if and only if π (X∗,m) = −∞.

By locality, and definition of χAm,◦ , we therefore deduce that equation (2.24) holds.
Finally, we need to show that R given by (2.22) is the conditional right-inverse of π in the second ar-

gument. It holds that χAm,◦ takes only 0 and ∞ as values. For X∗ = 0, it clearly holds R(0, s) = ∞ on
{s ≥ 0} and −∞ on {s < 0} which corresponds to Relation (2.22). On the other hand, if 1AX

∗ 6= 0 for
every A ∈ G+, it follows that ess infm∈L̄0 χAm,◦(X

∗) = χX◦(X
∗) = χ{0}(X

∗) = −∞. Hence applying
the definition of the right inverse, it follows that

R (X∗, s) = −∞1{s=−∞} + 1{s>−∞} ess inf
{
m ∈ L̄0 : χAm,◦(X

∗) > s on {s > −∞}
}

= −1{s=−∞}∞+ 1{s≥0}∞+ 1{−∞<s<0} ess inf
{
m ∈ L̄0 : χAm,◦(X

∗) > s
}

= −1{s=−∞}∞+ 1{s≥0}∞+ 1{−∞<s<0} ess inf
{
m ∈ L̄0 : X∗ ∈ Am,◦

}
.

Using stability for the general X∗ ∈ K◦ yields the representation 2.22.
13Note that this states the conditional version of the Bipolar Theorem.
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2.4 Certainty Equivalent

In Cheridito and Kupper [13], a concept of certainty equivalent was studied in the context of risk measures.
Here, we carry out an analogous study with regard to conditional assessment indices. In Section 4, we
will make a crucial use of the concept of certainty equivalent in studying the (strong) time consistency of
assessment indices for processes. Throughout this section we fix κ ∈ K \ {0}.

Definition 2.16. A κ-conditional certainty equivalent of a conditional assessment index α is a local func-
tional C : X → L0 such that

α(C(X)κ) = α(X), X ∈ X . (2.25)

A natural candidate for the conditional certainty equivalent of a conditional assessment index α is given by

C(X) := ess inf
{
m ∈ L0 : α(mκ) ≥ α(X)

}
, X ∈ X . (2.26)

Remark 2.17. However, in general, definition (2.26), even though natural, may not produce a valid certainty
equivalent. In particular, if α is a scale invariant assessment index, then C(X) defined as in (2.26), will take
values only 0 and−∞, and (2.25) will not be satisfied, in general. Indeed, for simplicity assume thatK = L0

+

and κ = 1, and let C be defined as in (2.26). For sufficiently large m > 0, we have that m ≥ X , and by
monotonicity of α, we deduce that α(m) ≥ α(X). Hence, using scale invariance of α, we conclude that
C(X) ≤ 0, and consequently

C(X) = ess inf
{
m ∈ L0 : m ≤ 0, and α(m) ≥ α(X)

}
, X ∈ X .

Using scale invariance of α again, we conclude that C(X) will take values only 0 and −∞.
With (2.26) in mind, we thus need to find sufficient conditions on index α ensuring that (2.26) indeed

defines a certainty equivalent.

Definition 2.18. A conditional assessment index α is

• κ-bounded, if for any X ∈ X , there exist m1,m2 ∈ L0 satisfying

α(m1κ) < α(X) ≤ α(m2κ). (2.27)

• κ-strictly increasing, if α(mκ) > α(m′κ) on A, whenever m,m′ ∈ L0 and m > m′ on A.

• κ-sensitive, if for m ∈ L0 and Y ∈ X with α(mκ) > α(Y ) on some A ∈ G , there exists an ε ∈ L0
+

with ε > 0 on A, such that
α((m− ε)κ) ≥ α(Y ), on A.

Proposition 2.19. Let α : X → L̄0 be a κ-sensitive and κ-bounded upper semicontinuous conditional
assessment index. Then, C defined as in (2.26) is a κ-conditional certainty equivalent and

α (X) ≥ α (Y ) ⇐⇒ C (X) ≥ C (Y ) , X, Y ∈ X . (2.28)

In this case, C is itself a κ-sensitive and κ-bounded conditional assessment index.
If in addition α is κ-strictly increasing, then (2.26) is upper semicontinuous, and the unique κ-conditional

certainty equivalent of α.

Remark 2.20. Relation (2.28) shows that C and α reproduce the same ranking, so they are equivalent in this
sense. Note that the functional defined in (2.26) satisfies the following property

C (C (X)κ) = C (X) , X ∈ X , (2.29)

which means that C is a certainty equivalent of itself.

14



Proof. Let C be defined as in (2.26). Consequently, (2.27) implies that C takes values in L0. Next we will
show that C satisfies (2.25). By locality of α the set C(X) := {m ∈ L0 : α(mκ) ≥ α(X)} is downward
directed. Hence, there exits a decreasing sequence (mn) ⊆ C(X) converging to C(X) P -almost surely.
Upper semicontinuity of α implies

α (C (X)κ) = α
(

lim
n
mnκ

)
≥ ess lim sup

n
α (mnκ) ≥ α(X). (2.30)

Suppose now that α (C (X)κ) > α (X) on some A ∈ G+. By κ-sensitivity of α it follows that α((C(X)−
ε)κ) ≥ α(X) on A, for some ε > 0 on A. Take ε = 0 on Ac, and by locality of α and (2.30), we get that
α(C(X)κ − ε) ≥ α(X). Hence, C(X) − ε ∈ C(X), so that C(X) − ε ≥ C(X), which is a contradiction.
Next, let us prove that C is local. By the definition of C, and locality of α, we have

C(1AX + 1AcY ) = ess inf
{
m ∈ L0 : α(mκ) ≥ α(1AX + 1AcY )

}
= ess inf

{
m ∈ L0 : 1Aα(mκ) + 1Acα(mκ) ≥ 1Aα(X) + 1Acα(Y )

}
= ess inf{1Am1 + 1Acm2 ∈ L0 : 1Aα ((1Am1 + 1Acn1)κ) ≥ 1Aα(X),

1Acα ((1An2 + 1Acm2)κ) ≥ 1Acα(Y ), where n1, n2 ∈ L0}
= 1A ess inf{m1 ∈ L0 : 1Aα ((1Am1 + 1Acn1)κ) ≥ 1Aα(X), n1 ∈ L0}

+ 1Ac ess inf
{
m2 ∈ L0 : 1Acα ((1An2 + 1Acm2)κ) ≥ 1Acα(Y ), n2 ∈ L0

}
= 1A ess inf

{
1Am1 + 1Acn1 ∈ L0 : 1Aα ((1Am1 + 1Acn1)κ) ≥ 1Aα(X)

}
+ 1Ac ess inf{1Acm2 + 1An2 ∈ L0 : 1Acα ((1An2 + 1Acm2)κ) ≥ 1Acα(Y )}

= 1AC(X) + 1AcC(Y )

where in the fourth equality we used the κ-boundedness assumption to ensure the existence of n1, n2 ∈ L0,
such that 1Acα(1am1 + 1Acn1)κ) ≥ 1Acα(X) and 1Aα((1An2 + 1Acm2)κ) ≥ 1Aα(Y ). Hence, C is local.
Thus, C is a κ-conditional certainty equivalent.

Next, we will show that (2.28) is fulfilled. Clearly, α(X) ≥ α(Y ) implies C(X) ≥ C(Y ). Suppose that
α(X) ≥ α(Y ), and α(X) > α(Y ) on some A ∈ G+. Since C is a κ-conditional certainty equivalent of α,
it follows that α(C(X)κ) > α(Y ) on A. By similar arguments as above, since α is κ-sensitive there exists
ε ∈ L0

+ with ε > 0 on A, and ε = 0 on Ac, such that α((C(X)− ε)κ) ≥ α(Y ). Hence, C(X)− ε ∈ C(Y ),
and thus C(X)− ε ≥ C(Y ), which implies that C(X) > C(Y ) on A. Thus (2.28) is established.

Note that by means of relation (2.28), α andC define the same conditional preference order onX . Thus,C
is itself a conditional assessment index.14 Also by (2.28) we conclude that α being κ-bounded implies that C
is κ-bounded. Next we will show that C is κ-sensitive. Take m ∈ L0 and X ∈ X such that C(mκ) > C(X)

on some set A ∈ G . Using locality of α and C, and by (2.28), it follows that α(mκ) > α(X) on A. Hence,
by κ-sensitivity of α, there exists ε ∈ L0

+ with ε > 0 on A such that α((m − ε)κ) ≥ α(X) on A. Again,
using locality and (2.28), we conclude that C((m− ε)κ) ≥ C(X) on A. This shows that C is κ-sensitive.

Let us assume that α in addition is κ-strictly increasing. We claim that C(mκ) = m, m ∈ L0. Indeed,
by definition 2.26, we have that C(mκ) ≤ m. Suppose that C(mκ) < m on some set A ∈ G+. Since α
is κ-strictly increasing, it follows that α (C(mκ)) < α(mκ) on A. However, α(C(mκ)) = α(mκ) which
is a contradiction. Next we will show that any κ-certainty certainty equivalent C̃ of α is equal to C. Given
X ∈ X , we note that C̃(X) ∈ C(X), and hence C(X) ≤ C̃(X). Suppose that C(X) < C̃(X) on some A.
Since α is κ-strictly increasing and local, it follows that α(X) = α(C(X)κ) < α(C̃(X)κ) = α(X) on A
which is a contradiction. Thus C̃ = C. Finally, it remains to show that C is upper semicontinuous. For a
given m ∈ L0, using the statements proved above, we deduce that

{X ∈ X : C(X) ≥ m} = {X ∈ X : C(X) ≥ C(mκ)} = {X ∈ X : α(X) ≥ α(mκ)} .
14Both monotonicity and quasiconcavity of C follow from corresponding properties of α and relation (2.28).
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The latter set is closed since α is upper semicontinuous, and hence, the upper level sets of C are also closed,
and thus C is upper semicontinuous.

Remark 2.21. Note that if α is a κ-bounded and κ-cash additive acceptability index, then, up to a translation
by α(0), α is a certainty equivalent of itself. In other terms C(X) := α(X)− α(0) is a certainty equivalent
of α. Indeed, κ-boundedness and κ-cash additive implie that α only takes values in L0, and thus C also takes
values only in L0. Moreover, since α(mκ) = α(0) +m, we have that α(C(X)κ) = α(0) +C(X) = α(X).

3 Assessment Indices for Stochastic Processes

We will now apply the theory developed in Section 2 to study of assessment indices for discrete time, real
valued random processes.

3.1 Conditional Assessment Indices for Stochastic Processes

In this section we follow the approach and notations for stochastic processes introduced by Acciaio et al.
[2]. Given a time horizon T ∈ N, let (Ω,F , P ) be a probability space with a filtration (Fs) where s is in
{0, . . . , T}. Given t ∈ {0, . . . , T}, we denote by Ot the optional σ-algebra up to time t on the product space
Ω̃ := Ω× {0, . . . , T}, which is equal to

Ot = σ ({As × {s}, At × {t, . . . , T} : s < t,As ∈ Fs and At ∈ Ft}) . (3.1)

We define O := OT . On Ω̃ we denote by P̃ a probability measure, which is defined by the expectation

EP̃ [X] := EP

[
T∑
s=0

Xsµs

]
,

where µ is some adapted process such that
∑T
s=0 µs = 1 and µs > 0. Risking a slight abuse of notation, we

shall sometimes write P̃ = P ⊗ µ.
Note that a random variable X belongs to L0(Ot) if, and only if, seen as a process X = (Xs), it is

(Fs)-adapted up to time t and constant afterwards.15 In particular, any X ∈ L0(O), seen as a process, is
(Fs)-adapted and it is clear that L0(Ot1) ⊆ L0(Ot2) for any t1, t2 ∈ {0, . . . , T} with t1 ≤ t2.

For any X ∈ L0(O), we denote by ∆Xs := (Xs − Xs−1), with the convention X−1 = 0, so that
Xs =

∑s
k=0 ∆Xs.

Remark 3.1. In what follows a processX ∈ L0(O) will be interpreted either as a discounted cumulative cash
flow (discounted cumulative dividend) process, or as a discounted cash flow process (discounted dividend
process). If X is a discounted cumulative cash flow, then ∆X represents the discounted dividend process.

From now through the end of this subsection we fix t ∈ {0, 1, . . . , T}. For q ∈ [1,+∞], we denote by
M̃q,t, the set of probability measures Q̃ on O absolutely continuous with respect to P̃ , such that dQ̃/dP̃ ∈
Lq(O) and Q̃ = P̃ on Ot. In case q = 1, and if no confusion arises, we will drop q from the notations.
Similarly, we denote byMt the set of probability measures Q on FT absolutely continuous with respect to
P , such that dQ/dP ∈ L1(FT ) and Q = P on Ft. Given Q ∈ Mt we denote by Γt(Q) and Dt(Q) the set

15 By “constant afterwards” we mean that Xs = Xt for s ≥ t.
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of optional random measures and predictable discounting processes16 from time t respectively, that is

Γt(Q) :=

{
(γs) ∈ L0

+(O) : γ0 = . . . = γt−1 = 0 and
T∑
s=t

γs = 1, Q-almost surely

}
, (3.2)

Dt(Q) :=
{

(Dt) ∈ L0
+(O) : D0 = . . . = Dt = 1, Q-almost surely, D is predictable and decreasing

}
.

(3.3)

Lemma 3.2. Let Q ∈Mt. There exists a one-to-one relation between γ ∈ Γt(Q) and D ∈ Dt(Q) given by

D0 = 1, and Ds = 1−
s−1∑
k=0

γk, for 0 < s ≤ T, (3.4)

γs = Ds −Ds+1, for 0 ≤ s < T and γT = 1−
T−1∑
k=0

γk = DT . (3.5)

Furthermore, for any X ∈ L0(O), it holds

〈γ,X〉t :=

T∑
s=t

γsXs = Xt +

T∑
s=t+1

Ds∆Xs =: (D •X)t (3.6)

with the convention that DT+1 = 0.
Finally, Q̃ ∈ M̃t if and only if there exists Q ∈ Mt and γ ∈ Γt(Q) or the corresponding D ∈ Dt(Q)

such that17 Q̃ = Q⊗ γ or Q̃ = Q⊗D.

This was proven in [2]. Note that the additional term Xt in (3.6) of the integration by part is missing in
[2]. Next we define the sets18

M⊗t D := {Q⊗D : Q ∈M1 and D ∈ Dt(Q)} ; (3.7)

M⊗q,t D :=
{
Q⊗D : Q ∈Mt, D ∈ Dt(Q), and Q⊗D ∈ M̃q,t

}
, q ∈ (1,+∞]. (3.8)

Remark 3.3. By means of Lemma 3.2, it holds Q̃ ∈ M̃q,t if and only if Q̃ = Q ⊗ D ∈ M ⊗q,t D, or
Q̃ = Q⊗ γ ∈M⊗q,t Γ, q ∈ [1,∞].

Following [32] we define the conditional p-norm

‖X‖t,p :=


EP̃

[
|X|p

∣∣∣ Ot
]1/p

, if p <∞

ess inf
{
ξ ∈ L0(Ot) : |X| ≤ ξ

}
, if p =∞,

(3.9)

on the basis of which we define the spaces

Lt,p (O) :=
{
X ∈ L0 (O) : ‖X‖t,p ∈ L

0
(
Ot
)}
. (3.10)

16It is important to stress that process D does not represent a financial discount factor. For the meaning and the role of this process
we refer to Theorem 3.4.

17Where Q ⊗ γ has to be understood as the product measure with density (Zt
γt
µt

), whereby Zt = dQ/dP |Ft
and Q ⊗D is the

product measure with density (Zt
(Dt−Dt+1)

µt
).

18Analogously, we define the setsM⊗t Γ, andM⊗q,t Γ, q ∈ (1,∞].
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By means of [32, Proposition 4.4], it holds that

Lt,p (O) = L0
(
Ot
)
Lp (O) , 1 ≤ p ≤ ∞. (3.11)

It is shown in [32] that (Lt,p(O), ‖·‖t,p), with the order of almost sure dominance, is an L0 (Ot)–normed
module lattice. For a fixed 0 ≤ t ≤ T and 1 ≤ p ≤ ∞, we let X = Lt,p(O). We equip X = Lt,p(O) with
the ‖·‖t,p-topology for 1 ≤ p <∞, or the conditional weak∗-topology σ(X , Lt,1) if p =∞.

We say that a functional α : X → L̄0(Ot) is monotone if α(X) ≥ α(Y ) whenever X ≥ Y P̃ -almost
surely19.

Theorem 3.4. Let α : X → L̄0(Ot) be an upper semicontinuous conditional assessment index. Then α has
a robust representation of the form

α (X) = ess inf
Q̃∈M̃q,t

R
(
Q̃, EQ̃

[
X | Ot

])
, (3.12)

for a unique minimal risk function R : M̃q,t × L̄0(Ot)→ L̄0(Ot).
This robust representation can be written in the following form

αs (X) = fs(Xs), s ≤ t− 1, (3.13)

and,

αs (X) = αt(X) = ess inf
Q⊗γ∈M⊗q,tΓ

R′t

(
Q⊗ γ,EQ

[
T∑
k=t

γkXk

∣∣∣ Ft

])
(3.14)

= ess inf
Q⊗D∈M⊗q,tD

R′t

(
Q⊗D,Xt + EQ

[
T∑

k=t+1

Dk∆Xk

∣∣∣ Ft

])
, s ≥ t, (3.15)

for an unique right-continuous increasing functions fs : L0
s → L̄0(Fs) and minimal risk functions R′t :

M⊗q,t Γ× L̄0(Ft)→ L̄0(Ft).

Remark 3.5. From the financial point of view, the representation (3.14) is meaningful if X is a discounted
cash flow (discounted dividend process), and the representation (3.15) is meaningful if X is a discounted
cumulative cash flow (discounted cumulative dividend process).

Proof. Since α is monotone with respect to cumulative cash flows, it holds X < Y if and only if X −
Y ∈ K := {U ∈ X : U ≥ 0} and so K◦ = {Z ∈ Lt,q(O) : Z ≥ 0}. We will make use of the
normalized polar cone K◦1 := {Z ∈ Lt,q(O) : Z ≥ 0 and EP̃ [Z | Ot] = 1}, which can be identified with
M̃q,t. Applying Theorem 2.12 and Remark 2.13, there exists a unique minimal conditional risk function
R : M̃q,t × L̄0(Ot)→ L̄0(Ot) such that the representation (3.12) holds true.

To show the second claim of the theorem assume first that p =∞. First note that

EQ̃

[
X
∣∣∣ Ot

]
=
(
X ′0, . . . , X

′
t−1, EQ

[
〈γ,X〉t

∣∣∣ Ft

]
, . . . , EQ

[
〈γ,X〉t

∣∣∣ Ft

])
, (3.16)

for all X ∈ Lt,∞(O) and all Q̃ = Q ⊗ γ, where Q ∈ Mt and γ ∈ Γt(Q), and where X ′ is any element of
L(O). Indeed, suppose that X ∈ Lt,∞ (O), and denote by Y the random variable on the right hand side of

19The monotonicity in this case coincides with the monotonicity with respect to the cone K = {X ≥ 0}
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(3.16). Let A = (A0, A1, . . . , At, At, . . . , At) such that As ∈ Fs for any s ≤ t. Then,

EQ̃ [X1A] =

t−1∑
s=0

EQ [Xs1Asγs] +

T∑
s=t

EQ [Xs1Atγs]

= 0 + EQ

[
EQ

[
T∑
s=t

Xsγs

∣∣∣ Ft

]
1At

]
= EQ̃ [Y 1A] ,

and hence (3.16) is proved. For convenience, we will take X ′ = X in what follows.
By Remark 3.3, Q̃ ∈ M̃t if and only if Q̃ = Q ⊗ γ for Q ∈ Mt and γ ∈ Γt(Q). For s ≤ t − 1

we use locality for A = Ω × {s} ∈ Ot which yields 1{s}α(1{s}X) = 1{s}α(X) since 1A = 1{s}. Thus,
αs(X) = αs(0, . . . , Xs, 0, . . .) =: αs(Xs). Since20 1{s}(Q⊗ γ) = 1{s}, for any Q ∈ Mt, γ ∈ Γt(Q), and
using locality of R and (3.16), we deduce that

αs(X) = αs(Xs) = ess inf
Q⊗γ∈M⊗tΓ

Rs(1{s}(Q⊗ γ), (0, . . . , Xs, 0, . . .)) =: fs(Xs), s ≤ t− 1,

and thus (3.13) is established. In the case s ≥ t we apply locality to the set Ω × {t, . . . , T}. Hence, we see
that αs(X) is equal to αt(X) for all s ≥ t and using (3.16) we get

αt(X) = ess inf
Q⊗γ∈M⊗tΓ

R′t

(
Q⊗ γ,EQ

[
〈γ,X〉t

∣∣∣ Ft

])
, (3.17)

where
R′t (Q⊗ γ, st) := Rt (Q⊗ γ, (0, . . . , 0, st, . . . , st)) , st ∈ L̄0(Ft),

is a uniquely determined risk function. This proves the representation (3.14). By Lemma 3.2 and (3.14), the
represetnation (3.15) follows immediately.

As for the case 1 ≤ p < +∞, in view of Remark 3.3, and proceeding analogously as above, we conclude
that (3.14) and (3.15) are satisfied.

Remark 3.6. It is in place here to remark that the assessment index α considered in this subsection corre-
sponded to the fixed t. It would be then appropriate to denote it as, say, αt = (αt0, . . . , α

t
T ). We would then

refer to the collection {αt, t = 0, 1, . . . , T} as to dynamic assessment index.

3.2 Path Dependent Dynamic Assessment Indices

Throughout this section we interpret X as the discounted cumulative cash-flow.
It is seen from representation (3.14) that αtt (cf. Remark 3.6) only assesses the future of the process X ,

that is it only assesses Xt, . . . , XT , while αts, s < t, is just a function of Xs. This is a drawback since the
past evolution of X is not taken into account when assessing X at time t via αtt, which for some applications
may be an unwanted feature.

In this section we propose an alternative approach, which assess X at time t accounting for the path
evolution of X time t.

Given 0 ≤ s ≤ s̃ ≤ T , we denote by 1[s,s̃] a process, such that 1[s,s̃](u) = 1 for s ≤ u ≤ s̃,
and 1[s,s̃](u) = 0 otherwise. Accordingly, we use the notation X[s,s̃] for the random vector X1[s,s̃] =

20By 1{s}(Q⊗ γ) we naturally mean the density of Q⊗ γ with respect to P̃ at time s.
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(0, . . . , 0, Xs, . . . , Xs̃, 0, . . . , 0). Process X stopped at time t is written as Xt, that is Xt = X·∧t. We recall
the definition of the space L0(Ot) (cf. (3.1)), and we define

L0(O[s,s̃]) :=
{
X[s,s̃] : X ∈ L0(O)

}
.

We remark that O[s,s̃] is understood as the optional σ-algebra generated by processes X[s,s̃].
Hence, for a fixed t we may decompose any process X ∈ L0(O) as follows

X = X[0,t−1] +X[t,T ] = Xt−1 + (X[t,T ] −Xt−11[t,T ]), (3.18)

where X[0,t−1] ∈ L0(O[0,t−1]), X[t,T ] ∈ L0(O[t,T ]) and Xt−1 ∈ L0(Ot−1).
It is evident that L0(O[t,T ]) is an L0(Ft)-module21. We further define

M̂q,t :=
{
Q̂ : Q̂ measure on Ω× {0, . . . , T}, Q̂ ≺ P̂ := P ⊗ µ, dQ̂/dP̂ ∈ Lq(O[t,T ])

}
,

where µ is a measure on {t, . . . , T} such that µs > 0 for every s ∈ {t, . . . , T}.
We further denote

M̂ ⊗q,t D̂ :=
{
Q⊗D : Q ∈Mt, D ∈ Dt(Q), and Q⊗D ∈ M̂q,t

}
. (3.19)

Remark 3.7. In this setting, let Q̂ ∈ M̂1,t, and denote by Λ = dQ̂/dP̂ ∈ L1(O[t,T ]). It holds that U =

(Us)
T
s=t, where Us = EP [

∑T
k=s Λkµk | Fs] for s ∈ {t, . . . , T}, is a super martingale fulfilling additionally

EP [Ut+1 | Ft] = Ut = 1. Hence, using the Itô-Watanbe decomposition U = ZD where D is a predictable
decreasing process and Z is a martingale, it follows that Dt = 1 and ZT is a density of a probability measure
Q ∈Mt. Reciprocally, Λk = Zk(Dk−Dk+1)/µk for every k = t, . . . , T −1, and ΛT = ZTDT /µT , where
Z is a martingale and D is a predictable decreasing process with Dt = 1, defines a density process for some
Q̂ ∈ M̂1,t. Hence, for every X[t,T ] ∈ Lt,p(O[t,T ]),22 it follows that

EQ̂

[
X[t,T ]

∣∣∣ Ft

]
= EP̂

[
ΛX[t,T ]

∣∣∣ Ft

]
= EP

[
T∑
k=t

ΛkXkµk

∣∣∣ Ft

]

= EQ

[
T−1∑
k=t

(Dk −Dk+1)Xk +DTXT

∣∣∣ Ft

]
= EQ

[
Xt +

T∑
k=t+1

Dk∆Xk

∣∣∣ Ft

]
.

(3.20)

We finally set
X pt := {X ∈ L0(O) : X[t,T ] ∈ Lt,p(O[t,T ])}. (3.21)

Definition 3.8. A function α : X pt → L̄0(Ft) is called an upper semicontinuous path dependent assessment
index if for every fixed path X̄ ∈ L0(Ot−1), the function

X[t,T ] 7−→ α
(
X̄[0,t−1] +X[t,T ]

)
, X[t,T ] ∈ Lt,p(O[t,T ]), (3.22)

is an upper semicontinuous assessment index.

Theorem 3.9. Let α be an upper semicontinuous path dependent assessment index. Then it has a robust
representation of the form

α(X) = ess inf
Q⊗D∈M̂⊗q,tD̂

R

(
X[0,t−1];Q⊗D;EQ

[
Xt +

T∑
k=t+1

Dk∆Xk

∣∣∣ Ft

])
, (3.23)

21For the multiplication λX[t,T ] = (0, . . . , 0, λXt, . . . , λXT ), λ ∈ L0(Ft).
22In analogy to Lt,p(O) = L0(Ot)Lp(O), we have Lt,p(O[t+1,T ]) = L0(Ft)Lp(O[t+1,T ]).
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for a unique function R : L0(O[0,t−1]) × M̂ ⊗q,t D̂ × L̄0(Ft) → L̄0(Ft) for which R(X[0,t−1], ·, ·) :

M̂ ⊗q,t D̂ × L̄0(Ft)→ L̄0(Ft) is a maximal risk function for every X[0,t−1] ∈ L0(O[0,t−1]).

Proof. First, we fix X̄ ∈ L0(Ot−1) and we apply Theorem 2.12 to α(X̄ + ·) in the fashion analogous the the
proof of Theorem 3.4 in order to get the following representation

α
(
X̄[0,t−1] +X[t,T ]

)
= ess inf
Q̂∈M̂q,t

R̄
(
X̄[0,t−1], Q̂, EQ̂

[
X[t,T ] | Ft

])
. (3.24)

Similarly as in Remark 3.3, we also have that Q̂ ∈ M̂q,t if and only if Q̂ = Q ⊗ D ∈ M̂ ⊗q,t D̂. Hence,
using (3.20) in representation (3.24), we conclude the proof.

Note that α is no longer local with respect Ot−1 on Ω × {0, . . . , T}. Let us now consider the following
illustrating example.

Example 3.10. Let us consider a function α : X pt → L̄0(Ft) given by the following formula

α(X) =

t−1∑
k=0

D′k∆Xk + ess inf
Q⊗D∈M̂⊗q,tD̂

R′

(
Q⊗D,Xt + EQ

[
T∑

k=t+1

Dk∆Xk

∣∣∣ Ft]) (3.25)

where D′ is an adapted process, and R′(·, ·) : M̂ ⊗q,t D̂ × L̄0(Ft) → L̄0(Ft) is a maximal risk function.
Then, such α is a an upper semicontinuous path dependent assessment index.

The whole process (D′0, . . . , D
′
t−1, 1, Dt+1, . . . , DT ) may be interpreted as weighing the past and the

future of the cash flows, relative to the present time t.
Depending on the specification of D′k, we get,

• if all D′k = 0, a representation of path independent assessment indices.

• If all D′k = 1, then
∑t−1
k=0 ∆Xk = Xt−1, which means that α depends only on the assessment of the

future returns starting at the previous level of wealth Xt−1.

• Changing the parameter D′k in between, one puts more or less weight on the past evolution of returns.

This kind of past dependence indicates how the past evolution of discounted cumulative cashflow may influ-
ence the present assessment of the entire investment process. On the one hand, in terms of preferences, such
index could provide a model that explains well why in a market experiencing recent period of good perfor-
mance, the assessment is “optimistic,” since distant past bad returns could be discounted more than the recent
good ones. One the other hand, such index may provide some guidelines to the regulator to implement contra
cyclical measure. Indeed, they could require D′ to be dependent on the past returns, in way that puts more
weight in times of good returns and less weight in times of bad returns. Such a weighting factor reflecting
this feature could take the form

D′k = exp

(
0.08− ∆Xk

Xk

)
,

where 8% were a reasonable annual return for a banking institution.

Remark 3.11. Similarly as in Remark 3.6 we observe that the assessment index α considered in this subsec-
tion corresponded to the fixed t. It would be then appropriate to denote it as, say, αt. We would then refer to
the collection {αt, t = 0, 1, . . . , T} as to dynamic path dependent assessment index.
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4 Dynamically Consistent Assessment Indices

In this section we discuss the key notion of dynamic consistency with regard to assessment indices. Here,
we only focus on the so called strong dynamic consistency for path dependent assessment indices. For other
notions of time consistency we refer to e.g. Acciaio et al. [2], Acciaio and Penner [1] and references therein,
with regard to dynamic risk measures, and we refer to Bielecki et al. [8] and Biagini and Bion-Nadal [6] with
regard to acceptability indices.

We consider a dynamic path dependent assessment index α = {αt, t = 0, . . . , T} (cf. Remark 3.11).

Definition 4.1. We say that α is strongly time consistent if for any X,Y ∈ X pt and t such that X[0,t] = Y[0,t]

the following implication is true

αt+1(X) ≥ αt+1(Y ) implies αt(X) ≥ αt(Y ).

Remark 4.2. One needs to observe that the notion of strong time consistency seems to be inappropriate in
the case of scale invariant assessment indices. Indeed, let α be scale invariant and strongly time consistent.
Assume that X[0,t]Y[0,t] ≥ 0 and αt+1(X) ≥ αt+1(Y ). Then, there exists λ ∈ L0

++(Ot) such that λX[0,t] =

Y[0,t], and in view of scale invariance of α, we have that αt(X) ≥ αt(Y ). Thus the condition X[0,t] = Y[0,t]

appears to be irrelevant for the strong time consistency in this case, which is unreasonable from the risk
management point of view. Consequently, a different notion of time consistency is needed in case of scale
invariant assessment indices. One such possible notion was introduced and studied in [8].

Moreover, as shown below, the strong time consistency is strongly related to existence of a certainty
equivalent, which fails to exists (see Remark 2.17) for scale invariant assessment indices.

In order to derive a version of the so called Bellman principle, some additional assumptions have to be
done. We suppose throughout this section that X[t,T ] 7→ αt(X[0,t−1] + X[t,T ]) fulfills the assumptions of
Proposition 2.19 with the boundedness assumption given for m1,m2 ∈ Lp(Ft) rather than L0(Ft).

Let us define a family of functionals Ct : X pt → L̄0(Ft) for t = 0, 1, . . . , T, by

Ct(X) := ess inf
{
mt ∈ Lp(Ft) : αt(X[0,t−1] +mt1[t,T ]) ≥ αt(X)

}
.

According to Proposition 2.19, for each t, X[t,T ] 7→ Ct(X[0,t−1] +X[t,T ]) is an upper semicontinuous (path
dependent) assessment index taking values into Lp(Ft) such that

αt(X) ≥ αt(Y ) if, and only if Ct(X) ≥ Ct(Y ).

In particular Ct(X[0,t−1] + Ct(X)1[t,T ]) = Ct(X). In addition, the family α is strongly time consistent if
and only if the family C := (Ct) is strongly time consistent.

With this at hand, we may formulate the following version of the celebrated Bellman principle.

Proposition 4.3. Under the assumptions adopted in this section, if α is strongly time consistent, the corre-
sponding family C of certainty equivalents satisfies, for each t = 0, . . . , T − 1,

Ct (X) = Ct(X[0,t] + Ct+1(X)1[t+1,T ]), X ∈ X pt . (4.1)

Proof. Since Ct+1 is a certainty equivalent, it follows that Ct+1(X) = Ct+1(X[0,t] +Ct+1(X)1[t+1,T ]). By
means of the boundedness assumption, Ct+1(X) ∈ Lp(Ft), and so defining Y = X[0,t] +Ct+1(X)1[t+1,T ],
it follows that Y ∈ X pt and Y[0,t] = X[0,t]. Thus, the strong time consistency applied to C yields (4.1).

From now on, we consider certainty equivalent corresponding to assessment indices fulfilling the con-
ditions from Proposition 4.3. Note that for X[0,t] ∈ L0(Ot), the function Ct : Lpt+1(Ft) → Lp(Ft),
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Y 7→ Ct(X[0,t] + Y 1[t+1,T ]) is an upper semicontinuous assessment index, and we denote by Rt,t+1 its
corresponding minimal risk function, for which it holds

Ct(X[0,t] + Y 1[t+1,T ]) = ess inf
Q⊗D∈MDt+1

t

Rt,t+1

(
X[0,t−1], Q⊗D,Xt + EQ

[
D (Y −Xt)

∣∣∣ Ft

])
, (4.2)

where
MDt+1

t :=
{
Q⊗D : Q ∈Mt+1

t , 0 ≤ D ≤ 1 and D is Ft-measurable
}
,

wherebyMt+1
t denotes the set of probability measures Q on Ft+1 such that Q ≺ P and Q = P on Ft. As

a convention, we setMDT+1
T = {1} since CT (X) = XT .

Theorem 4.4. If α = (αt) is a strongly time consistent sequence of path dependent assessment indices
fulfilling the assumptions of Proposition 2.19, then

Ct (X) = ess inf
Q⊗D∈MDt+1

t

Ft (Q⊗D,X) ; X ∈ X pt , (4.3)

where

Ft (Q⊗D,X) =

ess inf
Q̄⊗D̄∈MDt+2

t+1

Rt,t+1

(
X[0,t−1], Q⊗D,EQ

[
D
(
Ft+1(Q̄⊗ D̄,X)−Xt

)
+Xt

∣∣∣ Ft

])
, (4.4)

for t ≤ T − 1 and
FT (Q⊗D,X) = XT , Q⊗D ∈MDT+1

T = {1}. (4.5)

Proof. Let us prove the theorem for t = T − 1, T − 2; the rest of the proof follows by backward recursion.
Clearly, CT (X) = XT . As for t = T − 1, sinceMDT−1 =MDTT−1 and RT−1 = RT−1,T , it holds

CT−1 (X) = ess inf
Q⊗D∈MDTT−1

RT−1,T

(
X[0,T−2], Q⊗D,EQ

[
D
(
XT −XT−1

)
+XT−1

∣∣∣ FT−1

])
= ess inf
Q⊗D∈MDTT−1

FT−1 (Q⊗D,X) , (4.6)

where

FT−1(Q⊗D) =

ess inf
Q̄⊗D̄∈MDt+1

T

RT−1,T

(
X[0,T−1], Q⊗D,EQ

[
D
(
FT (Q̄⊗ D̄,X)−XT−1

)
+XT−1

∣∣∣ FT−1

])
,

since FT (Q̄⊗ D̄,X) = XT for all Q̄⊗ D̄ ∈MDT+1
T .

For t = T − 2, by time consistency, and since CT−1(X) is FT−1-measurable, we deduce that

CT−2 (X) = CT−2

(
X[0,T−2] + CT−1 (X) 1[T−1,T ]

)
= ess inf
Q⊗D∈MDT−1

T−2

RT−2,T−1

(
X[0,T−3], Q⊗D,EQ

[
D
(
CT−1(X)−XT−2

)
+XT−2

∣∣∣ FT−2

])
.

Since s 7→ RT−2,T−1

(
X[0,T−3], Q⊗D, s

)
is right-continuous, by means of (4.6) it follows that

RT−2,T−1

(
X[0,T−3], Q⊗D,EQ

[
D
(
CT−1(X)−XT−2

)
+XT−2

∣∣∣ FT−2

])
= ess inf
Q̄⊗D̄∈MDTT−1

RT−2,T−1

(
X[0,T−3], Q⊗D,EQ

[
D
(
FT−1(Q̄⊗ D̄,X)−XT−2

)
+XT−2

∣∣∣ FT−2

])
= FT−2(Q⊗D,X)

which ends the proof.
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Remark 4.5. Suppose that α is given by

αt(X) =

T−1∑
k=1

D′k∆Xk + βt(X[t,T ])

as in Example 3.10, where D′ = (D0, . . . , D
′
T−1) is fixed, and β is a strongly time consistent path indepen-

dent assessment index. Then, it follows easily that α itself is a strongly time consistent AI.

5 Examples

5.1 Dynamic Gain-to-Loss Ratio

We shall discuss here an important example of an assessment index, namely the dynamic Gain-to-Loss Ratio
(dGLR). This index, in fact, provides an example of a dynamic acceptability index, since it is scale invariant.
It was introduced in [8], in a slightly different form. The version of dGLR given in Definition 5.1 below is
not strongly time-consistent in the sense of Definition (4.1), but it is time-consistent in the sense of [8].

The prototype for the definition below is the classical measure of performance Gain-to-Loss Ratio (GLR):
given an integrable, real-valued random variable X , GLR is defined as GLR(X) := E(X)/E(X−), if
E[X] > 0, GLR(0) = +∞ and zero otherwise, where X− := max{−X, 0}.

In the rest of this Section we use the set-up of Section 3. In particular, we fix a t ∈ {1, . . . , T}, we take
X = Lt,p(O), and we consider X to be an L0(Ot)-module. Recall that the cone K in this case is given by
K = {X ∈ X : X ≥ 0}.

Here, any elementX ∈ X is considered to be a discounted dividend process, and the next definition gives
a relevant formula for dGLR.

Definition 5.1. Here X represents the discounted dividend process. We define dGLR as follows

dGLRs(X) =

{
G(X), s ≥ t
+∞, s ≤ t− 1,

(5.1)

where

G(X) =


E[

∑T
s=tXs | Ft]

E[(
∑T
s=tXs)

− | Ft]
, on BX1

+∞, on BX2
0, on BX3 .

with BX1 := {E[
∑T
s=tXs | Ft] > 0}, BX2 := ess sup{A ∈ Ft : 1A

∑T
s=tXs = 0}, and BX3 :=

(BX1 ∪BX2 )c.

Note that for any X ∈ X , we have that P (BX1 ∩BX2 ) = 0, hence G is well defined.
We will show that the above dGLR is monotone, quasi-concave, local, scale invariant and upper-semicontinuous.

Clearly it is enough to show that the properties are satisfied for the function G. In the rest of the section we
will use the notation X̃ :=

∑T
s=tXs, for X ∈ X .

Monotonicity: Let X,Y ∈ X be such that X − Y ∈ K. Thus, X̃ ≥ Ỹ . We will need to consider all the
following cases ω ∈ BXi ∩ BYj , i, j = 1, 2, 3. First, note that for ωBXi ∩ BYj , with i = 1, j = 3; i = j =

2; i = 2, j = 3; i = j = 3, the inequality G(X)(ω) ≥ G(Y )(ω) is obviously satisfied.
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Next, we consider the case i = j = 1. Note that BX1 ∩ BY1 = BY1 . Consequently, on the set BY1 ,
we have E[X̃|Ft] ≥ E[Ỹ |Ft] > 0, which immediately implies that G(X) = E[X̃|Ft]/E[X̃−|Ft] ≥
E[Ỹ |Ft]/E[Ỹ −|Ft] = G(Y ).

Since 1BX1 ∩BX2 X̃
− = 0, we get that E[X̃−|Ft] = 0 on BX1 ∩ BY2 , that consequently implies that

G(X) = +∞ = G(Y ) on BX1 ∩BY2 .
Also note that P [BX3 ∩ BY2 ] = 0. Indeed, for any C ⊂ BY2 ∩Ft, we have that E[1CX̃|Ft] ≥ 0. If,

in addition, C ⊂ BX3 , then E[1CX̃|Ft] ≤ 0, and thus 1CX̃ ≡ 0, which implies that C ⊂ BX2 . Since
BX2 ∩ BX3 =, we have that P [C] = 0. Similarly, one can show that P [BXi ∩ BYj ] = 0 for i = 2, j = 1; i =

3, j = 1. This proves the monotonicity.
Quasi-concavity: Let X,Y ∈ X , λ ∈ L0(Ot) and λ ∈ [0, 1]. It is enough to show that for any x ∈ L̄0(Ft)

such that G(X) ≥ x and G(Y ) ≥ x, we have that G(λX + (1 − λ)Y ) ≥ x. First, we consider the case
ω ∈ BX1 ∩BY1 . Then, on BX1 ∩BY1 , we have that

E[X̃ | Ft] ≥ xE[X̃− | Ft]

E[Ỹ | Ft] ≥ xE[Ỹ − | Ft].

From here, since, λt = λt+1 = . . . = λT , and by convexity of x→ x−, we get

xE[(λtX̃ + (1− λtỸ ))− |Ft] ≤ xE[λtX̃
− + (1− λt)Ỹ − |Ft]

≤ xλtE[X̃− |Ft] + x(1− λt)E[Ỹ − |Ft]

≤ λtE[X̃ |Ft] + (1− λt)E[Ỹ |Ft]

= E[λtX̃ + (1− λt)Ỹ |Ft].

From here, and since BX1 ∩BY1 ⊂ B
λX+(1−λ)Y
1 , we conclude that G(λX + (1− λ)Y ) ≥ x.

If ω /∈ BX1 ∩ BY1 , then x(ω) ≤ 0 or x(ω) = +∞, and hence clearly G(λX + (1 − λ)Y )(ω) ≥ x(ω).
Thus, the quasi-concavity of dGLR follows.
Locality: It is enough to prove that

1AG(X) = 1AG(1AX), (5.2)

for any A ∈ Ft and X ∈ X such that X = (0, . . . , 0, Xt, . . . , XT ).
Clearly, the equality (5.2) is satisfied for ω ∈ Ac. Since A ∩ BX1 = A ∩ B1AX

1 , by locality of the
conditional expectation we conclude that (5.2) holds true on A ∩BX1 . Also note that A ∩BX2 = A ∩B1AX

2 ,
and hence (5.2) is satisfied on A ∩ BX2 . Moreover, the above imply that A ∩ BX3 = A ∩ B1AX

3 , which
consequently shows that (5.2) holds true on A ∩BX3 . Thus, locality is proved.
Scale invariance: Note that for any λ ∈ L0

++(Ot), X ∈ X t, we have λX− = (λX)−, BXi = BλXi for
i = 1, 2, 3, and hence the scale invariance follows immediately.
Upper semicontinuity: We will show that the upper level sets Am = {X ∈ X : G(X) ≥ m} are closed for
any m ∈ L0(Ft). If m ≤ 0, thenAM = X which is obviously closed. Next, assume that m > 0. Then, note
that

Am =

{
X ∈ X : 1BX1

E[X̃|Ft]

E[X̃−|Ft]
+ 1BX2 ∞ ≥ m

}
.

Next, consider the set
Bm =

{
X ∈ X : E[X̃|Ft]−mE[X̃−|Ft] ≥ 0

}
.

Observe that if X ∈ Bm, then P (BX3 ) = 0. Consequently, we have that Am = Bm. The closedness of Am
follows from the above equality and from continuity of the function h(X) = E[X̃|Ft]−mE[X̃−|Ft].

Finally, the case of general m is treated by locality.
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Next, we will provide a robust representation for GLR, using the results from Section 2.3.

Proposition 5.2. The unique minimal risk function R in representation (2.7) of GLR has the following form

R(Z, s) =


+∞, if s ≥ 0
bZ
aZ
− 1, if −∞ < s < 0,

−∞, if s = −∞.

where aZ := sup{r ∈ R : r ≤ Z} and bZ := inf{r ∈ R : Z ≤ r}.

Proof. Let α be the GLR. Then, from [17], we know that

α(X) = sup

{
m ≥ 0 : inf

Q∈Qm
EQ[X] ≥ 0

}
,

where the system of supporting kernels {Qm}m∈R+
for α is given explicitly by (see [17, Proposition 4])

Qm = {c(1 + Y ) | c ∈ R+, 0 ≤ Y ≤ m, E[c(1 + Y )] = 1} , m ∈ R+.

Using this, it can be verified that

Am,◦ =
{
Z ∈ L∞

∣∣∣ c ≤ Z ≤ c(m+ 1) for some c ∈ R+

}
.

Clearly, inf{m ∈ R̄ : Z ∈ Am,◦} = bZ/aZ − 1, and so, using Proposition 2.15 we conclude the proof.

Analogously one can establish a robust representation for dGLR.

5.2 Optimized Certainty Equivalent

We sketch here a conditional version of classical version of the optimized certainty equivalent. The detailed
study can be done along the lines of the study the we conducted above for dGLR.

The optimized certainty equivalent, see [4, 5], is an assessment index given by

OCEt(X) = ess sup
m∈L∞(Ft)

{
m+ EP̃

[
ut
(
X[t,T ] −m1[t,T ]

) ∣∣∣ Ft

]}
, (5.3)

where ut : R→ R ∪ {−∞} is a concave utility function23 such that u(0) = 0 and 1 ∈ ∂u(0). Following the
same argumentation as in [5, 23], it follows that the robust representation is of the form

R (Q⊗D,m) = m+ EP

[
T∑

k=t+1

ϕt

(
Mkγk
Mtµk

) ∣∣∣ Ft

]
, Q⊗D ∈M⊗t D,

where ϕt is the convex conjugate of −u(−·), M is the density process of Q and Q⊗ γ = Q⊗D by means
of relation (3.5).

As for the dynamic, of the OCE, if ut(x) = (1−e−γx)/γ, for a fixed γ, then the OCE is the entropy and
is time consistent, see [2]. Otherwise, being a risk measure it is a certainty equivalent, henceforth, a recursive
definition along the line of Proposition 4.3 yields a strong time consistent assessment index.

23One may assume that ut can be made Ft-state dependent. This however only a technical step.
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5.3 Weighted V@R Acceptability Indices

Similarly as in the previous subsection we present here just a sketch of possible conditional version of
weighted V@R acceptability indices .

Following [19], we define [0, 1](Ft) = {α ∈ L0(Ft) : 0 ≤ α ≤ 1}. This set is clearly σ-stable. We
consider a family of functions Φm : [0, 1](Ft)→ [0, 1](Ft), m ∈ L0

+(Ft) being

• jointly local:
1AΦm(α) + 1AcΦn(β) = Φ1Am+1Acn(1Aα+ 1Acβ),

for every A ∈ Ft, m,n ∈ L0
+(Ft) and α, β ∈ [0, 1](Ft);

• concave: α 7→ Φm(α) is concave;

• increasing: Φm ≤ Φn, for every m ≤ n ∈ L0
+(Ft);

• normalized: Φm(0) = 0 and Φm(1) = 1, for every m ∈ L0
+(Ft).

Such a family is called a conditional family of concave distortions. Note that being conditionally concave
and local, it follows that Φm is continuous. We define the Weighted V@R acceptability index as follows

AIW (X) := ess sup

{
m ∈ L0

+(Ft) :

∫ ∞
−∞

xdΨm

(
F(X[t+1,T ] | Ft)(x)

)
≥ 0

}
, (5.4)

where F(X[t+1,T ] | Ft)(x) = P̃ [X[t+1,T ] ≤ x | Ft] is the regular conditional distribution under P̃ ofX[t+1,T ],
the integral being taken ω-wise. Once again, following the argumentation in [19], it follows that

Am,◦1 :=

{
Q⊗D ∈M⊗t D : E

[(
−

T∑
k=t+1

Mk∆Dk+1 − µkβ

) ∣∣∣ Ft

]
≤ φm(β), for all β ∈ L0

+(Ft)

}
,

where M is the density process of Q, φm(β) := ess supα∈[0,1](Ft){Φm(α) − αβ}, m ∈ L0
+(Ft) and β ∈

L0
+(Ft) is the convex conjugate of Φm.24 With this formulation, one may defineAIMAX ,AIMAXMIN ,

AIMINMAX .

A Appendix

A.1 Standard Results on L0-Convex Analysis

Notations and settings are from the Preliminaries 1. Let Y be a set of L0-linear functionals from X to L0.
We denote by L0-σ (X ,Y) the smallest topology for which the mappings

X 7→ Z (X) , X ∈ X

are L0-continuous for any Z ∈ Y .

Proposition A.1. Let X be a locally L0-convex topological L0-module and let Y be a set of L0-linear func-
tionals from X to L0. Then, X equipped with the L0-σ (X ,Y)-topology is a locally L0-convex topological
L0-module.

24Clearly, (φm) is a jointly local family of convex increasing functions.
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Proof. By definition, the L0-σ (X ,Y)-topology on X is generated by the following family of neighborhoods
of 0

UA,ε :=

{
X ∈ X : sup

Z∈A
|Z (X)| ≤ ε

}
,

where A is a finite subset of Y and ε ∈ L0
++. Since |Z(.)| is an L0-seminorm25, we apply [24, Theorem

2.4].

Provided that Y is itself an L0-module, X also defines a set of L0-linear functionals from Y to L0 and
therefore

(
Y, L0-σ (Y,X )

)
is again a locally L0-convex topological L0-module. Furthermore, the L0-dual

space of
(
X , L0-σ (X ,Y)

)
is exactly Y . We finally say that X is L0-reflexive if X ∗∗ = X , in which X ∗

is equipped with the L0-σ (X ∗,X )-topology. On X ∗ × X we always consider the dual pairing 〈X∗, X〉 :=

X∗ (X).
A local function F : X → L̄0 is said to be

• upper semicontinuous if the upper level sets given by {X ∈ X : F (X) ≥ m} are closed for all
m ∈ L̄0;

• proper if F <∞ and there exists X ∈ X such that F (X) > −∞.

The concave conjugate F ? : X ∗ → L̄0 of F is given by

F ? (X∗) := ess inf
X∈X

{〈X∗, X〉 − F (X)} , X∗ ∈ X ∗.

The hypograph hypo (F ) of F is defined as

hypo (F ) :=
{

(X,m) ∈ X × L0 : F (X) ≥ m
}
. (A.1)

From now on we consider X to be a σ-stable, locally L0-convex topological L0-module such that the set
of all neighborhoods of zero is σ-stable. From the theory of L0-modules in [24] we know the following.

Proposition A.2. Let F : X → L̄0 be a proper function, then

1. F is L0-concave if and only if hypo (F ) is L0-convex and F is L0-local.

2. F ? is L0-concave and L0-upper semicontinuous for any F .

3. If F is an L0-proper concave upper semicontinuous function then F ?? = F .

Definition A.3. For a non-empty family (Ai)i∈I ∈ G the essential supremum ess sup{Ai : i ∈ I} is defined
to be the element B ∈ G with

1. Ai ⊆ B for all i.

2. For all C ∈ G fulfilling 1. and C ⊆ B holds P [B \ C] = 0.

Further we define ess sup{(∅)} = ∅.

The next lemma was proven in [24, Lemma 2.9].

Lemma A.4. Every non-empty family A = (Ai)i∈I has an essential supremum. If for all i, j alsoAi∪Aj ∈
A , then there exists an increasing sequence (An) in A such that ess sup(A ) =

⋃
n∈NA

n.

25An L0-semi norm is a functional p : E → L0
+ such that p (mX) = |m| p (X) for any m ∈ L0 and X ∈ E and p (X + Y ) ≤

p (X) + p (Y ) for any X,Y ∈ E .
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A.2 Conditional Inverse of Increasing Functions

In this section, for n,m ∈ L̄0, we use the convention that n < m if P [n < m] = 1.
For a local, increasing26 function F : L̄0 → L̄0 we define its left- and right-continuous version as

F−(m) := 1Ãm ess sup
{
F (n) : n ∈ L̄0 and n < m on Ãm

}
− 1Ãcm

∞, (A.2)

F+(m) := 1B̃m ess inf
{
F (n) : n ∈ L̄0 and n > m on B̃m

}
+ 1B̃cm

∞, (A.3)

where m ∈ L̄0 and Ãm = {m > −∞}, and B̃m = {m < ∞}. Due to locality and the definition of F± it
holds that

F+(m) ≤ F−(m′), for m,m′ ∈ L̄0 with m < m′. (A.4)

Definition A.5. For a local, increasing function F : L̄0 → L̄0, a local, increasing function G : L̄0 → L̄0 is
called a conditional inverse of F if

F− (G(s)) ≤ s ≤ F+ (G (s)) , on {F (−∞) < s < F (∞)} ,
G(s) = −∞ , on {s < F (−∞)} ,
G(s) =∞ , on {F (∞) < s} ,

(A.5)

for every s ∈ L̄0.

Remark A.6. The definition of a conditional inverse does not postulate any condition as for the values ofG on
the boundary of the range of F . Being increasing, it simply means that −∞ ≤ G(F (−∞)) ≤ G+(F (−∞))

andG−(F (∞)) ≤ G(F (∞)) ≤ +∞. We can not requireG(F (−∞)) = −∞ orG(F (−∞)) = G+(F (−∞))

for instance. This is important since by the definition of the left- and right-inverse below, the proposition A.9
states that both F (−1,l) and F (−1,r) are inverses of F . However, it may well happen that F (−1,l)(F (−∞)) =

−∞ < F (−1,r)(F (−∞)) as well as F (−1,l)(F (∞)) < F (−1,r)(F (∞)) = +∞ and a convention on the
values of a conditional inverse on the boundaries of F would imply that neither F (−1,l) and F (−1,r) are
conditional inverse.

We define the conditional left- and right-inverse of F as

F (−1,l) (s) :=1As ess inf{m ∈ L̄0 : 1AsF (m) ≥ 1Ass}+ 1Acs∞ (A.6)

=1As ess sup{m ∈ L̄0 : F (m) < s on As}+ 1Acs∞,

F (−1,r) (s) :=1Bs ess sup{m ∈ L̄0 : 1BsF (m) ≤ 1Bss} − 1Bcs∞ (A.7)

=1Bs ess inf{m ∈ L̄0 : F (m) > s on Bs} − 1Bcs∞,

for s ∈ L̄0, where27 As := {F (∞) ≥ s} and Bs := {F (−∞) ≤ s}.

Lemma A.7. The conditional left- and right-inverse of a local, increasing function F : L̄0 → L̄0 are local,
increasing functions which are left- and right-continuous, respectively.

Proof. Consider a local, increasing function F : L̄0 → L̄0. We will prove the statement for the left-inverse
F (−1,l), and the case of right-inverse function is done similarly.

Step 1: Note that,As̃ ⊇ As for every s̃ ≤ s. This implies that 1Acs∞ is increasing. Hence, a direct inspection
shows that F (−1,l) is increasing.

26That is, F (m) ≥ F (m′) whenever m ≥ m′.
27Note that As :=

{
ess supm∈L̄0 F (m) < s

}c and Bs :=
{

ess infm∈L̄0 F (m) > s
}c
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Step 2: Next we will show that F (−1,l) is local. Pick s, s̃ ∈ L̄0 and B ∈ G . Since F is local, it follows that

Cc := Ac1Bs+1Bc s̃
= {F (∞) < 1Bs+ 1Bc s̃} = (B ∩Acs) ∪ (Bc ∩Acs̃). (A.8)

Consequently, we deduce that C = (B ∩As)∪ (Bc ∩As̃)∪ (As ∩As̃). However, (As ∩As̃) ⊆ (B ∩As)∪
(Bc ∩As̃), hence

C = (B ∩As) ∪ (Bc ∩As̃). (A.9)

This implies that

1C(1Bs+ 1Bc s̃) = 1B1Ass+ 1Bc1As̃ s̃ (A.10)

1Cc(1Bs+ 1Bc s̃) = 1B1Acss+ 1Bc1Ac
s̃
s̃. (A.11)

We claim that,

1B
{
m ∈ L̄0 : 1B1AsF (m) ≥ 1B1Ass

}
= 1B

{
m ∈ L̄0 : 1AsF (m) ≥ 1Ass

}
. (A.12)

Indeed, inclusion⊇ is straightforward. For the converse inclusion, let 1Bñ ∈ 1B
{
m ∈ L̄0 : 1B1AsF (m) ≥ 1B1Ass

}
.

Note that by the definition of As, the set {m ∈ L̄0 : 1AsF (m) ≥ 1Ass} is not empty. Indeed, As =

{F (∞) ≥ s}, hence, 1AsF (∞) ≥ 1Ass showing that ∞ ∈ {m ∈ L̄0 : 1AsF (m) ≥ 1Ass}. Hence, pick
some m̃ ∈

{
m ∈ L̄0 : 1AsF (m) ≥ 1Ass

}
. Locality ofF yields 1Bñ+1Bcm̃ ∈

{
m ∈ L̄0 : 1AsF (m) ≥ 1Ass

}
.

Multiplying by 1B , we get 1Bm̃ ∈ 1B
{
m ∈ L̄0 : 1AsF (m) ≥ 1Ass

}
.

Using (A.9)-(A.12), and locality of F , we deduce

F (−1,l) (1Bs+ 1Bc s̃) =1C ess inf
{
m ∈ L̄0 : 1CF (m) ≥ 1C (1Bs+ 1Bc s̃)

}
+ 1Cc∞

=1B1As ess inf
{
m ∈ L̄0 : 1B1AsF (m) ≥ 1B1Ass

}
+ 1Bc1As̃ ess inf

{
m ∈ L̄0 : 1Bc1As̃F (m) ≥ 1Bc1As̃ s̃

}
+ 1B1Acs∞+ 1Bc1Ac

s̃
∞

=1B
(
1As ess inf

{
m ∈ L̄0 : 1AsF (m) ≥ 1Ass

}
+ 1Acs∞

)
+ 1Bc

(
1As̃ ess inf

{
m ∈ L̄0 : 1As̃F (m) ≥ 1As̃ s̃

}
+ 1Ac

s̃
∞
)

=1BF
(−1,l)(s) + 1BF

(−1,l)(s̃).

Hence F (−1,l) is local.

Step 3: Finally, we will show that F (−1,l) is left-continuous. Let s ∈ L̄0.

By the definition of F (−1,l) and locality of F , clearly F (−1,l)(s) = −∞ on the set Ccs = {s = −∞}.
Consider now Ds = Cs ∩ {F (∞) ≥ s} = {s > −∞} ∩ {F (∞) ≥ s}, and Ds̃ := Cs ∩ {F (∞) ≥ s̃}, for
some s̃ ∈ L̄0. Note that Ds ⊆ Ds̃ for any s̃ such that s̃ < s on Ds.

Denote by S the set of those s̃ ≤ s such that s̃ < s on Ds. Note that S 6= ∅. Let s̃ ∈ S , and suppose
that ess sups̃∈S F

(−1,l)(s̃) < m̃ < F (−1,l)(s) on some set D ⊆ Ds. By the definition of the left-inverse,
and locality of F , it follows that s̃ < F (m̃) < s on D for every s̃ ∈ S, which is not possible unless
P [D] = 0. Hence, ess sups̃∈S F

(−1,l)(s̃) = F (−1,l)(s) on Ds. From here, using locality of F , we also have
that ess sups̃<s F

(−1,l)(s̃) = F (−1,l)(s) on Ds. Next, let us consider the set Es := Cs ∩ {F (∞) < s}.
Since F (∞) < s on Es, there exists s̃ ∈ L̄0 such that s̃ < s on Es, and Es̃ := Cs ∩ {F (∞) < s̃} = Es.
Therefore, by the definition of F (−1,l) we conclude that F (−1,l)(s̃) = F (−1,l)(s) for any s̃ < s on Es = Es̃,
which consequently shows that F (−1,l) is left continuous on Es.
Finally, since Ccs , Ds, Es forms a partition of Ω, and F (−1,l) is left-continuous on each of the sets from the
partition, combined with locality of F (1−,l), we deduce that F (−1,l) is left-continuous.
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The case of F (−1,r) follows analogously.

Remark A.8. The sets As, Bs are used to guarantee the locality of the right-and left-inverse, respectively.
Indeed, suppose that we would define F (−1,l)(s) = ess inf{m ∈ L̄0 : F (m) ≥ s}. Then it is possible to
get a non-local inverse. For example, let A ∈ G with 0 < P [A] < 1 and F (m) := 1A2m + 1Ac which is
increasing and local. Then, F (−1,l)(1A2) = 1A − 1Ac∞, whereas F (−1,l)(2) = ess inf ∅ = +∞, and thus
1AF

(−1,l)(1A2) = 1A 6= 1A∞ = 1AF
(−1,l)(2), which implies that F (−1,l) would not be local.

Proposition A.9. Let F : L̄0 → L̄0 be a local, increasing function. Then, the following properties hold true:

(i) Any conditional inverse G of F satisfies

F (−1,l) = G− ≤ G ≤ G+ = F (−1,r); (A.13)

(ii) F (−1,l) and F (−1,r) are also both conditional inverse of F ;

(iii) F is a conditional inverse of any of its conditional inverses;

(iv) For any m, s ∈ L̄0 we have that

F−(m) ≤ s ⇐⇒ m ≤ F (−1,r) (s) (A.14)

F+(m) ≥ s ⇐⇒ m ≥ F (−1,l) (s) . (A.15)

Remark A.10. Note that since F is a conditional inverse of any of its conditional inverse, (A.13) implies that

F− =
(
F (−1,l)

)(−1,l)

= G(−1,l) =
(
F (−1,r)

)(−1,l)

,

F+ =
(
F (−1,r)

)(−1,r)

= G(−1,r) =
(
F (−1,l)

)(−1,r)

.

(A.16)

Proof. Consider a local, increasing function F : L̄0 → L̄0 and a conditional inverse G of F .

Step 1: Let us show that
F (−1,l) ≤ G− ≤ G ≤ G+ ≤ F (−1,r). (A.17)

The fact that G− ≤ G ≤ G+ follows from the definition of left- and right-continuous version and from the
fact that G is increasing. By Lemma A.7, we have that F (−1,l) and F (−1,r) are local, increasing and left- and
right-continuous, respectively.

Let us show now that F (−1,l) ≤ G−. Since F (−1,l) is left-continuous, and both F (−1,l) andG are increasing,
it is sufficient to show that F (−1,l)(s) ≤ G(s), for every s ∈ L̄0. Assume that s ∈ L̄0. The definition of
F (−1,l) shows that F (−1,l)(s) = −∞ ≤ G(s) on {s ≤ F (−∞)}. Since G is an inverse of F , it follows
that G(s) = ∞ ≥ F (−1,l)(s) on28 {s > F (∞)}. On {F (−∞) < s < F (∞)}, suppose that there exists
m̃ ∈ L0 such that F (−1,l)(s) > m̃ > G(s) on some set A ⊆ {F (−∞) < s < F (∞)}. On the one hand, by
definition of F (−1,l) follows that s > F (m̃) on A. On the other hand, since m̃ > G(s) on A it follows by
means of (A.4) that F (m̃) ≥ F−(m̃) ≥ F+(G(s)). Thus, s > F+(G(s)) on A ⊆ {F (−∞) < s < F (∞)},
which contradicts the fact that G is an inverse of F . Hence, A has to be of probability 0, and so, we proved
that F (−1,l) ≤ G on {F (−∞) < s < F (∞)}.
Finally, note that, since F (−1,l) is left-continuous and F (−1,l)(s′) ≤ G(F (∞)) for any s′ < F (∞), we
have that F (−1,l)(F (∞)) ≤ G(F (∞)). The latter, together with locality of F (−1,l) and G, imply that
F (−1,l)(s) ≤ G(s) on set {s = F (∞)}. Hence, we conclude that F (−1,l) ≤ G.

A similar argumentation shows that G+ ≤ F (−1,r) and therefore (A.17) holds true.
28Here also the set to be considered is {s > F (∞)} and not {s ≥ F (∞)}.
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Step 2: Let us show that

(F (−1,l))+ = F (−1,r) (A.18)

(F (−1,r))− = F (−1,l). (A.19)

Since F (−1,l) ≤ F (−1,r) and the latter is right-continuous, it follows that (F (−1,l))+ ≤ F (−1,r). On the
other hand, for any s < s̃, we have that F (−1,r)(s) ≤ F (−1,l)(s̃). Indeed, on Acs̃, it holds F (−1,l)(s̃) =∞ ≥
F (−1,r)(s). On Bcs , it holds F (−1,r)(s̃) = −∞ ≤ F (−1,l)(s). Finally, on C = (Acs̃ ∪ Bcs)c = As̃ ∩ Bs, it
holds F (−∞) ≤ s < s̃ ≤ F (∞). Using now s < s̃, and the definition of F (−1,l) and F (−1,r), since C ⊆ As̃
and C ⊆ Bs, it yields

1C
{
m ∈ L̄0 : F (m) > s on C

}
⊇ 1C

{
m ∈ L̄0 : 1CF (m) ≥ 1C s̃

}
.

Taking the essential infimum on both sides shows that 1CF
(−1,r)(s) ≤ 1CF

(−1,l)(s̃) for any s < s̃.
This together with (F (−1,l))+ ≤ F (−1,r) implies by the definition of the right-continuous version that
1C(F (−1,l))+ = 1CF

(−1,r). Since P [C ∪Acs̃ ∪Bcs] = 1, it follows that (F (−1,l))+ = F (−1,r).

A similar argumentation yields (F (−1,r))− = F (−1,l).

Step 3: We deduce from (A.17), (A.18) and (A.19) that F (−1,l) = G− and F (−1,r) = G+. Therefore, (A.13)
follows.

Let us prove that F (−1,l) and F (−1,r) are both conditional inverses of F . Towards this end, we first observe
that (A.17) together with Lemma A.7 yield that G− and G+ are local, increasing functions. Since G(s) =

−∞ on {s < F (−∞)} and G(s) = ∞ on {s > F (∞)}, it follows immediately that the same holds for the
left- and right-continuous versions of G. Using the fact that G is a conditional inverse, monotonicity of F±

yields
F−(G−(s)) ≤ F−(G(s)) ≤ s ≤ F+(G(s)) ≤ F+(G+(s)),

on {F (−∞) < s < F (∞)}.
On the other hand, since F−, F+, G are increasing, and G is a conditional inverse, we deduce that

F−(G+(s)) = F−(ess inf
s̃>s

G(s̃)) ≤ ess inf
s̃>s

F−(G(s̃)) ≤ ess inf
s̃>s

s̃ = s;

F+(G−(s)) = F+(ess sup
s̃<s

G(s̃)) ≥ ess sup
s̃<s

F+(G(s̃)) ≥ ess sup
s̃<s

s̃ = s,

on {F (−∞) < s < F (∞)}. Thus F (−1,l) = G− and F (−1,r) = G+ are both conditional inverse of F .

Step 4: Let us show that F is a conditional inverse of any of its conditional inverses. Let G be a conditional
inverse of F and let s,m ∈ L̄0.

First, we claim that
s > F (m) implies that G(s) ≥ m. (A.20)

Indeed, on {s > F (∞)}, G(s) = ∞ ≥ m. Next, note that, the assumption s > F (m) implies that
{s < F (∞)} = {F (−∞) < s < F (∞)}. Hence, on {s < F (∞)}, we have that F+(G(s)) ≥ s > F (m)

which implies G(s) ≥ m. Finally, on {s = F (∞)}, it follows that F (∞) = s > F (m). Therefore,
G(F (∞)) ≥ F (−1,l)(F (∞)) = ess inf{n ∈ L̄0 : F (n) ≥ F (∞)} ≥ m, since F (∞) > F (m). Hence,
(A.20).

By (A.20), and the definition of the right-continuous version, it follows that G+(F (m)) ≥ m. A similar
argumentation shows that G−(F (m)) ≤ m . Consequently,

G−(F (m)) ≤ m ≤ G+(F (m)) on {G(−∞) < m < G(∞)}. (A.21)
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Clearly G(∞) < ∞ on set {m > G(∞)}. By the definition of the conditional inverse, it follows that
F (∞) = ∞, on {m > G(∞)}. Hence, by the first line of (A.5) we conclude that F+(G(∞)) = ∞ on
{m > G(∞)}, which consequently implies that F (m) = ∞ on {m > G(∞)}. Similarly, we get that
F (m) = −∞ on set {m < G(−∞)}. From here, and (A.21), we conclude that F is a conditional inverse of
any of its conditional inverse.

Step 5: Finally, let us show that (A.14) and (A.15) are satisfied.

Considerm, s ∈ L̄0. By the definition of F (−1,l), we have at once 29 that on the set {m > −∞}, F−(m) ≤ s
implies m ≤ F (−1,r)(s). Clearly, this implication also holds true on the set {m = −∞}. Similarly, we
deduce that F+(m) ≥ s implies m ≥ F (−1,l)(s).

The converse implications follow by applying the last two implications toG and then using (A.13) along with
Remark A.10.

A.3 Proof of Proposition 2.10

Proof. Let us first observe that Proposition A.9 implies that there is a one-to-one correspondence between
functions F : L̄0 → L̄0, that are local, increasing and right-continuous, and their conditional right-inverses.
In other words, the conditional right-inverse operator is a bijection between the sets of such functions. From
this we deduce that if π : K◦ × L̄0 → L̄0 is local in the second argument and if it satisfies (b), then, its
conditional right-inverse, say R : K◦ × L̄0 → L̄0 is local in the second argument and satisfies (ii); moreover,
the conditional right-inverse of R is equal to π.

In the rest of the proof we shall show that, additional properties of π are satisfied if and only if corre-
sponding additional properties of R are satisfied, e.g. (a)–(b)⇔ (i)–(ii), (a)–(b), (c)⇔ (i)– (ii), (iii), etc.

We start with showing that R is jointly local if π is jointly local. Take X∗ ∈ X ∗, s ∈ L̄0 and A ∈ G .
By similar argumentations as in the proof of locality from Proposition A.9, and by the joint locality of π, we
deduce that

1AR (X∗, s) = 1AR (X∗, 1As)

= 1A1B1As
ess sup

{
m ∈ L̄0 : 1B1As

π (X∗,m) ≤ 1B1As
1As

}
− 1A1Bc1As

∞

= 1A1B1As
ess sup

{
m ∈ L̄0 : 1A1B1As

π (X∗,m) ≤ 1B1As
1As

}
− 1A1Bc1As

∞

= 1A1B1As
ess sup

{
m ∈ L̄0 : 1B1As

π (1AX
∗,m) ≤ 1B1As

1As
}
− 1A1Bc1As

∞

= 1AR (1AX
∗, 1As) ,

where B1As = {π(X∗,m) ≤ 1As}. This shows the joint locality of R. Assuming that R is jointly local, the
joint locality of π is proved similarly.

The equivalences between (c)–(e) and (iii)–(v) are proved similarly as in [22, Lemma C.2] after corre-
sponding adjustments to the conditional case. Indeed, under condition (a), the fact that π(·,m) is upper
semicontinuous and concave for every m ∈ L̄0 is equivalent to the fact that the hypograph of π{

(X∗, s) ∈ K◦ × L0 : π(X∗,m) ≥ s
}

is closed and convex for every m ∈ L̄0. Using (A.15), this is equivalent to the fact that the set{
(X∗, s) ∈ K◦ × L0 : m ≥ R−(X∗, s)

}
29Note that by definition of the left-continuous version, F (−∞) ≤ F−(m) ≤ s on {m > −∞}
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is closed and convex for every m ∈ L̄0, which implies that R− is jointly lower semicontinuous and quasi-
convex. Furthermore R− is jointly quasiconvex if and only if R is jointly quasiconvex.

Similarly, one can show that π is positive homogeneous if and only if R(λX∗, s) = R(X∗, s/λ) for
every λ ∈ L0

++.
Finally, we will show the equivalence between (d) and (iv), under the assumption that (a), (b), and respec-

tively (i), (ii) are satisfied. Note that condition (d) is equivalent to the following condition(
π (X∗,m) =∞ for some m ∈ L̄0, X∗ ∈ K◦

)
=⇒

(
π (Y ∗,m) =∞ for all Y ∗ ∈ K◦

)
,

which, consequently, is equivalent to(
π (X∗,m) ≥ s for all s ∈ L0, and for some m ∈ L̄0, X∗ ∈ K◦

)
=⇒

(
π (Y ∗,m) ≥ s for all s ∈ L0, and for all Y ∗ ∈ K◦

)
.

By (A.15), it follows that the latter implication is equivalent to(
m ≥ R− (X∗, s) for all s ∈ L0, for some m ∈ L̄0, X∗ ∈ K◦

)
=⇒

(
m ≥ R− (Y ∗, s) for all s ∈ L0, and for all Y ∗ ∈ K◦

)
.

Noticing that R−(X∗,∞) = ess sups∈L0 R(X∗, s), we deduce that the last condition is equivalent to(
m ≥ R− (X∗,∞) = ess sup

s∈L0

R(X∗, s) for some m ∈ L̄0, X∗ ∈ K◦
)

=⇒
(
m ≥ R− (Y ∗,∞) = ess sup

s∈L0

R(Y ∗, s), and for all Y ∗ ∈ K◦
)
. (A.22)

Taking in the last implication m = R−(X∗,∞), we get that R−(X∗,∞) ≥ R−(Y ∗,∞) for any Y ∗.
Applying the equivalence consequently to m = R−(Y ∗,∞), we conclude that

R− (X∗,∞) = R−(Y ∗,∞) for all X∗, Y ∗ ∈ K◦. (A.23)

Clearly, if (A.23) holds true, then implication (A.22) also holds true, and hence (A.22) is equivalent to (A.22).
Thus, π satisfies (d) if and only if R satisfies (iv) which completes the proof.

A.4 Proof of Proposition 2.11

Before proving the Proposition 2.11, we first give the definition of the conditional characteristic function,
followed by the Proposition A.12 that contains some relevant properties of the conditional characteristic
function.

Definition A.11. Let C be a σ-stable subset ofX . ForX ∈ X we defineA(X) = ess sup {B ∈ G : 1BX ∈ 1BC}.
The function χC : X → L̄0 given by

χC (X) = −1Ac(X)∞ =

{
0 on A(X)

−∞ on Ac(X)
, X ∈ X , (A.24)

is called the conditional characteristic function of C.
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Note that the conditional characteristic function is a mapping from X to L̄0.

Proposition A.12. Let C be a σ-stable set. Then, χC is a local function. Furthermore,

• C is nonempty if and only if χC is proper;

• C is monotone if and only if χC is monotone;

• C is convex if and only if χC is concave;

• C is a cone if and only if χC is positive homogeneous;

• C is closed if and only if χC is upper semicontinuous.

Proof. For B ∈ G and X ∈ C, since C is σ-stable, it holds

B ∩A (X) = ess sup{B̃ ∩B : B̃ ∈ G and 1B̃X ∈ 1B̃C}

= B ∩ ess sup
{
B̃ ∈ G : 1B̃1BX ∈ 1B̃1BC

}
= B ∩A (1BX) .

This implies that B ∩ Ac(X) = B ∩ Ac(1BX), and hence, 1BχC (1BX) = 1BχC (X), and therefore χC is
local. By definition, χC < +∞. On the other hand,A(X) is of measure zero for everyX if and only if C is the
empty set, therefore χC is proper if and only if C is nonempty. The monotonicity of C implies the monotonicity
of χC is immediate by the definition of A(X), X ∈ X . Since X ∈ C if and only if χC(X) = 0, the converse
implication also follows. Using σ-stability of C, it can be showed thatA(λX+(1−λ)Y ) ⊇ (A(X)∩A(Y ))

if and only if C is convex, and so χC is a concave function if and only if C is convex. Similarly one proves
that C is a cone if and only if χC is positive homogeneous.

Finally, if C = ∅, clearly χC is upper semicontinuous. Otherwise, note that

{X ∈ X : χC (X) ≥ m} =

{
1{m>−∞}C + 1{m=−∞}X if m ≤ 0,

∅ otherwise,

which is a closed set for every m ∈ L̄0 if and only if C is closed.

Proof of Proposition 2.11. If C = ∅, then π ≡ ∞ fulfills all required conditions. Hence, we will consider the
case C 6= ∅.

Step 1: We first assume that K = {0}, so that K◦ = X ∗. We start with the existence of π. Since,
C 6= ∅, by Proposition A.12, the conditional characteristic function χC is a local, proper, concave and up-
per semicontinuous function. Using the definition of χC , we deduce that its concave conjugate χ?C(X

∗) :=

ess infX∈X {〈X∗, X〉 − χC(X)} can be also represented as follows

χ?C(X
∗) = ess inf

X∈C
〈X∗, X〉, X∗ ∈ X ∗. (A.25)

Indeed, since X ∈ C if and only if χC(X) = 0, it clearly follows that χ?C(X
∗) ≤ ess infX∈C〈X∗, X〉.

Suppose now that there exists X0 ∈ X such that

1A〈X∗, X0〉 − 1AχC(X0) < 1A ess inf
C
〈X∗, X〉 (A.26)

on some set A. Note that by locality, the definition of χC and the fact that C 6= ∅, we have that 1Aχ
?
C(X

∗) =

1Aχ
?
C(1AX

∗), 1A ess infC〈X∗, X〉 = ess infX∈1AC〈1AX∗, X〉 and 1AχC(X) = χ1AC(1AX). However, the
strict inequality in (A.26) implies that 1AχC(X0) = χ1AC(1AX0) > −∞, that is χ1AC(1AX0) = 0. Hence

1A〈X∗, X0〉 − 1AχC(X0) = 1A〈X∗, 1AX0〉 − χ1AC(1AX0) ≥ 1A ess inf
X∈1AC

〈X∗, X〉 = 1A ess inf
X∈C

〈X∗, X〉
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showing together with (A.26) that A is a set of null measure.

Note that, by Proposition A.2, χ?C is upper semicontinuous and concave and clearly positive homogeneous.
Furthermore, since C 6= ∅, in view of (A.26), it follows that χ?C <∞ and therefore maximal invariant.

By the conditional Fenchel-Moreau Theorem (cf. [24, Theorem 3.8] or Proposition A.2(3)), we have that

χC (X) = χ??C (X) := ess inf
X∗∈X∗

{〈X∗, X〉 − χ?C (X∗)}.

Hence, by the definition of χC and (A.25) it follows that

X ∈ C ⇐⇒ 0 ≤ χC(X) = ess inf
X∗∈X∗

{〈X∗, X〉 − χ?C (X∗)}

⇐⇒ 〈X∗, X〉 ≥ χ?C(X∗) = ess inf
Y ∈C

〈X∗, Y 〉, for all X∗ ∈ X ∗.
(A.27)

Thus, the function
π (X∗) := ess inf

X∈C
〈X∗, X〉, X∗ ∈ X ∗,

fulfills relation (2.6) and the conditions (a) to (c).

Step 2: As for the uniqueness of π, let π1, π2 : X ∗ → L̄0 fulfill the conditions (a) to (c) and relation (2.6).
We will still assume that K = {0}. If π1 (X∗) = ∞ for some X∗ ∈ X ∗, then by relation (2.6), it follows
that C = ∅ which implies π2(Y ∗) =∞ for some Y ∗ ∈ X ∗. Since both are maximal invariant, it follows that
π1 = π2 =∞. Now suppose πi <∞.30

We claim that, for i = 1, 2,(
1Bπ

i(X∗) = −1B∞ for all X∗ ∈ X ∗
)
⇐⇒ 1BC = 1BX . (A.28)

Indeed, if 1Bπ
i(X∗) = −1B∞, for all X∗ ∈ X ∗, then

1B〈X,X∗〉 ≥ 1Bπ
i(X∗), (A.29)

for all X ∈ X and all X∗ ∈ X ∗. Since C 6= ∅, we take any Y ∈ C. By (2.6), we get that 1Bc〈Y,X∗〉 ≥
1Bcπ

i(X∗), for all X∗ ∈ X ∗, which combined with (A.29), and by locality, gives us

〈1BX + 1BcY,X
∗〉 ≥ πi(X∗), for all X∗ ∈ X ∗,

and thus Z = 1BX + 1BcY ∈ C. Moreover, 1BX = 1BZ, and hence since X was arbitrary in X , we
conclude that 1BX ⊆ 1BC. The inclusion 1BX ⊇ 1BC is obvious, and thus 1BX = 1BC.

Assume that 1BX = 1BC and that there exist X∗0 ∈ X ∗, B1 ⊆ B such that 1B1
πi(X∗0 ) > −1B1

∞ on
B1. Take X0 ∈ X such that 〈X0, X

∗
0 〉 < 0 on B1. Then, for a sufficiently large λ0 ∈ L0

++, we have that
〈λ0X0, X

∗
0 〉 < πi(X∗0 ) on B1, and hence 1B1

λ0X0 /∈ 1B1
C. However, 1B1

λ0X0 ∈ 1B1
X = 1B1

C, which
yields a contradiction. Thus, the equivalence (A.28) is established.

Next, define the sets

Ai := ess sup
{
B ∈ F : 1Bπ

i(X∗) = −1B∞ for all X∗ ∈ X ∗
}
, i = 1, 2.

By (A.28), we get that A1 = A2. Note that on the set A1 = A2, the functions π1 and π2 coincides and are
both equal to −∞. Define π̃i = 1Aπ

i, where A := (A1)c = (A2)c. These functions are concave, upper

30Note that since πi is maximal invariant then we only need to consider two cases: πi =∞ and πi <∞, i = 1, 2.
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semicontinuous and local since both the πi are so, and proper by the definition of A. Due to the conditional
Fenchel-Moreau Theorem we obtain

π̃i (X∗) = ess inf
X∈X

{
〈X∗, X〉 − π̃i,? (X)

}
, X∗ ∈ X ∗, (A.30)

where
π̃i,? (X) = ess inf

X∗∈X∗

{
〈X∗, X〉 − π̃i(X∗)

}
, X ∈ X . (A.31)

Since π̃i is positively homogeneous, and π̃i,? is proper, we have that π̃i,? can only take the values 0 or −∞.
Therefore,

π̃?,i(X) = 0 ⇐⇒ 〈X∗, X〉 ≥ πi(X?) for all X∗ ∈ X ∗ ⇐⇒ X ∈ 1AC.

Hence π̃?,1 = π̃2,?, which together with equation (A.30) implies that π̃i = π̃2. Thus, π1 = π2.

Step 3: Finally, let us consider the case where K 6= {0}, that is K◦ 6= X ∗. As we already showed in Step 1,
the function π : X ∗ → L̄0 given by

π(X∗) = ess inf
X∈C

〈X∗, X〉, X∗ ∈ X ∗, (A.32)

satisfies conditions (a)-(c), hence its restriction on K◦ satisfies (a)-(c). Taking into account the uniqueness
proved in Step 2, the proof will be complete if we show that π : K◦ → L̄0 fulfills (2.6).

First, we will show that for any X∗ ∈ X ∗, we have that

π(X∗) = −∞ on AcX∗ ,

where AX∗ = ess sup{B ∈ G : 1BX
∗ ∈ K◦}. Indeed, by definition of the polar cone and AX∗ , it follows

that there exists Y ∈ K such that
〈X∗, Y 〉 < 0, on AcX∗ .

Take X̂ ∈ C; by monotonicity of C, we get that X̂ + λY ∈ C for every λ > 0. Hence,

π(X∗) = ess inf
X∈C

〈X∗, X〉 ≤ 〈X∗, X̂〉+ λ〈X∗, Y 〉, for every λ > 0.

Hence, letting λ going to∞, and taking into account that 〈X∗, Y 〉 < 0 on AcX∗ , we conclude that π(X∗) is
equal to −∞ on AcX∗ .

Next, define X̃∗ := 1AX
∗, and note that by the definition of AX∗ , we have that X̃∗ ∈ K◦. Since π(X∗) =

−∞ on AcX∗ , by locality and the fact that π(0) = 0, it follows that

〈X∗, X〉 ≥ π(X∗) ⇐⇒ 〈X̃∗, X〉 = 1AX∗ 〈X
∗, X〉 ≥ 1AX∗π(X∗) = π(X̃∗). (A.33)

Note that, by locality and the definition of AX∗ and X̃∗, we have that

K◦ = {Y ∗ ∈ X ∗ : there exists X∗ ∈ X ∗ such that Y ∗ = 1AX∗X
∗}.

Using this and (A.33), we conclude that

X ∈ C ⇐⇒ 〈X∗, X〉 ≥ π(X∗) for all X∗ ∈ K◦.

This completes the proof.
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[2] B. Acciaio, H. Föllmer, and I. Penner. Risk assessment for uncertain cash flows: model ambiguity,
discounting ambiguity, and the role of bubbles. Finance and Stochastics, 16:669–709, 2012.

[3] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Math. Finance, 9(3):
203–228, 1999.

[4] A. Ben-Tal and M. Teboulle. Expected Utility, Penalty Functions and Duality in Stochastic Nonlinear
Programming. Management Science, 32:1445–1466, 1986.

[5] A. Ben-Tal and M. Teboulle. An Old-New Concept Of Convex Risk Measures: The Optimized Certainty
Equivalent. Mathematical Finance, 17(3):449–476, 2007.

[6] S. Biagini and J. Bion-Nadal. Dynamic quasi concave performance measure. Preprint, 2012.

[7] T.R. Bielecki, I. Cialenco, I. Iyigunler, and R. Rodriguez. Dynamic conic finance: Pricing and hedging
via dynamic coherent acceptability indices with transaction costs. International Journal of Theoretical
and Applied Finance, 16(1), 2013.

[8] T.R. Bielecki, I. Cialenco, and Z. Zhang. Dynamic coherent acceptability indices and their applications
to finance. Forthcoming in Math. Finance, 2013.

[9] J. Bion-Nadal. Dynamic risk measures: time consistency and risk measures from BMO martingales.
Finance Stoch., 12(2):219–244, 2008.

[10] J. Bion-Nadal. Time consistent dynamic risk processes. Stochastic Process. Appl., 119(2):633–654,
2009.

[11] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio. Complete monotone quasicon-
cave duality. Mathematics of Operations Research, 36:321–339, 2011.

[12] S. Cerreia-Vioglioa, F. Maccheroni, M. Marinacci, and L. Montrucchioc. Risk measures: Rationality
and diversiffcation. Mathematical Finance, 21:743–774, 2011.

[13] P. Cheridito and M. Kupper. Recursiveness of indifference prices and translation-invariant preferences.
Math. Financ. Econ., 2(3):173–188, 2009.

[14] P. Cheridito, F. Delbaen, and M. Kupper. Coherent and convex monetary risk measures for bounded
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