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2 Pricing and Trading Credit Default Swaps

Introduction

An inspection of the existing literature in the area of credit risk shows that the vast majority of
papers focus on the risk-neutral valuation of credit derivatives without even mentioning the issue of
hedging. This is somewhat surprising since, as is well known, the major argument supporting the
risk-neutral valuation is the existence of hedging strategies for attainable contingent claims. In this
paper, we shall deal with credit default swaps market only. Valuation formulae for credit derivatives
traded on the CDS market are provided, for instance, in Brigo [10], Brigo and Morini [11], Hull and
White [16], Schönbucher [24], and Wu [26], who deal with different products and/or models. There
also exists a slowly growing number of papers in which the issue of hedging of defaultable claim is
analyzed in a more systematic way; to mention a few: Arvanitis and Laurent [1], Bélanger et al. [2],
Bielecki et al. [4, 5, 6, 7], Blanchet-Scalliet and Jeanblanc [9], Collin-Dufresne and Hugonnier [12],
Frey and Backhaus [15], Kurtz and Riboulet [20], Laurent [21], and Laurent et al. [22].

From the practical perspective, it is common to split the risk of a credit derivative into three
components: the default risk (that is, the jump risk associated with some particular credit event),
the spread risk (that is, the risk due to the volatile character of the pre-default values of a credit),
and the correlation risk due to interdependence of the underlying credit names. The pertinent issue
is thus to find a mathematically rigorous way of dealing simultaneously with all three kinds of credit
risks. Our main results, Theorems 1.1 and 2.1, show that in a generic hazard process model driven
by a Brownian motion it is in principle possible to perfectly hedge all sorts of risks in a unified
manner, provided that a large enough number of liquid CDSs are traded. Specifically, one set of
conditions address the issue of hedging default risk, while another ones allows us to effectively deal
with spread and correlation risks. Of course, all these conditions need to be simultaneously satisfied
for a perfect hedging. It is clear from these formulae that hedging of the default risk relies on
keeping under control the unexpected jumps that may come as a surprise at any moment and that
are modeled by pure jump martingales. By contrast, hedging of spread and correlation risks hinges
on more standard techniques related to volatilities and correlations of underlying continuous driving
martingales. Let us finally note that in our previous paper Bielecki et al. [6] we have shown that in
the case of a survival claim (that is, a defaultable claim with zero recovery a default), it is enough
to focus on hedging of the spread risk, provided that hedging instruments are also subject to the
zero recovery scheme. We shall work throughout within the so-called hazard process (or reduced-
form) approach, as opposed to the structural approach in which hedging can be dealt with using the
classic Black-Scholes-like approach. For general results within this methodology, we refer the reader
to, among others, Bélanger et al. [2], Bielecki and Rutkowski [3], Elliott et al. [14], Jeanblanc and
Le Cam [18], Jeanblanc and Rutkowski [19], and Schönbucher and Schubert [25].

Our program can be summarized as follows. We start by deriving the risk-neutral dynamics for
the prices of defaultable claims. Next, we show that the risk-neutral pricing of defaultable claims
(such as, credit default options and first-to-default swaps) can be supported through replication of
these claims by dynamic trading of a suitable family of single-name credit default swaps. In Section
1, we address the issue of valuation and hedging of defaultable claims in the market with traded
CDSs with different maturities but with the same reference credit name. Results of this section may
thus be applied, for instance, to a single-name credit default swaption. We show that replication
of defaultable claims can be done using either a family of CDSs with fixed spreads and different
maturities or using the associated family of virtual market CDSs, which may serve as the proxy
for the market CDSs (in practice, CDSs are issued on a daily basis at the current market spread).
In Section 2, we first derive the dynamics for a family of single-name CDSs in the case of several
correlated credit names. Obviously, the fact that the default on a particular name occurs has an
impact on the dynamics of CDS written on non-defaulted names. Subsequently, we extend some
results obtained previously by Bielecki et al. [7] in the case of a trivial reference filtration to a more
practically appealing case of a market model in which hazard rates are driven by a multidimensional
Brownian motion. Let us admit that the results of this paper are of a rather abstract nature, in the
sense that no explicit examples of hedging strategies for standard credit derivatives are presented;
they will be studied in the follow-up work by Bielecki et al. [8].
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1 Single-Name Credit Default Swap Market

A strictly positive random variable τ , defined on a probability space (Ω,G,Q), is termed a random
time. In view of its financial interpretation, we will refer to it as a default time. We define the
default indicator process Ht = 1{τ≤t} and we denote by H the filtration generated by this process.
We assume that we are given, in addition, some auxiliary filtration F and we write G = H ∨ F,
meaning that we have Gt = σ(Ht,Ft) for every t ∈ R+. The filtration G is referred to as to the full
filtration. It is clear that τ is an H-stopping time, as well as a G-stopping time (but not necessarily
an F-stopping time). All processes are defined on the space (Ω,G,Q), where Q is to be interpreted as
the real-life (i.e., statistical) probability measure. Unless otherwise stated, all processes considered
in what follows are assumed to be G-adapted and with càdlàg sample paths.

1.1 Price Dynamics in a Single-Name Model

We assume that the underlying market model is arbitrage-free, meaning that it admits a spot mar-
tingale measure Q∗ (not necessarily unique) equivalent to Q. A spot martingale measure is associated
with the choice of the savings account B as a numéraire, in the sense that the price process of any
tradeable security, which paying no coupons or dividends, is a G-martingale under Q∗, when it is
discounted by the savings account B. As usual, B is given by

Bt = exp
( ∫ t

0

ru du
)
, ∀ t ∈ R+, (1)

where the short-term r is assumed to follow an F-progressively measurable stochastic process. The
choice of a suitable term structure model is arbitrary and it is not discussed in the present work.

Let us denote by Gt = Q∗(τ > t | Ft) the survival process of τ with respect to a filtration F. We
postulate that G0 = 1 and Gt > 0 for every t ∈ R+ (hence the case where τ is an F-stopping time is
excluded) so that the hazard process Γ = − ln G of τ with respect to the filtration F is well defined.

For any Q∗-integrable and FT -measurable random variable Y , the following classic formula holds
(see, e.g., Chapter 5 in [3] or [19])

EQ∗(1{T<τ}Y | Gt) = 1{t<τ}G−1
t EQ∗(GT Y | Ft). (2)

Clearly, the process G is a bounded G-supermartingale and thus it admits the unique Doob-Meyer
decomposition G = µ− ν, where µ is a martingale part and ν is a predictable increasing process.

We shall work throughout under the following standing assumption.

Assumption 1.1 We postulate that G is a continuous process and the increasing process ν in
its Doob-Meyer decomposition is absolutely continuous with respect to the Lebesgue measure, so
that dνt = υt dt for some F-progressively measurable, non-negative process υ. We denote by λ the
F-progressively measurable process defined as λt = G−1

t υt.

Let us note for the further reference that under Assumption 1.1 we have dGt = dµt − λtGt dt,
where the F-martingale µ is continuous. Moreover, in view of the Lebesgue dominated convergence
theorem, continuity of G implies that the expected value EQ∗(Gt) = Q∗(τ > t) is a continuous
function, and thus Q∗(τ = t) = 0 for any fixed t ∈ R+. Finally, it is known (see, e.g., Lemma 3.2 in
[14], or [19]) that under Assumption 1.1 the process M , given by

Mt = Ht − Λt∧τ = Ht −
∫ t∧τ

0

λu du = Ht −
∫ t

0

(1−Hu)λu du, (3)

is a G-martingale, where the increasing, absolutely continuous, F-adapted process Λ is given by

Λt =
∫ t

0

G−1
u dνu =

∫ t

0

λu du. (4)

The F-progressively measurable process λ is called the default intensity with respect to F.
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1.1.1 Defaultable Claims

We are in the position to introduce the concept of a defaultable claim. Of course, we work here
within a single-name framework, so that τ is the moment of default of the reference credit name.

Definition 1.1 By a defaultable claim maturing at T we mean the quadruple (X, A,Z, τ), where X
is an FT -measurable random variable, A = (At)t∈[0,T ] is an F-adapted, continuous process of finite
variation with A0 = 0, Z = (Zt)t∈[0,T ] is an F-predictable process, and τ is a random time.

The financial interpretation of components of a defaultable claim becomes clear from the following
definition of the dividend process D, which describes all cash flows associated with a defaultable claim
over its lifespan ]0, T ], that is, after the contract was initiated at time 0 (of course, the choice of 0 as
the inception date is merely a convention). The dividend process might have been called the total
cash flow process; we have chosen the term ‘dividend process’ for the sake of brevity.

Definition 1.2 The dividend process D = (Dt)t∈R+ of the above defaultable claim maturing at T
equals, for every t ∈ R+,

Dt = X1{T<τ}1[T,∞[(t) +
∫

]0,t∧T ]

(1−Hu) dAu +
∫

]0,t∧T ]

Zu dHu.

It is clear that the dividend process D is a process of finite variation on [0, T ]. The financial
interpretation of D is as follows: X is the promised payoff, A represents the process of promised
dividends and the process Z, termed the recovery process, specifies the recovery payoff at default. It
is worth stressing that, according to our convention, the cash payment (premium) at time 0 is not
included in the dividend process D associated with a defaultable claim.

1.1.2 Price Dynamics of a Defaultable Claim

For any fixed t ∈ [0, T ], the process Du −Dt, u ∈ [t, T ], represents all cash flows from a defaultable
claim received by an investor who purchased it at time t. Of course, the process Du − Dt may
depend on the past behavior of the claim as well as on the history of the market prior to t. The past
dividends are not valued by the market, however, so that the current market value at time t ∈ [0, T ]
of a defaultable claim (i.e., the price at which it trades at time t) reflects only future cash flows to be
paid/received over the time interval ]t, T ]. This leads to the following definition of the ex-dividend
price of a defaultable claim.

Definition 1.3 The ex-dividend price process S of a defaultable claim (X,A, Z, τ) equals, for every
t ∈ [0, T ],

St = Bt EQ∗
(∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
. (5)

Obviously, ST = 0 for any dividend process D. We work throughout under the natural integra-
bility assumptions:

EQ∗ |B−1
T X| < ∞, EQ∗

∣∣∣
∫

]0,T ]

B−1
u (1−Hu) dAu

∣∣∣ < ∞, EQ∗ |B−1
τ∧T Zτ∧T | < ∞,

which ensure that the ex-dividend price St is well defined for any t ∈ [0, T ]. We will later need the
following technical assumption

EQ∗
( ∫ T

0

(B−1
u Zu)2 d〈µ〉u

)
< ∞. (6)

We first derive a convenient representation for the ex-dividend price S of a defaultable claim.
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Proposition 1.1 The ex-dividend price of the defaultable claim (X,A, Z, τ) equals, for t ∈ [0, T [,

St = 1{t<τ}
Bt

Gt
EQ∗

(
B−1

T GT X +
∫ T

t

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)
. (7)

Proof. For any t ∈ [0, T [, the ex-dividend price is given by the conditional expectation

St = Bt EQ∗
(
B−1

T X1{T<τ} +
∫ T∧τ

t∧τ

B−1
u dAu + B−1

τ Zτ1{t<τ≤T}
∣∣∣Gt

)
.

Let us fix t and let us introduce two auxiliary processes Y = (Yu)u∈[t,T ] and R = (Ru)u∈[t,T ] by
setting

Yu =
∫ u

t

B−1
v dAv, Ru = B−1

u Zu +
∫ u

t

B−1
v dAv = B−1

u Zu + Yu.

Then St can be represented as follows

St = Bt EQ∗
(
B−1

T X1{T<τ} + 1{T<τ}YT + Rτ1{t<τ≤T}
∣∣∣Gt

)
.

We use directly formula (2) in order to evaluate the conditional expectations

Bt EQ∗
(
1{T<τ}B

−1
T X

∣∣∣Gt

)
= 1{t<τ}

Bt

Gt
EQ∗

(
B−1

T GT X
∣∣∣Ft

)
,

and
Bt EQ∗

(
1{T<τ}YT

∣∣∣Gt

)
= 1{t<τ}

Bt

Gt
EQ∗

(
GT YT

∣∣∣Ft

)
.

In addition, we will use of the following formula (see, e.g., [3])

EQ∗(1{t<τ≤T}Rτ | Gt) = −1{t<τ}
1
Gt
EQ∗

(∫ T

t

Ru dGu

∣∣∣Ft

)
, (8)

which is known to be valid for any F-predictable process R such that EQ∗ |Rτ | < ∞. We thus obtain,
for any t ∈ [0, T [,

St = 1{t<τ}
Bt

Gt
EQ∗

(
B−1

T GT X + GT YT −
∫ T

t

(B−1
u Zu + Yu) dGu

∣∣∣Ft

)
,

Moreover, since dGt = dµt − λtGt dt, where µ is an F-martingale, we obtain

St = 1{t<τ}
Bt

Gt
EQ∗

(
−

∫ T

t

B−1
u Zu dGu

∣∣∣Ft

)
= 1{t<τ}

Bt

Gt
EQ∗

( ∫ T

t

B−1
u GuZuλu du

∣∣∣Ft

)
,

where we have used (6). To complete the proof, it remains to observe that G is a continuous
semimartingale and Y is a continuous process of finite variation with Yt = 0, so that the Itô
integration by parts formula yields

GT YT −
∫ T

t

Yu dGu =
∫ T

t

Gu dYu =
∫ T

t

B−1
u Gu dAu,

where the second equality follows from the definition of Y . We conclude that (7) holds for any
t ∈ [0, T [, as required. ¤

Formula (7) implies that the ex-dividend price S satisfies, for every t ∈ [0, T ],

St = 1{t<τ}S̃t (9)

for some F-adapted process S̃, which is termed the ex-dividend pre-default price of a defaultable
claim.
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Definition 1.4 The cumulative price process Sc associated with the dividend process D is defined
by setting, for every t ∈ [0, T ],

Sc
t = Bt EQ∗

( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
= St + Bt

∫

]0,t]

B−1
u dDu. (10)

Note that the discounted cumulative price B−1Sc is a G-martingale under Q∗. It follows imme-
diately from (7) and (10) that the following corollary to Proposition 1.1 is valid.

Corollary 1.1 The cumulative price of the defaultable claim (X,A, Z, τ) equals, for t ∈ [0, T ],

Sc
t = 1{t<τ}

Bt

Gt
EQ∗

(
B−1

T GT X1{t<T} +
∫ T

t

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)
+ Bt

∫

]0,t]

B−1
u dDu.

The pre-default cumulative price is the unique F-adapted process S̃c that satisfies, for every
t ∈ [0, T ],

1{t<τ}Sc
t = 1{t<τ}S̃c

t . (11)

Our next goal is to derive the dynamics under Q∗ for (pre-default) prices and of a defaultable
claim in terms of some G-martingales and F-martingales. To simplify the presentation, we shall
work from now on under the following standing assumptions.

Assumption 1.2 We assume that all F-martingales are continuous processes.

The following auxiliary result is well known (see, for instance, Lemma 5.1.6 in [3]). Recall that
µ is the F-martingale appearing in the Doob-Meyer decomposition of G.

Lemma 1.1 Let n be any F-martingale. Then the process n̂ given by

n̂t = nt∧τ −
∫ t∧τ

0

G−1
u d〈n, µ〉u (12)

is a continuous G-martingale.

In particular, the process µ̂ given by

µ̂t = µt∧τ −
∫ t∧τ

0

G−1
u d〈µ, µ〉u (13)

is a continuous G-martingale.

In the next result, we deal with the dynamics of the ex-dividend price process S. Recall that the
G-martingale M is given by (3).

Proposition 1.2 The dynamics of the ex-dividend price S on [0, T ] are

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)
(14)

+ (1−Ht)G−1
t

(
Bt dmt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ,m〉t

)
,

where the continuous F-martingale m is given by the formula

mt = EQ∗
(
B−1

T GT X +
∫ T

0

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)
. (15)
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Proof. We shall first derive the dynamics of the pre-default ex-dividend price S̃. In view of (7), the
price S can be represented as follows, for t ∈ [0, T [,

St = 1{t<τ}S̃t = 1{t<τ}BtG
−1
t Ut,

where the auxiliary process U equals

Ut = mt −
∫ t

0

B−1
u GuZuλu du−

∫ t

0

B−1
u Gu dAu,

where in turn the continuous F-martingale m is given by (15). It is thus obvious that S̃ = BG−1U

for t ∈ [0, T [ (of course, S̃T = 0). Since G = µ− ν, an application of Itô’s formula leads to

d(G−1
t Ut) = G−1

t dmt −B−1
t Ztλt dt−B−1

t dAt

+ Ut

(
G−3

t d〈µ〉t −G−2
t (dµt − dνt)

)
−G−2

t d〈µ,m〉t.

Therefore, since under the present assumptions dνt = λtGt dt, using again Itô’s formula, we obtain

dS̃t =
(
(λt + rt)S̃t − λtZt

)
dt− dAt + G−1

t

(
Bt dmt − S̃t dµt

)
(16)

+ G−2
t

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

Note that, under the present assumptions, the pre-default ex-dividend price S̃ follows on [0, T [ a
continuous process with dynamics given by (16). This means that St− = S̃t on {t ≤ τ} for any
t ∈ [0, T [. Moreover, since G is continuous, we have that Q∗(τ = T ) = 0. Hence for the process
St = (1−Ht)S̃t we obtain, for every t ∈ [0, T ],

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)
(17)

+ (1−Ht)G−1
t

(
Bt dmt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ,m〉t

)
.

This finishes the proof of the proposition. ¤

Let us now examine the dynamics of the cumulative price. As expected, the discounted cumula-
tive price B−1Sc is a G-martingale under Q∗ (see formula (19) below).

Corollary 1.2 The dynamics of the cumulative price Sc on [0, T ] are

dSc
t = rtS

c
t dt + (Zt − St−) dMt (18)

+ (1−Ht)G−1
t

(
Bt dmt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ,m〉t

)
,

where the F-martingale m is given by (15). Equivalently,

dSc
t = rtS

c
t dt + (Zt − St−) dMt + G−1

t (Bt dm̂t − St dµ̂t), (19)

where the G-martingales m̂ and µ̂ are given by (12) and (13) respectively. The pre-default cumulative
price S̃c satisfies, for t ∈ [0, T ],

dS̃c
t = rtS̃

c
t dt + λt(S̃t − Zt) dt (20)

+ G−1
t

(
Bt dmt − S̃t dµt

)
+ G−2

t

(
S̃t d〈µ〉t −Bt d〈µ, m〉t

)
.

Proof. Formula (10) yields

dSc
t = dSt + d

(
Bt

∫

]0,t]

B−1
u dDu

)
= dSt + rt(Sc

t − St) dt + dDt

= dSt + rt(Sc
t − St) dt + (1−Ht) dAt + Zt dHt. (21)
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By combining (21) with (17), we obtain (18). Formulae (19) and (20) are immediate consequences
of (12), (13) and (18). ¤

Dynamics under Hypothesis (H). Let us now consider the special case where the so-called
Hypothesis (H) is satisfied under Q∗ between the filtrations F and G = H ∨ F. This means that
the immersion property1 holds for the filtrations F and G, in the sense that any F-martingale under
Q∗ is also a G-martingale under Q∗. In that case, the survival process G of τ with respect to F is
known to be non-increasing (see, e.g., Chapter 6 in [3] or [19]), so that G = −ν. In other words, the
continuous martingale µ in the Doob-Meyer decomposition of G vanishes. Consequently, formula
(14) becomes

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)
+ (1−Ht)BtG

−1
t dmt. (22)

Similarly, (18) reduces to

dSc
t = rtS

c
t dt + (Zt − S̃t) dMt + (1−Ht)G−1

t Bt dmt (23)

and (20) becomes

dS̃c
t = rtS̃

c
t dt + λt(S̃t − Zt) dt + G−1

t Bt dmt. (24)

Remark. Hypothesis (H) is a rather natural assumption in the present context. Indeed, it can
be shown that it is necessarily satisfied under the postulate that the underlying F-market model
is complete and arbitrage-free, and the extended G-market model is arbitrage-free (for details, see
Blanchet-Scalliet and Jeanblanc [9]).

1.1.3 Price Dynamics of a CDS

In Definition 1.5 of a stylized T -maturity credit default swap, we follow the convention adopted in
[7]. Unlike in [7], the default protection stream is now represented by an F-predictable process δ.
We assume that the default protection payment is received at the time of default and it equals δt

if default occurs at time t prior to or at maturity date T . Note that δt represents the protection
payment, so that according to our notational convention the recovery rate equals 1− δt rather than
δt. The notional amount of the CDS is equal to one monetary unit.

Definition 1.5 The stylized T -maturity credit default swap (CDS) with a constant rate κ and
recovery at default is a defaultable claim (0, A, Z, τ) in which we set Zt = δt and At = −κt for every
t ∈ [0, T ]. An F-predictable process δ : [0, T ] → R represents the default protection and a constant
κ is the fixed CDS rate (also termed the spread or premium of the CDS).

A credit default swap is thus a particular defaultable claim in which the promised payoff X is
null and the recovery process Z is determined in reference to the estimated recovery rate of the
reference credit name. We shall use the notation D(κ, δ, T, τ) to denote the dividend process of a
CDS. It follows immediately from Definition 1.2 that the dividend process D(κ, δ, T, τ) of a stylized
CDS equals, for every t ∈ R+,

Dt(κ, δ, T, τ) =
∫

]0,t∧T ]

δu dHu − κ

∫

]0,t∧T ]

(1−Hu) du = δτ1{τ≤t} − κ(t ∧ T ∧ τ). (25)

In a more realistic approach, the process A is discontinuous, with jumps occurring at the premium
payment dates. In this work, we shall only deal with a stylized CDS with a continuously paid
premium; for a more practical approach we refer to Brigo [10] and Brigo and Morini [11].

1This property is referred to as the martingale invariance property of F and G in [3].
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Let us first examine the valuation formula for a stylized T -maturity CDS. Since we now have
X = 0, Z = δ and At = −κt, we deduce easily from (5) that the ex-dividend price of such CDS
contract equals, for every t ∈ [0, T ],

St(κ, δ, T, τ) = 1{t<τ}
(
δ̃(t, T )− κÃ(t, T )

)
, (26)

where we denote, for any t ∈ [0, T ],

δ̃(t, T ) =
Bt

Gt
EQ∗

(
1{t<τ≤T}B−1

τ δτ

∣∣∣Ft

)

and

Ã(t, T ) =
Bt

Gt
EQ∗

( ∫ T∧τ

t

B−1
u du

∣∣∣Ft

)
.

The quantity δ̃(t, T ) is the pre-default value at time t of the protection leg, whereas Ã(t, T ) represents
the pre-default present value at time t of one risky basis point paid up to the maturity T or the default
time τ , whichever comes first. For ease of notation, we shall write St(κ) in place of St(κ, δ, T, τ) in
what follows. Note that the quantities δ̃(t, T ) and Ã(t, T ) are well defined at any date t ∈ [0, T ],
and not only prior to default as the terminology ‘pre-default values’ might suggest.

We are in the position to state the following immediate corollary to Proposition 1.1.

Corollary 1.3 The ex-dividend price of a CDS equals, for any t ∈ [0, T ],

St(κ) = 1{t<τ}
Bt

Gt
EQ∗

( ∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
(27)

and thus the cumulative price of a CDS equals, for any t ∈ [0, T ],

Sc
t (κ) = 1{t<τ}

Bt

Gt
EQ∗

(∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
+ Bt

∫

]0,t]

B−1
u dDu. (28)

The next result is a direct consequence of Proposition 1.2 and Corollary 1.2.

Corollary 1.4 The dynamics of the ex-dividend price S(κ) on [0, T ] are

dSt(κ) = −St−(κ) dMt + (1−Ht)
(
rtSt + κ− λtδt

)
dt (29)

+ (1−Ht)G−1
t

(
Bt dnt − St dµt

)
+ (1−Ht)G−2

t

(
St d〈µ〉t −Bt d〈µ, n〉t

)
,

where the F-martingale n is given by the formula

nt = EQ∗
( ∫ T

0

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
. (30)

The cumulative price Sc(κ) satisfies, for every t ∈ [0, T ],

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt − St−(κ)

)
dMt

+ (1−Ht)G−1
t

(
Bt dnt − St(κ) dµt

)
+ (1−Ht)G−2

t

(
St(κ) d〈µ〉t −Bt d〈µ, n〉t

)
,

or equivalently,

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt − St−(κ)

)
dMt + G−1

t

(
Bt dn̂t − St(κ) dµ̂t

)
, (31)

where the G-martingales n̂ and µ̂ are given by (12) and (13) respectively.
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Dynamics under Hypothesis (H). If the immersion property of F and G holds, the martingale
µ is null and thus (29) reduces to

dSt(κ) = −S̃t(κ) dMt + (1−Ht)
(
rtSt(κ) + κ− λtδt

)
dt + (1−Ht)BtG

−1
t dnt (32)

since the process S̃t(κ), t ∈ [0, T ], is continuous and satisfies (cf. (16))

dS̃t(κ) =
(
(λt + rt)S̃t(κ) + κ− λtδt

)
dt + BtG

−1
t dnt. (33)

Let us note that the quantity κ− λtδt can be informally interpreted as the pre-default dividend rate
of a CDS.

Similarly, we obtain from (31)

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt − S̃t(κ)

)
dMt + (1−Ht)BtG

−1
t dnt (34)

and
dS̃c

t (κ) = rtS̃
c
t (κ) dt + λt

(
S̃t(κ)− δt

)
dt + BtG

−1
t dnt.

1.1.4 Dynamics of the Market CDS Spread

Let us now introduce the notion of the market CDS spread. It reflects the real-world feature that
for any date s the CDS issued at this time has the fixed spread chosen in such a way that the CDS
is worthless at its inception. Note that the recovery process δ = (δt)t∈[0,T ] is fixed throughout. We
fix the maturity date T and we assume that credit default swaps with different inception dates have
a common recovery function δ.

Definition 1.6 The T -maturity market CDS spread κ(s, T ) at time s ∈ [0, T ] is the level of the
CDS rate that makes the values of the two legs of a CDS equal to each other at time s.

It should be noted that CDSs are quoted in terms of spreads. At any date t, one can take at no
cost a long or short position in the CDS issued at this date with the fixed rate equal to the actual
value of the market CDS spread for a given maturity and a given reference credit name.

Let us stress that the market CDS spread κ(s, T ) is not defined neither at the moment of default
nor after this date, so that we shall deal in fact with the pre-default value of the market CDS
spread. Observe that κ(s, T ) is represented by an Fs-measurable random variable. In fact, it follows
immediately from (27) that κ(s, T ) admits the following representation, for any s ∈ [0, T ],

κ(s, T ) =
δ̃(s, T )

Ã(s, T )
=
EQ∗

( ∫ T

s
B−1

u Guδuλu du
∣∣Fs

)

EQ∗
( ∫ T

s
B−1

u Gu du
∣∣Fs

) =
K1

s

K2
s

,

where we denote

K1
s = EQ∗

( ∫ T

s

B−1
u Guδuλu du

∣∣Fs

)

and

K2
s = EQ∗

( ∫ T

s

B−1
u Gu du

∣∣Fs

)
.

In what follows, we shall write briefly κs instead of κ(s, T ). The next result furnishes a convenient
representation for the price at time t of a CDS issued at some date s ≤ t, that is, the marked-to-
market value of a CDS that exists already for some time (recall that the market value of the just
issued CDS is null).
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Proposition 1.3 The ex-dividend price S(κs) of a T -maturity market CDS initiated at time s
equals, for every t ∈ [s, T ],

St(κs) = 1{t<τ} (κt − κs) Ã(t, T ) = 1{t<τ}S̃t(κs), (35)

where S̃t(κs) is the pre-default ex-dividend price at time t.

Proof. To establish (35), it suffices to observe that St(κs) = St(κs) − St(κt) since St(κt) = 0.
Therefore, in order to conclude it suffices to use (26) with κ = κt and κ = κs. ¤

Let us now derive the dynamics of the market CDS spread. Let us define two F-martingales

m1
s = EQ∗

( ∫ T

0

B−1
u Guδuλu du

∣∣∣Fs

)
= K1

s +
∫ s

0

B−1
u Guδuλu du

and

m2
s = EQ∗

( ∫ T

0

B−1
u Gu du

∣∣∣Fs

)
= K2

s +
∫ s

0

B−1
u Gu du.

Under Assumption 1.2, the F-martingales m1 and m2 are continuous. Therefore, using the Itô
formula, we find easily that the semimartingale decomposition of the market spread process reads

dκs =
1

K2
s

(
B−1

s Gs(κs − δsλs) ds +
κs

K2
s

d〈m2〉s − 1
K2

s

d〈m1,m2〉s
)

+
1

K2
s

(
dm1

s − κs dm2
s

)
.

1.2 Replication of a Defaultable Claim

We now assume that k credit default swaps with certain maturities Ti ≥ T , spreads κi and protection
payments δi for i = 1, . . . , k are traded over the time interval [0, T ]. All these contracts are supposed
to refer to the same underlying credit name and thus they have a common default time τ . Formally,
this family of CDSs is represented by the associated dividend processes Di = D(κi, δ

i, Ti, τ) given
by formula (25). For brevity, the corresponding ex-dividend price will be denoted as Si(κi) rather
then S(κi, δ

i, Ti, τ). Similarly, Sc,i(κi) will stand for the cumulative price process of the ith traded
CDS. The 0th traded asset is the savings account B.

1.2.1 Self-Financing Trading Strategies in the CDS Market

Our goal is to examine hedging strategies for a defaultable claim (X,A, Z, τ). As expected, we
will trade in k credit default swaps and the savings account. To this end, we will consider trading
strategies ϕ = (ϕ0, . . . , ϕk) where ϕ0 is a G-adapted process and the processes ϕ1, . . . , ϕk are G-
predictable.

In the present set-up, we consider trading strategies that are self-financing in the standard sense,
as recalled in the following definition.

Definition 1.7 The wealth process V (ϕ) of a strategy ϕ = (ϕ0, . . . , ϕk) in the savings account B
and ex-dividend CDS prices Si(κi), i = 1, . . . , k equals, for any t ∈ [0, T ],

Vt(ϕ) = ϕ0
t Bt +

k∑

i=1

ϕi
tS

i
t(κi). (36)

A strategy ϕ is said to be self-financing if Vt(ϕ) = V0(ϕ) + Gt(ϕ) for every t ∈ [0, T ], where the
gains process G(ϕ) is defined as follows

Gt(ϕ) =
∫

]0,t]

ϕ0
u dBu +

k∑

i=1

∫

]0,t]

ϕi
u d(Si

u(κi) + Di
u), (37)

where Di = D(κi, δ
i, Ti, τ) is the dividend process of the ith CDS (see formula (25)).



12 Pricing and Trading Credit Default Swaps

The following lemma is fairly general; in particular, it is independent of the choice of the under-
lying model. Indeed, in the proof of this result we only use the obvious relationships dBt = rtBt dt
and the relationship (cf. (10))

Sc,i
t (κi) = Si

t(κi) + Bt

∫

]0,t]

B−1
u dDi

u. (38)

Let V ∗(ϕ) = B−1V (ϕ) be the discounted wealth process and let Sc,i,∗(κi) = B−1Sc,i(κi) be the
discounted cumulative price.

Lemma 1.2 Let ϕ = (ϕ0, . . . , ϕk) be a self-financing trading strategy in the savings account B and
ex-dividend prices Si(κi), i = 1, . . . , k. Then the discounted wealth process V ∗ =B−1V (ϕ) satisfies,
for t ∈ [0, T ]

dV ∗
t (ϕ) =

k∑

i=1

ϕi
t dSc,i,∗

t (κi). (39)

Proof. We have

dV ∗
t (ϕ) = B−1

t dVt(ϕ)− rtB
−1
t Vt(ϕ) dt = B−1

t

(
dVt(ϕ)− rtVt(ϕ) dt

)

= B−1
t

[
ϕ0

t rtBt dt +
k∑

i=1

ϕi
t

(
dSi

t(κi) + dDi
t

)− rtVt(ϕ) dt
]

= B−1
t

[(
Vt(ϕ)−

k∑

i=1

ϕi
tS

i
t(κi)

)
rt dt +

k∑

i=1

ϕi
t

(
dSi

t(κi) + dDi
t

)− rtVt(ϕ) dt
]

= B−1
t

k∑

i=1

ϕi
t

(
dSi

t(κi)− rtS
i
t(κi) dt + dDi

t

)

=
k∑

i=1

ϕi
t

(
d(B−1

t Si
t(κi)) + B−1

t dDi
t

)
.

By comparing the last formula with (38), we conclude that (39) holds. ¤

1.2.2 Replication with Ex-Dividend Prices of CDSs

Recall that the cumulative price of a defaultable claim (X,A, Z, τ) is denoted as Sc. We adopt the
following, quite natural, definition of replication of a defaultable claim. Note that the set of traded
assets is not explicitly specified in this definition. Hence it can be used for any choice of primary
traded assets.

Definition 1.8 We say that a self-financing strategy ϕ = (ϕ0, . . . , ϕk) replicates a defaultable claim
(X, A,Z, τ) if its wealth process V (ϕ) satisfies Vt(ϕ) = Sc

t for every t ∈ [0, T ]. In particular, the
equality Vt∧τ (ϕ) = Sc

t∧τ holds for every t ∈ [0, T ].

In the remaining part of this section we assume that Hypothesis (H) holds. Hence the hazard
process Γ is increasing and thus, by Assumption 1.1, we have that, for any t ∈ [0, T ],

Γt = Λt =
∫ t

0

λu du.

The discounted cumulative price Sc,i(κi) of the ith CDS is governed by (cf. (34))

dSc,i,∗
t (κi) = B−1

t

(
δi
t − S̃i

t(κi)
)
dMt + (1−Ht)BtG

−1
t dni

t, (40)
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where (cf. (30))

ni
t = EQ∗

( ∫ Ti

0

B−1
u Gu(δi

uλu − κi) du
∣∣∣Ft

)
. (41)

The next lemma yields the dynamics of the wealth process V (ϕ) for a self-financing strategy ϕ.

Lemma 1.3 For any self-financing trading strategy ϕ the discounted wealth V ∗(ϕ) = B−1V (ϕ)
satisfies, for any t ∈ [0, T ],

dV ∗
t (ϕ) =

k∑

i=1

ϕi
t

(
B−1

t

(
δi
t − S̃i

t(κi)
)
dMt + (1−Ht)G−1

t dni
t

)
. (42)

Proof. It suffices to combine (39) with (40). ¤

It is clear from the lemma that it is enough to search for the components ϕ1, . . . , ϕk of a strategy
ϕ. The same remark applies to self-financing strategies introduced in Definitions 1.7 and 1.10 below.

It is worth stressing that in what follows, we shall only consider admissible trading strategies,
that is, strategies for which the discounted wealth process V ∗(ϕ) = B−1V (ϕ) is a G-martingale
under Q∗. The market model in which only admissible trading strategies are allowed is arbitrage-
free, that is, arbitrage opportunities are ruled out. Admissibility of a replicating strategy will be
ensured by the equality V (ϕ) = Sc and the fact that the discounted cumulative price B−1Sc of a
defaultable claim is a G-martingale under Q∗.

We work throughout under the standing Assumptions 1.1 and 1.2 and the following postulate.

Assumption 1.3 The filtration F is generated by a d-dimensional Brownian motion W under Q∗.

Since Hypothesis (H) is assumed to hold, the process W is also a Brownian motion with respect
to the enlarged filtration G = H ∨ F. Recall that all (local) martingales with respect to a Brownian
filtration are necessarily continuous. Hence Assumption 1.2 is obviously satisfied.

The crucial observation is that, by the predictable representation property of a Brownian motion,
there exist F-predictable, Rd-valued processes ξ and ζi, i = 1, . . . , k such that dmt = ξt dWt and
dni

t = ζi
t dWt, where m and ni are given by (15) and (41) respectively.

We are now in the position to state the hedging result for a defaultable claim in the single-name
set-up. We consider a defaultable claim (X, A, Z, τ) satisfying the natural integrability conditions
under Q∗, such that the cumulative price process Sc for this claim is well defined.

Theorem 1.1 Assume that there exist F-predictable processes ϕ1, . . . , ϕk satisfying the following
conditions, for any t ∈ [0, T ],

k∑

i=1

ϕi
t

(
δi
t − S̃i

t(κi)
)

= Zt − S̃t,

k∑

i=1

ϕi
tζ

i
t = ξt. (43)

Let the process V (ϕ) be given by (42) with the initial condition V0(ϕ) = Sc
0 and let ϕ0 be given by,

for t ∈ [0, T ],

ϕ0
t = B−1

t

(
Vt(ϕ)−

k∑

i=1

ϕi
tS

i
t(κi)

)
. (44)

Then the self-financing trading strategy ϕ = (ϕ0, . . . , ϕk) in the savings account B and assets
Si(κi), i = 1, . . . , k replicates the defaultable claim (X, A, Z, τ).

Proof. From Lemma 1.3, we know that the discounted wealth process satisfies

dV ∗
t (ϕ) =

k∑

i=1

ϕi
t

(
B−1

t (δi
t − S̃i

t(κi)) dMt + (1−Ht)G−1
t dni

t

)
. (45)
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Recall also that the discounted cumulative price Sc,∗ of a defaultable claim is governed by (cf. (23))

dSc,∗
t = B−1

t (Zt − S̃t) dMt + (1−Ht)G−1
t dmt. (46)

We will show that if the two conditions in (43) are satisfied for any t ∈ [0, T ], then the equality
Vt(ϕ) = Sc

t holds for any t ∈ [0, T ].

Let Ṽ ∗(ϕ) = B−1Ṽ (ϕ) stand for the discounted pre-default wealth, where Ṽ (ϕ) is the unique
F-adapted process such that 1{t<τ}Vt(ϕ) = 1{t<τ}Ṽt(ϕ) for every t ∈ [0, T ]. On the one hand, using
(43), we obtain

dṼ ∗
t (ϕ) =

k∑

i=1

ϕi
t

(
λtB

−1
t (S̃i

t(κi)− δi
t) dt + G−1

t ζi
t dWt

)

= λtB
−1
t (S̃t − Zt) dt + G−1

t ξt dWt.

On the other hand, the discounted pre-default cumulative price S̃c,∗ = B−1S̃c satisfies (cf. (24))

dS̃c,∗
t = λtB

−1
t (S̃t − Zt) dt + G−1

t ξt dWt.

Since by assumption Ṽ ∗
0 (ϕ) = V0(ϕ) = Sc

0 = S̃c,∗
0 , it is clear that Ṽ ∗

t (ϕ) = S̃c,∗
t for every t ∈ [0, T ].

We thus conclude that the pre-default wealth Ṽ (ϕ) of ϕ and the pre-default cumulative price S̃c of
the claim coincide. Note that the first equality in (43) is in fact only essential for those values of
t ∈ [0, T ] for which λt 6= 0.

To complete the proof, we need to check what happens when default occurs prior to or at maturity
T . To this end, it suffices to compare the jumps of Sc and V (ϕ) at time τ . In view of (45), (46) and
(43), we obtain

∆Vτ (ϕ) = Zτ − S̃τ = ∆Sc
τ

and thus Vt∧τ (ϕ) = Sc
t∧τ for any t ∈ [0, T ]. After default, we have dVt(ϕ) = rtVt(ϕ) dt and

dSc
t = rtS

c
t dt, so that we conclude that the desired equality Vt(ϕ) = Sc

t holds for any t ∈ [0, T ]. ¤

1.2.3 Replication with Market CDSs

When considering trading strategies involving CDSs issued in the past, one encounters a practical
difficulty regarding their liquidity. For this reason, we shall now analyze trading strategies based
on market CDS contracts. Recall that for each maturity Ti by the CDS issued at time t we mean
the CDS over [t, T ] with the spread κi

t = κ(t, Ti). We will now define a contract – that we call a
synthetic market CDS — which at any time t has similar features as the Ti-maturity CDS issued
at this date t, in particular, it has the ex-dividend price equal to zero. Let Di = D(κi, δ

i, Ti, τ) for
some fixed spread κi.

Definition 1.9 The Ti-maturity synthetic market CDS is a Ti-maturity defaultable claim with the
dividend process equal to D̄i = D̄(κi, δ

i, Ti, τ) where, for every t ∈ [0, Ti],

D̄i
t =

∫

]0,t]

Bu d(B−1
u Si

u(κi)) + Di
t. (47)

Of course, we may choose κi = κi
0 in Definition 1.9. The next lemma shows that the ex-dividend

price of the Ti-maturity market CDS equals zero at any date.

Lemma 1.4 The ex-dividend price S̄i of the Ti-maturity synthetic market CDS equals zero for any
t ∈ [0, Ti].
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Proof. We have ∫

]0,t]

B−1
u dD̄i

u = B−1
t Si

t(κi)− Si
0(κi) +

∫

]0,t]

B−1
u dDi

u. (48)

Hence the ex-dividend price of the Ti-maturity synthetic market CDS satisfies (recall that Si
Ti

(κi) =
0)

S̄i
t = Bt EQ∗

( ∫

]t,Ti]

B−1
u dD̄i

u

∣∣∣Gt

)
= EQ∗

(
− Si

t(κi) + Bt

∫

]t,Ti]

B−1
u dDi

u

∣∣∣Gt

)
= 0

for every t ∈ [0, Ti]. ¤

To describe the self-financing trading strategies in the savings account B and synthetic market
CDSs with ex-dividend prices S̄i, we will use Definition 1.7. In view of Lemma 1.4, S̄i

t = 0 for any
t ∈ [0, Ti] and thus Definition 1.7 takes the following form.

Definition 1.10 A strategy ϕ = (ϕ0, . . . , ϕk) in the savings account B and synthetic market CDSs
with dividend processes D̄i, i = 1, . . . , k, is said to be self-financing if the wealth Vt(ϕ) = ϕ0

t Bt

satisfies Vt(ϕ) = V0(ϕ) + Gt(ϕ) for every t ∈ [0, T ], where the gains process G(ϕ) is defined as
follows

Gt(ϕ) =
∫

]0,t]

ϕ0
u dBu +

k∑

i=1

∫

]0,t]

ϕi
u dD̄i

u.

Using (38), we obtain the following condition satisfied by the discounted wealth process of any
self-financing strategy ϕ in the sense of Definition 1.10

d(B−1
t Vt(ϕ)) =

k∑

i=1

ϕi
tB

−1
t dD̄i

t.

Lemma 1.5 Let ϕ be a self-financing strategy in the savings account B and ex-dividend prices
Si(κi), i = 1, . . . , k. Then the strategy ψ = (ψ0, . . . , ψk) where ψi = ϕi for i = 1, . . . , k and
ψ0

t = B−1
t Vt(ϕ) is a self-financing strategy in the savings account B and synthetic market CDSs

with dividend processes D̄i and its wealth process satisfies V (ψ) = V (ϕ).

Proof. Let ϕ be a self-financing strategy in the savings account B and ex-dividend prices Si(κi), i =
1, . . . , k. From the proof of Lemma 1.2, we know that

d(B−1
t Vt(ϕ)) =

k∑

i=1

ϕi
t

(
d(B−1

t Si
t(κi)) + B−1

t dDi
t

)
.

In view of (47), we obtain

d(B−1
t Vt(ϕ)) =

k∑

i=1

ϕi
t B−1

t dD̄i
t

as required. ¤

Using (48), we deduce that the cumulative price of the Ti-maturity synthetic market CDS satisfies
(see (10) and (35))

S̄c,i
t = S̄i

t + Bt

∫

]0,t]

B−1
u dD̄i

u = 1{t<τ}(κi
t − κi)Ã(t, T )−BtS

i
0(κi) + Bt

∫

]0,t]

B−1
u dDi

u.

If we choose κi = κi
0 then manifestly

S̄c,i
t = 1{t<τ}(κi

t − κi
0)Ã(t, T ) + Bt

∫

]0,t]

B−1
u dDi

u = Sc,i
t (κi

0).

We thus have the following immediate corollary to Theorem 1.1.
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Corollary 1.5 Assume that there exist F-predictable processes ϕ1, . . . , ϕk satisfying the following
conditions, for any t ∈ [0, T ],

k∑

i=1

ϕi
t

(
δi
t − S̃i

t(κi)
)

= Zt − S̃t,

k∑

i=1

ϕi
tζ

i
t = ξt.

Let the process V (ϕ) be given by (42) with the initial condition V0(ϕ) = Sc
0 and let ϕ0 be given by,

for t ∈ [0, T ],
ϕ0

t = B−1
t Vt(ϕ).

Then the self-financing trading strategy ϕ = (ϕ0, . . . , ϕk) in the savings account B and synthetic
market CDSs with dividend processes D̄i, i = 1, . . . , k replicates the defaultable claim (X,A, Z, τ).

Intuitively, one can think of the synthetic market CDS as a stream of CDSs that are continuously
entered into and immediately unwound. Consequently, one can assume an accounting convention
according to which one never holds a non-market CDS: suppose at time 0 one goes long the market
CDS with spread κi

0. If one still owns it at time t > 0, the convention dictates that one owns at
time t the market CDS with spread κi

t, but that it has already paid the cumulative dividends given
by (47). In this way, we avoid any problem with considering the short-sale positions: what would
be a short-sale position in an on-the-run (i.e., non-market) CDS becomes a short position in the
corresponding market CDS. This mathematical convention is actually consistent with the market
practice where default protection is bought or sold and then nullified, that is, CDSs are longed or
shorted and then unwound, as needed.

Remark. Laurent et al. [22] take a different approach to market CDSs. They postulate the
existence of instantaneous digital CDSs. Formally, the instantaneous dynamics of the instantaneous
digital CDS is exactly the same as these of the martingale M . Note, however, that they deal with
a model in which the reference filtration is trivial (this corresponds to the set-up considered in [7]).

1.2.4 Sufficient Conditions for Hedgeability

The first equality in (43) eliminates the jump risk, whereas the second one is used to eliminate
the spread risk. In general, the existence of ϕ1, . . . , ϕk satisfying (43) is not ensured and it is easy
to give an example when a solution to (43) fails to exist. In Example 1.1 below, we deal with
a (admittedly somewhat artificial) situation when the jump risk can be perfectly hedged, but the
prices of traded CDSs are deterministic prior to default, so that the spread risk of a defaultable
claim is non-hedgeable. In general, the solvability of (43) depends on several factors, such as: the
number of traded assets, the dimension of the driving Brownian motion, the random character of
default intensity γ and recovery payoffs δi and the features of a defaultable claim that we wish to
hedge.

Example 1.1 Let r = 0 and k = 2. Assume that κ1 6= κ2 are non-zero constants, T1 6= T2, and let
δ1 = δ2 = Z = 0. Assume also that the default intensity γ(t) > 0 is deterministic and the promised
payoff X is a non-constant FT -measurable random variable. We thus have (cf. (15))

mt = EQ∗(GT X | Ft) = GTEQ∗(X | Ft) = GT

(
EQ∗(X) +

∫ t

0

ξu dWu

)

for some non-vanishing process ξ. However, since γ is deterministic, it is also easy to deduce from
(30) that ζi

t = 0, i = 1, 2 for every t ∈ [0, T ]. The first condition in (43) reads
∑2

i=1 ϕi
tS̃

i
t(κi) = S̃t,

and since manifestly S̃i
t(κi) = κiGt

∫ T

t
Gu du 6= 0 for every t ∈ [0, T ], no difficulty may arise here.

However, the second equality,
∑2

i=1 ϕi
tζ

i
t = ξt cannot be satisfied for every t ∈ [0, T ], since the

left-hand side vanishes for every t ∈ [0, T ].
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We shall now provide sufficient conditions for the existence and uniqueness of a replicating
strategy for any defaultable claim in the practically appealing case of CDSs with constant protection
payments. We first address this issue in the special case where k = 2 and the model is driven by a
one-dimensional Brownian motion W . In addition, we assume that the two traded CDSs have the
same maturity, T1 = T2 = U ; this assumption is made here for simplicity of presentation only, and
it will be relaxed in Proposition 1.5 below. Let us denote

P̃t = BtG
−1
t EQ∗

( ∫ U

t

B−1
u Guλu du

∣∣∣Ft

)
, Ãt = BtG

−1
t EQ∗

( ∫ U

t

B−1
u Gu du

∣∣∣Ft

)

so that S̃i
t(κi) = δiP̃t − κiÃt for i = 1, 2. Similarly (cf. (41)) ni

t = δim
1
t − κim

2
t , where we set

m1
t = EQ∗

( ∫ U

0

B−1
u Guλu du

∣∣∣Ft

)
, m2

t = EQ∗
(∫ U

0

B−1
u Gu du

∣∣∣Ft

)
.

By the predictable representation property of the Brownian motion, dmj
t = ψj

t dWt for j = 1, 2 for
some F-predictable, real-valued processes ψ1 and ψ2.

Proposition 1.4 Assume that T1 = T2 = U and the constant protection payments δ1 and δ2 are
such that δ1κ2 6= δ2κ1 and (1− P̃t)ψ2

t 6= Ãtψ
1
t for almost every t ∈ [0, T ]. Then for any defaultable

claim (X,A, Z, τ) there exists a unique solution (ϕ1, ϕ2) to (43).

Proof. In view of (41), we obtain ζi
t = δiψ

1
t − κiψ

2
t . Hence the matching conditions (43) become

2∑

i=1

ϕi
t

(
δiP̂t + κiÃt

)
= Zt − S̃t,

2∑

i=1

ϕi
t

(
δiψ

1
t − κiψ

2
t

)
= ξt, (49)

where, for conciseness, we denoted P̂t = 1− P̃t. A unique solution to (49) exists provided that the
random matrix

Nt =
[

δ1P̂t + κ1Ãt δ2P̂t + κ2Ãt

δ1ψ
1
t − κ1ψ

2
t δ2ψ

1
t − κ2ψ

2
t

]

is non-singular for almost every t ∈ [0, T ], that is, whenever

detNt = (δ2κ1 − δ1κ2)(P̂tψ
2
t − Ãtψ

1
t ) 6= 0

for almost every t ∈ [0, T ]. ¤

Equality δ2κ1−δ1κ2 = 0 would practically mean that we deal with a single CDS rather than two
distinct CDSs. Note that we have here two sources of uncertainty, the discontinuous martingale M
and the Brownian motion W ; hence it was natural to expect that the number of assets required to
span the market equals 3

If the model is driven by a d-dimensional Brownian motion, it is natural to expect that one
will need at least d + 2 assets (the savings account and d + 1 distinct CDSs, say) to replicate any
defaultable claim, that is, to ensure the model’s completeness (for similar results in a Markovian
set-up, see [23]). This question is examined in the next result, in which we denote

P̃ i
t = BtG

−1
t EQ∗

( ∫ Ti

t

B−1
u Guλu du

∣∣∣Ft

)
, Ãi

t = BtG
−1
t EQ∗

( ∫ Ti

t

B−1
u Gu du

∣∣∣Ft

)

so that S̃i
t(κi) = δiP̃

i
t − κiÃ

i
t for i = 1, . . . , k. Similarly (cf. (41)) ni

t = δim
1i
t − κim

2i
t , where we set

m1i
t = EQ∗

(∫ Ti

0

B−1
u Guλu du

∣∣∣Ft

)
, m2i

t = EQ∗
( ∫ Ti

0

B−1
u Gu du

∣∣∣Ft

)
.

By the predictable representation property of the Brownian motion, dmji
t = ψji

t dWt for j = 1, 2
and i = 1, . . . , k and some F-predictable, Rd-valued processes ψji = (ψji1, . . . , ψjid). The proof of
the next result relies on a rather straightforward verification of (43).
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Proposition 1.5 Assume that the number of traded CDS is k = d + 1 and the model is driven
by a d-dimensional Brownian motion. Then conditions (43) can be represented by the linear equa-
tion Ntϕ̂t = ξ̂t with the Rk-valued process ϕ̂t = (ϕ1

t , . . . , ϕ
k
t )t, the Rk-valued process ξ̂t = (Zt −

S̃t, ξ
1
t , . . . , ξd

t )t and the k × k random matrix Nt is given by

Nt =




δ1P̂
1
t − κ1Ã

1
t . . . δkP̂ k

t − κkÃk
t

δ1ψ
111
t − κ1ψ

211
t . . . δkψ1k1

t − κkψ2k1
t

...
...

...
δ1ψ

11d
t − κ1ψ

21d
t . . . δkψ1kd

t − κkψ2kd
t


 ,

where P̂ i
t = 1− P̃ i

t . For any defaultable claim (X, A,Z, τ) there exists a unique solution (ϕ1, . . . , ϕk)
to (43) if and only if detNt 6= 0 for almost all t ∈ [0, T ].

2 Multi-Name Credit Default Swap Market

In this section, we shall deal with a market model driven by a Brownian filtration in which a finite
family of CDSs with different underlying names is traded.

2.1 Price Dynamics in a Multi-Name Model

Our first goal is to extend the pricing results of Section 1.1 to the case of a multi-name credit risk
model with stochastic default intensities.

2.1.1 Joint Survival Process

We assume that we are given n strictly positive random times τ1, . . . , τn, defined on a common
probability space (Ω,G,Q), and referred to as default times of n credit names. We postulate that
this space is endowed with a reference filtration F, which satisfies Assumption 1.2.

In order to describe dynamic joint behavior of default times, we introduce the conditional joint
survival process G(u1, . . . , un; t) by setting, for every u1, . . . , un, t ∈ R+,

G(u1, . . . , un; t) = Q∗(τ1 > u1, . . . , τn > un | Ft).

Let us set τ(1) = τ1 ∧ . . . ∧ τn and let us define the process G(1)(t; t), t ∈ R+ by setting

G(1)(t; t) = G(t, . . . , t; t) = Q∗(τ1 > t, . . . , τn > t | Ft) = Q∗(τ(1) > t | Ft).

It is easy to check that G(1) is a bounded submartingale. It thus admits the unique Doob-Meyer de-
composition G(1) = µ−ν. We shall work throughout under the following counterpart of Assumption
1.1.

Assumption 2.1 We assume that the process G(1) is continuous and the increasing process ν
is absolutely continuous with respect to the Lebesgue measure, so that dνt = υt dt for some F-
progressively measurable, non-negative process υ. We denote by λ̃ the F-progressively measurable
process defined as λ̃t = G−1

(1)(t; t)υt; we will refer to λ̃ as the first-to-default intensity.

We denote Hi
t = 1{τi≤t} and we introduce the following filtrations Hi,H and G

Hi
t = σ(Hi

s; s ∈ [0, t]), Ht = H1
t ∨ . . . ∨Hn

t , Gt = Ft ∨Ht,

We assume that the usual conditions of completeness and right-continuity are satisfied by these
filtrations. Arguing as in Section 1.1, we see that the process

M̂t = H
(1)
t − Λ̃t∧τ(1) = H

(1)
t −

∫ t∧τ(1)

0

λ̃u du = H
(1)
t −

∫ t

0

(1−H(1)
u )λ̃u du,
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is a G-martingale, where we denote H
(1)
t = 1{τ(1)≤t} and Λ̃t =

∫ t

0
λ̃u du. Note that the first-to-default

intensity λ̃ satisfies

λ̃t = lim
h↓0

1
h

Q∗(t < τ(1) ≤ t + h | Ft)
Q∗(τ(1) > t | Ft)

=
1

G(1)(t; t)
lim
h↓0

1
h

(νt+h − νt).

Since we now work in a multi-name set-up Assumption 2.1 is not sufficient for our further
purposes. We find it convenient to make the following standing assumption, in which, for any fixed
i = 1, . . . , n, we denote by Gi the filtration H1 ∨ . . .∨Hi−1 ∨Hi+1 ∨ . . .∨Hn ∨F and we also denote
Gi(t; t) = Q∗(τi > t | Gi

t). The process Gi is manifestly a bounded submartingale, and thus it admits
the unique Doob-Meyer decomposition Gi = µi − νi.

Assumption 2.2 We assume that each process Gi is continuous and the increasing process νi

is absolutely continuous with respect to the Lebesgue measure, so that dνi
t = υi

t dt for some Gi-
progressively measurable, non-negative process υi. We denote by λi the Gi-progressively measurable
process defined as λi

t = G−1
i (t; t)υi

t.

As usual, it can be verified that for any fixed i = 1, . . . , n, the process

M i
t = Hi

t −
∫ t

0

(1−Hi
s)λ

i
u du

is a G-martingale. Moreover, the Gi-intensity process λi of τi can also be represented as

λi
t = lim

h↓0
1
h

Q∗(t < τi ≤ t + h | Gi
t)

Q∗(τi > t | Gi
t)

.

We have the following auxiliary result, in which we introduce the first-to-default intensity λ̃i and
the associated martingale M̂ i for each credit name i = 1, . . . , n.

Lemma 2.1 For any i = 1, . . . , n, the process λ̃i given by

λ̃i
t = lim

h↓0
1
h

Q∗(t < τi ≤ t + h, τ(1) > t | Ft)
Q∗(τ(1) > t | Ft)

is well defined and the process M̂ i, given by the formula

M̂ i
t = Hi

t∧τ(1)
−

∫ t∧τ(1)

0

λ̃i
u du,

is a G-martingale.

Proof. Let us set τ i
(1) = τ1 ∧ . . . ∧ τi−1 ∧ τi+1 ∧ . . . ∧ τn. On the event {τ i

(1) > t}, which belongs to
Gi

t , we have

Q∗(t < τi ≤ t + h | Gi
t) =

Q∗(t < τi ≤ t + h, t < τ i
(1) | Ft)

Q∗(τ i
(1) > t | Ft)

=
Q∗(t < τi ≤ t + h, τ(1) > t | Ft)

Q∗(τ i
(1) > t | Ft)

and

Q∗(τi > t | Gi
t) =

Q∗(τi > t, τ i
(1) > t | Ft)

Q∗(τ i
(1) > t | Ft)

=
Q∗(τ(1) > t | Ft)
Q∗(τ i

(1) > t | Ft)
.

Hence λi
t = λ̃i

t on the event {τ(1) > t}. To conclude the proof, it suffices to observe that M̂ i
t = M i

t∧τ(1)

for every t ∈ R+ and thus M̂ i is a G-martingale as well. ¤

It is worth noting that, as expected, the equalities
∑n

i=1 λ̃i = λ̃ and M̂ =
∑n

i=1 M̂ i are valid.
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2.1.2 Price Dynamics of a First-to-Default Claim

We will now analyze the risk-neutral valuation of first-to-default claims on a basket of n credit
names. As before, τ1, . . . , τn are respective default times and τ(1) = τ1 ∧ . . . ∧ τn stands for the
moment of the first default.

Definition 2.1 A first-to-default claim with maturity T associated with τ1, . . . , τn is a defaultable
claim (X,A, Z, τ(1)), where X is an FT -measurable amount payable at maturity T if no default occurs
prior to or at T , an F-adapted, continuous process of finite variation A : [0, T ] → R with A0 = 0
represents the dividend stream up to τ(1), and Z = (Z1, . . . , Zn) is the vector of F-predictable,
real-valued processes, where Zi

τ(1)
specifies the recovery received at time τ(1) if default occurs prior

to or at T and the ith name is the first defaulted name, that is, on the event {τi = τ(1) ≤ T}.

The next definition extends Definition 1.2 to the case of a first-to-default claim. Recall that we
denote H

(1)
t = 1{τ(1)≤t} for every t ∈ [0, T ].

Definition 2.2 The dividend process D = (Dt)t∈R+ of a first-to-default claim maturing at T equals,
for every t ∈ R+,

Dt = X1{T<τ(1)}1[T,∞[(t) +
∫

]0,t∧T ]

(1−H(1)
u ) dAu +

∫

]0,t∧T ]

n∑

i=1

1{τ(1)=τi}Z
i
u dH(1)

u .

We are in the position to examine the prices of the first-to-default claim. Note that

1{t<τ(1)}S
c
t = 1{t<τ(1)}S̃

c
t , 1{t<τ(1)}St = 1{t<τ(1)}S̃t,

where S̃c and S̃ are pre-default values of Sc and S, where the price processes Sc and S are given by
Definitions 1.3 and 1.4, respectively. We postulate that, for i = 1, . . . , n,

EQ∗ |B−1
T X| < ∞, EQ∗

∣∣∣
∫

]0,T ]

B−1
u (1−H(1)

u ) dAu

∣∣∣ < ∞, EQ∗ |B−1
τ(1)∧T Zi

τ(1)∧T | < ∞,

so that that the ex-dividend price St (and thus also cumulative price Sc) is well defined for any
t ∈ [0, T ]. In the next auxiliary result, we denote Y i = B−1Zi. Hence Y i is a real-valued, F-
predictable process such that EQ∗ |Y i

τ(1)∧T | < ∞.

Lemma 2.2 We have that

Bt EQ∗
( n∑

i=1

1{t<τ(1)=τi≤T}Y i
τ(1)

∣∣∣Gt

)
= 1{t<τ(1)}

Bt

G(1)(t; t)
EQ∗

( ∫ T

t

n∑

i=1

Y i
uλ̃i

uG(1)(u; u) du
∣∣∣Ft

)
.

Proof. Let us fix i and let us consider the process Y i
u = 1A1]s,v](u) for some fixed date t ≤ s < v ≤ T

and some event A ∈ Fs. We note that

1{s<τ(1)=τi≤v} = Hi
v∧τ(1)

−Hi
s∧τ(1)

= M̂ i
v − M̂ i

s +
∫ v∧τ(1)

s∧τ(1)

λ̃i
u du.

Using Lemma 2.1, we thus obtain

EQ∗
(
1{t<τ(1)=τi≤T}Y i

τ(1)

∣∣∣Gt

)
= EQ∗

(
1A1{s<τ(1)=τi≤v}

∣∣∣Gt

)

= EQ∗
(
1A

(
M̂ i

v − M̂ i
s +

∫ v∧τ(1)

s∧τ(1)

λ̃i
u du

) ∣∣∣Gt

)

= EQ∗
(
1A EQ∗

(
M̂ i

v − M̂ i
s +

∫ v∧τ(1)

s∧τ(1)

λ̃i
u du

∣∣∣Gs

) ∣∣∣Gt

)
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= EQ∗
( ∫ T∧τ(1)

t∧τ(1)

Y i
uλ̃i

u du
∣∣∣Gt

)

= 1{t<τ(1)}
1

G(1)(t; t)
EQ∗

( ∫ T

t

Y i
uλ̃i

uG(1)(u; u) du
∣∣∣Ft

)
,

where the penultimate equality follows from the formula

EQ∗
( ∫ T∧τ(1)

t∧τ(1)

Ru du
∣∣∣Gt

)
= 1{t<τ(1)}

1
G(1)(t; t)

EQ∗
( ∫ T

t

RuG(1)(u; u) du
∣∣∣Ft

)
,

which is known to hold for any F-predictable process R such that the right-hand side is well defined
(see Proposition 5.1.2 in [3]). ¤

Given Lemma 2.2, the proof of the next result is very much similar to that of Proposition 1.1
and thus is omitted.

Proposition 2.1 The pre-default ex-dividend price S̃ of a first-to-default claim (X, A,Z, τ(1)) sat-
isfies

S̃t =
Bt

G(1)(t; t)
EQ∗

(
B−1

T G(1)(T ; T )X1{t<T} +
∫ T

t

B−1
u G(1)(u;u)

( n∑

i=1

Zi
uλ̃i

u du + dAu

) ∣∣∣Ft

)
.

By proceeding as in the proof of Proposition 1.2, one can also establish the following result,
which gives dynamics of price processes S̃ and Sc. Recall that µ is the continuous martingale arising
in the Doob-Meyer decomposition of the hazard process G(1).

Proposition 2.2 The dynamics of the pre-default ex-dividend price S̃ of a first-to-default claim
(X,A, Z, τ(1)) on [0, τ(1) ∧ T ] are

dS̃t = (rt + λ̃t)S̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt− dAt + G−1

(1)(t; t)
(
Bt dmt − S̃t dµt

)

+ G−2
(1)(t; t)

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
,

where the continuous F-martingale m is given by the formula

mt = EQ∗
(

B−1
T G(1)(T ;T )X +

∫ T

0

B−1
u G(1)(u; u)

( n∑

i=1

Zi
uλ̃i

u du + dAu

) ∣∣∣Ft

)
. (50)

The dynamics of the cumulative price Sc on [0, τ(1) ∧ T ] are

dSc
t =

n∑

i=1

(Zi
t − S̃t−) dM i

t +
(
rtS̃t −

n∑

i=1

λ̃i
tZ

i
t

)
dt− dAt + G−1

(1)(t; t)
(
Bt dmt − S̃t dµt

)

+ G−2
(1)(t; t)

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

2.1.3 Hypothesis (H)

As in the single-name case, the most explicit results can be derived under an additional assumption
of the immersion property of filtrations F and G.

Assumption 2.3 We assume that any F-martingale under Q∗ is a G-martingale under Q∗. This
also implies that Hypothesis (H) holds between F and G. In particular, any F-martingale is also a
Gi-martingale for i = 1, 2, that is, Hypothesis (H) holds between F and Gi for i = 1, 2.
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It is worth stressing that, in general, there is no reason to expect that any Gi-martingale is
necessarily a G-martingale. We shall argue that even when the reference filtration F is trivial this
is not the case, in general (except for some special cases, for instance, under the independence
assumption).

Example 2.1 Let us take n = 2 and let us denote G
1|2
t = Q∗(τ1 > t |H2

t ) and G(u, v) = Q(τ1 >
u, τ2 > v). It is then easy to prove that

dG
1|2
t =

(
∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

)
dM2

t +
(

H2
t ∂1h(t, τ2) + (1−H2

t )
∂1G(t, t)
G(0, t)

)
dt,

where h(t, u) = ∂2G(t,u)
∂2G(0,u) and M2 is the H2-martingale given by

M2
t = H2

t +
∫ t∧τ2

0

∂2G(0, u)
G(0, u)

du.

If Hypothesis (H) holds between H2 and H1 ∨ H2 then the martingale part in the Doob-Meyer
decomposition of G1|2 vanishes. We thus see that Hypothesis (H) is not always valid, since clearly

∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

does not vanish, in general. One can note that in the special case when τ2 < τ1, the martingale part
in the above-mentioned decomposition disappears and thus Hypothesis (H) holds between H2 and
H1 ∨H2 (this case was recently studied by Ehlers and Schönbucher [13]).

From now on, we shall work under Assumption 2.3. In that case, the dynamics of price processes
obtained in Proposition 2.1 simplify, as the following result shows.

Corollary 2.1 The pre-default ex-dividend price S̃ of a first-to-default claim (X, A,Z, τ(1)) satisfies

dS̃t = (rt + λ̃t)S̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt− dAt + BtG

−1
(1)(t; t) dmt,

where the continuous F-martingale m is given by (50). The cumulative price Sc of a first-to-default
claim (X, A,Z, τ(1)) is given by the expression, for t ∈ [0, T ∧ τ(1)],

dSc
t = rtS

c
t dt +

n∑

i=1

(Zi
t − S̃t) dM̂ i

t + BtG
−1
(1)(t; t) dmt. (51)

Equivalently, for t ∈ [0, T ∧ τ(1)],

dSc
t = rtS

c
t dt +

n∑

i=1

(Zi
t − S̃t) dM̂ i

t + BtG
−1
(1)(t; t) dm̂t, (52)

where m̂ is a G-martingale given by m̂t = mt∧τ(1) for every t ∈ [0, T ].

In what follows, we assume that F is generated by a Brownian motion. Then there exists an
F-predictable process ξ for which dmt = ξt dWt so that formula (52) yields the following result.

Corollary 2.2 The discounted cumulative price of a first-to-default claim (X, A, Z, τ(1)) satisfies,
for t ∈ [0, T ∧ τ(1)],

dSc,∗
t =

n∑

i=1

B−1
t (Zi

t − S̃t) dM̂ i
t + G−1

(1)(t; t)ξt dWt.
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2.1.4 Price Dynamics of a CDS

By the ith CDS we mean the credit default swap written on the ith reference name, with the maturity
date Ti, the constant spread κi and the protection process δi, as specified by Definition 1.5.

Let Si
t|j(κi) stand for the ex-dividend price at time t of the ith CDS on the event τ(1) = τj for

some j 6= i. This value can be represented using a suitable extension of Proposition 2.1, but we
decided to omit the derivation of this pricing formula. Assuming that we have already computed
Si

t|j(κi), the ith CDS can be seen, on the random interval [0, Ti ∧ τ(1)], as a first-to-default claim
(X,A, Z, τ(1)) with X = 0, Z = (Si

t|1(κi), . . . , δi, . . . , Si
t|n(κi)) and At = −κit. This observation

applies also to the random interval [0, T ∧ τ(1)] for any fixed T ≤ Ti.

Let us denote by ni the following F-martingale

ni
t = EQ∗

(
n∑

i=1

∫ Ti

0

B−1
u G(1)(u; u)

(
δi
uλ̃i

u +
n∑

j=1 ,j 6=i

Si
u|j(κi)λ̃j

u − κi

)
du

∣∣∣Ft

)
.

The following result can be easily deduced from Proposition 2.1.

Corollary 2.3 The cumulative price of the ith CDS satisfies, for t ∈ [0, Ti ∧ τ(1)],

dSc,i
t (κi)) = rtS

c,i
t (κi) dt + (δi

t − S̃i
t(κi)) dM̂ i

t +
n∑

j=1, j 6=i

(Si
t|j(κi)− S̃i

t(κi)) dM̂ j
t + BtG

−1
(1)(t; t) dni

t.

Consequently, the discounted cumulative price of the ith CDS satisfies, for t ∈ [0, Ti ∧ τ(1)],

dSc,i,∗
t (κi) = B−1

t (δi
t − S̃i

t(κi)) dM̂ i
t +

n∑

j=1, j 6=i

(Si
t|j(κi)− S̃i

t(κi)) dM̂ j
t + G−1

(1)(t; t)ζ
i
t dWt,

where ζi is an F-predictable process such that dni
t = ζi

t dWt.

Note that the F-martingale ni can be replaced by the G-martingale n̂i
t = ni

t∧τ(1)
.

2.2 Replication of a First-to-Default Claim

Our final goal is to extend Theorem 3.1 in Bielecki et al. [7] and Theorem 1.1 of Section 1 to
the case of several credit names in a hazard process model in which credit spreads are driven by a
multi-dimensional Brownian motion. We consider a self-financing trading strategy ϕ = (ϕ0, . . . , ϕk)
with G-predictable components, as defined in Section 1.2. The 0th traded asset is thus the savings
account; the remaining k primary assets are single-name CDSs with different underlying credit names
and/or maturities. As before, for any l = 1, . . . , k we will use the short-hand notation Sl(κl) and
Sc,l(κl) to denote the ex-dividend and cumulative prices of CDSs with respective dividend processes
D(κl, δ

l, Tl, τ̃l) given by formula (25). Note that here τ̃l = τj for some j = 1, . . . , n. We will thus
write τ̃l = τjl

in what follows.

Remark. Note that, typically, we will have k = n + d so that the number of traded assets will be
equal to n + d + 1.

Recall that the cumulative price of a first-to-default claim (X, A,Z, τ(1)) is denoted as Sc. We
adopt the following natural definition of replication of a first-to-default claim.

Definition 2.3 We say that a self-financing strategy ϕ = (ϕ0, . . . , ϕk) replicates a first-to-default
claim (X, A, Z, τ(1)) if its wealth process V (ϕ) satisfies the equality Vt∧τ(1)(ϕ) = Sc

t∧τ(1)
for any

t ∈ [0, T ].



24 Pricing and Trading Credit Default Swaps

When dealing with replicating strategies in the sense of the definition above, we may and do
assume, without loss of generality, that the components of the process ϕ are F-predictable processes.
This is rather obvious, since prior to default any G-predictable process is equal to the unique F-
predictable process.

The following result is a counterpart of Lemma 1.3. Its proof follows easily from Lemma 1.2
combined with Corollary 2.3, and thus it is omitted.

Lemma 2.3 We have, for any t ∈ [0, T ∧ τ(1)],

dV ∗
t (ϕ) =

k∑

l=1

ϕl
t

(
B−1

t

(
δl
t − S̃l

t(κl)
)
dM̂ jl

t +
n∑

j=1 ,j 6=jl

B−1
t

(
Sl

t|j(κl)− S̃l
t(κl)

)
dM̂ j

t + G−1
(1)(t; t) dnl

t

)
,

where

nl
t = EQ∗

(∫ Tl

0

B−1
u G(1)(u; u)

(
δl
uλ̃jl

u +
n∑

j=1 ,j 6=jl

Sl
u|j(κl)λ̃j

u − κl

)
du

∣∣∣Ft

)
.

We are now in the position to extend Theorem 1.1 to the case of a first-to-default claim on a
basket of n credit names. It is also an extension of Theorem 3.1 in [7] to the case of non-trivial
reference filtration F.

Recall that ξ and ζl, l = 1, . . . , k are F-predictable, Rd-valued processes such that dmt = ξt dWt

and dnl
t = ζl

t dWt.

Theorem 2.1 Assume that the processes ϕ̃1, . . . , ϕ̃n satisfy, for t ∈ [0, T ] and i = 1, . . . , n

k∑

l=1, jl=i

ϕ̃l
t

(
δl
t − S̃l

t(κl)
)

+
k∑

l=1, jl 6=i

ϕ̃l
t

(
Sl

t|i(κl)− S̃l
t(κl)

)
= Zi

t − S̃t

and
∑k

l=1 ϕ̃l
tζ

l
t = ξt. Let us set ϕi

t = ϕ̃i(t∧ τ(1)) for i = 1, . . . , k and t ∈ [0, T ]. Let the process V (ϕ)
be given by Lemma 2.3 with the initial condition V0(ϕ) = Sc

0 and let ϕ0 be given by

Vt(ϕ) = ϕ0
t Bt +

k∑

l=1

ϕl
tS

l
t(κl).

Then the self-financing strategy ϕ = (ϕ0, . . . , ϕk) replicates the first-to-default claim (X,A, Z, τ(1)).

Proof. The proof goes along the similar lines as the proof of Theorem 1.1. It suffices to examine
replicating strategy on the random interval [0, T ∧ τ(1)]. In view of Lemma 2.3, the wealth process
of a self-financing strategy ϕ satisfies on [0, T ∧ τ(1)]

dV ∗
t (ϕ) =

k∑

l=1

ϕ̃l
t

(
B−1

t

(
δl
t − S̃l

t(κl)
)
dM̂ jl

t +
n∑

j=1 ,j 6=jl

B−1
t

(
Sl

t|j(κl)− S̃l
t(κl)

)
dM̂ j

t + G−1
(1)(t; t)ζ

l
t dWt

)

whereas the discounted cumulative price of a first-to-default claim (X, A, Z, τ(1)) satisfies on the
interval [0, T ∧ τ(1)] (cf. (51))

dSc∗
t =

n∑

i=1

B−1
t (Zi

t − St−) dM̂ i
t + (1−H

(1)
t )G−1

(1)(t; t)ξt dWt.

A comparison of the last two formulae leads directly to the stated conditions. It then suffices to
verify that the strategy ϕ = (ϕ0, . . . , ϕk) introduced in the statement of the theorem replicates a
first-to-default claim in the sense of Definition 2.3. Since this verification is rather standard, it is
left to the reader. ¤
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