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Abstract

We analyze the counterparty risk embedded in CDS contracts, in presence of a bilat-

eral margin agreement. First, we investigate the pricing of collateralized counterparty

risk and we derive the bilateral Credit Valuation Adjustment (CVA), unilateral Credit

Valuation Adjustment (UCVA) and Debt Valuation Adjustment (DVA). We propose

a model for the collateral by incorporating all related factors such as the thresholds,

haircuts and margin period of risk. We derive the dynamics of the bilateral CVA in a

general form with related jump martingales. We also introduce the Spread Value Ad-

justment (SVA) indicating the counterparty risk adjusted spread. Counterparty risky

and the counterparty risk-free spread dynamics are derived and the dynamics of the

SVA is found as a consequence. We finally employ a Markovian copula model for de-

fault intensities and illustrate our findings with numerical results.
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1 Introduction

Not very long after the collapse of prestigious institutions like Long-Term Capital Man-

agement, Enron and Global Crossing, the financial industry has again witnessed dramatic

downfalls of financial institutions such as Lehman Brothers, Bear Stearns and Wachovia.

These recent collapses have stressed out the importance of measuring, managing and miti-

gating counterparty risk appropriately.

Counterparty risk is defined as the risk that a party in an over-the-counter (OTC)

contract will default and will not be able to honor its contractual obligations. Since the

exchange-traded derivative contracts are subject to clearing by the exchange, counterparty

risk arises from OTC derivatives only. The main challenge in the counterparty risk as-

sessment and hedging is that the exposures of OTC derivatives are stochastic and involve

dependencies and systemic risk factors such as wrong way risks; the additional level of com-

plexity is introduced by risk mitigation techniques such as collateralization and netting.

Therefore, one needs to model potential future exposures and to price the counterparty risk

appropriately according to margin agreements that underlie the collateralization procedures.

Brigo and Capponi [BC09] focuses on a Gaussian copula model and study bilateral

counterparty risk using a CIR++ intensity model. Recently, Brigo et al. [BCPP11] extended

this framework to the collateralized contracts with an application to interest rate swaps

under bilateral margin agreements. Hull and White [HW01] propose a static copula model

and study unilateral counterparty risk on credit default swaps. Bielecki et al. [BCJZ11]

study unilateral counterparty risk with the absence of any margin agreements. Assefa et al.

[ABCJ11] consider the portfolio of credit default swaps under Markovian copula model and

consider only fully collateralized contracts. Jarrow and Yu [JY01] deal with the counterparty

risk by using a dependence structure based on the default intensities of the counterparties.

This approach, that also addresses the contagion risk issue, is considered in Leung and Kwok

[LK05]. All these works mentioned above employ the reduced form modeling technology.

However, structural models have also been used to model counterparty risk. Good examples

of this approach are papers by Lipton and Sepp [LS09] and Blanchet-Scalliet and Patras

[BSP11]. Moreover, Stein and Lee [SL11] study and illustrate credit valuation adjustment

computations in the fixed income markets.

Various issues regarding the simulation of credit valuation adjustments under margin

agreements are studied by Pykhtin in [Pyk09]. Furthermore, Cesari et al. [CAC10] and

Gregory [Gre09] provide thorough treatments of the methods and the applications used in

practice regarding the counterparty risk.

In this paper, we analyze the counterparty risk in a Credit Default Swap (CDS) contract

in presence of a bilateral margin agreement. There are three risky names associated with

the contract: the reference entity, protection seller (the counterparty) and the protection

buyer (the investor). Contrary to the common approach which starts with defining the

Potential Future Exposure (PFE) and derives the Credit Valuation Adjustment (CVA) as

the price of the counterparty risk, we find the CVA as the difference between the market
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values of a counterparty risk-free and a counterparty risky CDS contracts and deduct the

relevant credit exposures accordingly. We consider the problem of bilateral counterparty

risk assessment; that is, we consider the situation where the two counterparties of the CDS

contract, i.e. the investor and the counterparty, are subject to default risk in a counterparty

risky CDS contract.

We focus on the collateralized contracts, where there is a bilateral margin agreement is in

force as a vital risk mitigation tool, and it requires the counterparty and the investor to post

collateral in case their exposure exceeds specific threshold values. We propose a model for

the collateral by incorporating all related factors, such as thresholds, margin period of risk

and minimum transfer amount. Then, we derive the dynamics of the bilateral CVA which

is essential for dynamic hedge of the counterparty risk. We also compute the decomposition

of the fair spread for the CDS, and we analyze so called Spread Value Adjustment (SVA).

Essentially, SVA represents the adjustment to be made to the fair spread to incorporate the

counterparty risk into the CDS contract.

Using the bilateral CVA formula, we derive relevant formulas for assessment of credit ex-

posures, such as PFE, Expected Positive Exposure (EPE) and Expected Negative Exposure

(ENE).

In our model, the dependence between defaults and the wrong way risk is represented

in a Markovian copula framework that accounts for simultaneous defaults among the three

names represented in a CDS contract. In this way, our model takes broader systemic risk

factors into account and quantifies the wrong way risk and the double defaults in a tangible

manner.

This paper is organized as follows. In Section 2, we first define the dividend processes

regarding the counterparty risky and the counterparty risk-free CDS contract in case of a

bilateral margin agreement. We also define the CVA, UCVA and the DVA terms as well

as the credit exposures such as PFE, EPE and ENE. We then prove the dynamics of the

CVA in Section 2.3. Moreover, we find the fair spread adjustment term and its dynamics

in Section 2.4. In Section 3, we simulate the collateralized exposures and the CVA using

our Markovian copula model of default dependence.

2 Pricing Counterparty Risk: CVA, UCVA and DVA

We consider a standard CDS contract, and we label by 1 the reference name, by 2 the

counterparty, and by 3 the investor. Each of the three names may default before the

maturity of the CDS contract, and we denote by τ1, τ2 and τ3 their respective default

times. These times are modeled as non-negative random variables given on a underlying

probability space (Ω,G,Q). We let T and κ to denote the maturity and the spread of our

CDS contract, respectively. We assume the recovery at default covenant; that is, we assume

that recoveries are paid at times of default.

We introduce right-continuous processes H i
t by setting H i

t =I{τi≤t} and we denote by Hi

the associated filtrations so that Hit = σ
(
H i
u : u ≤ t

)
for i = 1, 2, 3.
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We assume that we are given a market filtration F, and we define the enlarged filtration

G = F∨H1∨H2∨H3, that is Gt = σ
(
Ft ∪H1

t ∪H2
t ∪H3

t

)
for any t ∈ R+. For each t ∈ R+

total information available at time t is captured by the σ-field Gt. In particular, processes

H i are G-adapted and the random times τi are G-stopping times for i = 1, 2, 3.

Next, we define the first default time as the minimum of τ1, τ2 and τ3: τ = τ1∧τ2∧τ3; the

corresponding indicator process is Ht = I{τ≤t}. In addition, we define the first default time

of the two counterparties: τ̂ = τ2∧ τ3, and the corresponding indicator process Ĥt = I{τ̂≤t}.
We also denote by Bt the savings account process, that is

Bt = e
∫ t
0 rsds,

where the F-progressively measurable process r models the short-term interest rate. We

also postulate that Q represents a martingale measure associated with the choice of the

savings account B as a discount factor (or numeraire).

2.1 Dividend Processes and Marking-to-Market

In this paper, all cash flows and the prices are considered from the perspective of the

investor.

We start by introducing the counterparty-risk-free dividend process D, which describes

all cash flows associated with a counterparty-risk-free CDS contract;1 that is, D does not

account for the counterparty risk.

Definition 2.1. The cumulative dividend process D of a counterparty risk-free CDS con-

tract maturing at time T is given as,

Dt =

∫
]0,t]

δ1
udH

1
u − κ

∫
]0,t]

(
1−H1

u

)
du, (1)

for every t ∈ [0, T ], where δ1 : [0, T ]→ R is an F-predictable processes.

Process δ1 represents the loss given default (LGD); that is δ1 = 1−R1
t , where R1 is the

fraction of the nominal that is recovered in case of the default of the reference name. We

assume unit nominal, for simplicity.

The ex-dividend price processes of the counterparty risk-free CDS contract, say S, de-

scribes the current market value, or the Mark-to-Market (MtM) value of this contract.

Definition 2.2. The ex-dividend price process S of a counterparty risk-free CDS contract

maturing at time T is given by,

St = BtEQ

(∫
]t,T ]

B−1
u dDu

∣∣∣∣∣Gt
)
, t ∈ [0, T ]. (2)

1We shall sometimes refer to such contract as to the clean contract.
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Remark 2.3. Accordingly, we define the cumulative (dividend) price process, say Ŝ, of a

counterparty risk-free CDS contract as

Ŝt = St +Bt

∫
]0,t]

B−1
u dDu, t ∈ [0, T ].

Now, we are in position to define the dividend process DC of a counterparty risky CDS

contract, that is the CDS contract that accounts for the counterparty risk associated with

the two counterparties of the contract.

Definition 2.4. The dividend process DC of a T -maturity counterparty-risky CDS contract

is given as

DC
t =

∫
]0,t]

CudHu +

∫
]0,t]

δ̃1
u (1−Hu−) dH1

u +

∫
]0,t]

δ̃2
u (1−Hu−) dH2

u

+

∫
]0,t]

δ̃3
u (1−Hu−) dH3

u +

∫
]0,t]

δ̃4
u (1−Hu−) d[H2, H3]u (3)

+

∫
]0,t]

δ̃5
u (1−Hu−) d[Ĥ,H1]u − κ

∫
]0,t]

(1−Hu) du, t ∈ [0, T ],

where δ̃i : [0, T ]→ R is an F-predictable processes for i = 1, . . . , 5 and C : [0, T ]→ R is an

F-predictable process representing the collateral amount kept in the margin account.

Margin account is a contractual tool that supplements the CDS contract so to reduce

potential losses that may be incurred by one of the counterparties in case of the default of

the other counterparty, while the CDS contract is still alive. For the detailed description

of the mechanics of the collateral formation in the margin account we refer to Section 2.1.1

(see also [BC11]).

In case of any credit event, associated with the collateralized CDS contract, the first cash

flow that takes place is the “transfer” of the collateral amount; for example, in case when

the underlying entity defaults at time t = τ = τ1, (before any of the counterparties defaults)

the collateral in the margin account is acquired by one of the counterparties (depending on

the sign of Cτ ). Thus, consistently with the conventions of so called close-out cash flows

(cf. [BC11]) we define δ̃is as follows:

• We set δ̃1
t = δ1

t − Ct. This is because after the collateral transfer the counterparty

pays the remaining recovery amount δ1
t − Ct.

• At time t = τ = τ2, when the counterparty defaults, then, after the collateral transfer

takes place, if the uncollateralized mark-to-market (MtM) of the CDS contract, that

is St + I{t=τ1}δ1
t − Ct

2, is negative, the investor closes out the position by paying

the defaulting counterparty the uncollateralized MtM. If the uncollateralized MtM

2The term I{t=τ1}δ
1
t represents the exposure in case when the counterparty and the underlying entity

default simultaneously.
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is positive, the investor closes out the position and receives a fraction R2 of the

uncollateralized MtM from the counterparty. Therefore, in this case, the close-out

payment is defined as,

δ̃2
t = R2

(
St + I{t=τ1}δ

1
t − Ct

)+ − (St + I{t=τ1}δ
1
t − Ct

)−
.

• In case of investor default, that is at time t = τ = τ3, if the uncollateralized MtM is

positive, that is if St + I{t=τ1}δ1
t − Ct > 0, the counterparty closes out the position

by paying the uncollateralized MtM. If the uncollateralized MtM is negative, the

counterparty receives a fraction R3 of the uncollateralized MtM. Hence, the close-out

payment is defined as,

δ̃3
t =

(
St + I{t=τ1}δ

1
t − Ct

)+ −R3

(
St + I{t=τ1}δ

1
t − Ct

)−
.

• If the investor and the counterparty default simultaneously at time t = τ = τ2 = τ3,

and if the uncollateralized MtM negative, the counterparty receives a fraction R3

of the uncollateralized MtM; however, if the uncollateralized MtM is positive, the

investor receives a fraction R2 of the uncollateralized MtM. Therefore, we set,

δ̃4
t = −

(
St + I{t=τ1}δ

1
t − Ct

)
.

• If t = τ = τ̂ = τ1, that is when the investor or the counterparty default simultaneously

with the reference entity, investor receives a fraction R2 of the remaining recovery

amount,
(
δ1
t − Ct

)+
, when the counterparty defaults. Likewise, if the investor defaults,

the counterparty receives a portion R3 of the remaining recovery amount,
(
δ1
t − Ct

)−
.

The close-out payment in joint defaults including the underlying entity has the form,

δ̃5
t = −

(
δ1
t − Ct

)
.

We are now ready to define the price processes associated with a counterparty risky

CDS contract.

Definition 2.5. The ex-dividend price process SC of a counterparty risky CDS contract

maturing at time T is given as,

SCt = BtEQ

(∫
]t,T ]

B−1
u dDC

u

∣∣∣∣∣Gt
)
, t ∈ [0, T ]. (4)

The cumulative price process ŜC of a counterparty risky CDS contract is given by,

ŜCt = SCt +Bt

∫
]0,t]

B−1
u dDC

u , t ∈ [0, T ].
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2.1.1 Bilateral Margin Agreement and Collateral Modeling

Collateralization is one of the most important techniques of mitigation of counterparty risk,

and modeling the collateral process (also termed the margin call process) is of great practical

importance (cf. [Alg09]). In this section, we propose a model to describe formation of the

required collateral amount at every time t ∈ [0, T ], with regard to bilateral margin agree-

ments.3 The following contractual parameters are essential in bilateral margin agreements

and they are precisely defined in CSA documents.

Margin Period of Risk : The margin period of risk consists of several components. Firms

usually monitor their exposure on a periodic basis and receive or make appropriate margin

calls considering other collateral parameters. The frequency of this process is called the

margin call period and it is typically one day. This period includes a number of phases

such as computation, negotiation, verification and settlement of the margin call also with

possible disputes during the process. According to the ISDA Master Agreement, in case of

a potential default, the defaulting counterparty enters into a short forbearance period to

recover from a potential default event where the collateral is pledged by the other firm. This

time interval is called the cure period. If the default is uncured, liquidation process of the

collateral assets starts (cf. [ISD10b], page 26). This period mainly depends on the collateral

portfolio selection, precise assessment of asset correlation and concentration risks as well as

their liquidity, volatility and credit quality parameters. Therefore, the time interval from

the last margin call plus the cure period until all collateral assets are liquidated and the

resulting market risk is re-hedged is called the margin period of risk (cf. [Pyk09]); we shall

denote it as ∆.

Threshold : The threshold is the unsecured credit exposure that both counterparties

are willing to tolerate without holding any collateral. Bilateral margin agreements specify

thresholds for both counterparties and require them to post collateral whenever the current

credit exposure exceeds their thresholds (cf. [ISD10b], page 11). These threshold amounts

are defined in the related CSA documents and often set to react to the changes in the credit

rating of the counterparties (cf.[ISD10a], page 13). We will denote the counterparty and

the investor’s thresholds by Γcpty and Γinv, respectively. Since we are doing our analysis

from the point of view of the investor, we set the counterparty’s threshold Γcpty to be a

non-negative constant, and the investor’s threshold Γinv to be a non-positive constant.

Minimum Transfer Amount : Margin calls for amounts smaller than the MTA are not

allowed. The purpose of the MTA is to prevent calling small amounts; this is done so to

avoid the operational costs involved in small transactions (cf. [ISD10b], page 13). Minimum

transfer amount is usually the same for the investor and the counterparty.

Re-hypothecation Risk and Segregation: Collateral assets can be reused as a funding

source on another derivatives transactions. This is known as rehypothecation. An investor

3 A bilateral margin agreement is a contractual agreement governed by a Credit Support Annex (CSA),

which is a regulatory part of the ISDA Master Agreement (cf. [ISD05], page 34) describing the use of

collateral which is either directly transferred between counterparties or held by a third party such as a

clearing house (cf. [ISD05], page 68).
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(counterparty) can rehypothecate the collateral received from the counterparty (investor)

by selling or lending out the assets to a third party, which dramatically increases the credit

risk associated with the collateral. Elimination of this rehypothecation risk is essentially

done by segregating the collateral to a third party, such as a clearing house. This procedure

carries certain funding risks, since the counterparties will not be getting funding benefit from

the collateral posted, so they need to raise funding in connection with their transactions

using their own funding rates.

The construction of the collateral process presented below builds upon the construction

given in [BC11]. Let us denote the margin call dates by 0 < t1 < · · · < tn < T . On

each margin call date, if the exposure is above the counterparty’s threshold, Γcpty, and the

difference between the current exposure and the collateral amount is greater than the MTA

the counterparty posts collateral and updates the margin account; otherwise, no collateral

exchange takes place since the transfer amount is less than the MTA. Likewise, the investor

delivers collateral on each margin call date, if the exposure is below investor’s threshold,

Γinv, and the difference between the current exposure and the collateral amount is greater

than MTA (cf. [ISD05], pages 52-56). Note that in this model a collateral transfer are

allowed only if it is greater than the MTA amount.

In accordance with the above discussion the collateral process is modeled as follows:

We set C0 = 0. Then, for i = 1, 2, . . . , n we postulate that

Cti+ = I{Sti−Γcpty−Cti>MTA}(Sti − Γcpty − Cti)

+ I{Sti−Γinv−Cti<−MTA}(Sti − Γinv − Cti) + Cti ,

on the set {ti < τ̂}, and it is constant on interval (ti, ti+1]. Moreover, Ct = Cτ̂ on the set

{τ̂ < t < τ̂ + ∆}.
Observe that the collateral increments at each margin call date ti < τ̂ can now be

represented as,

∆Cti : = Cti+ − Cti
= I{Sti−Γcpty−Cti>MTA}(Sti − Γcpty − Cti)

+ I{Sti−Γinv−Cti<−MTA}(Sti − Γinv − Cti)

One should also note that the collateral construction given in [Pyk09], which reads

Ct = I{St>Γcpty+MTA} (St − Γcpty) + I{St<Γbuy−MTA} (St − Γinv) ,

allows intermediate collateral updates that are smaller than MTA. In our case, we avoid this

intricacy by defining the collateral process as a left-continuous, piecewise constant process.

Remark 2.6. The collateral construction described above is cash based. The net cash value

of the collateral portfolio is determined using haircuts.

The haircut (or, valuation percentage) describes the amount that will be charged from a

particular collateral asset. Effective value of the collateral asset is determined by subtract-

ing the mark-to-market value of the asset multiplied by an appropriate haircut (cf. [ISD05],
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page 67). Therefore, the haircuts applied to collateral assets should reflect the market risk

on those assets. The haircut is defined as a percentage, where 0% haircut implies complete

mark-to-market value of the asset to be used as collateral without any discounting. Gov-

ernment securities having high credit rating such as Treasury bonds and Treasury bills are

usually subjected to 1% to 10% haircut, while for more risky, volatile or illiquid securities,

such as a stock option, the haircut might be as high as 30%. The only asset that is not

subjected to any haircut as collateral is cash where usually both parties mutually agree the

use of an overnight index rate (cf. [ISD10b], page 27). The term valuation percentage is

also used in Credit Support Annex (CSA) documents. The valuation percentage defines the

amount that the market value of the asset is multiplied by to yield the effective collateral

value of the asset. Hence, we have VPt = 1 − ht, where VPt is the valuation percentage

and ht is the total haircut applied to the collateral assets at time t. We will not go into the

details of the formation of the haircut since it is either pre-determined in the CSA docu-

ments or related to market risk measures such as VaR of the collateral assets. (cf. [ISD05],

page 68). The main purpose of the haircut is to mitigate amortization or depreciation in the

collateral asset value at the time of a default and in the margin period of risk. Moreover, the

haircut should be updated as frequently as possible to reflect the changes in the volatility

or liquidity of the collateral assets (cf. [ISD05], page 63).

Therefore, the total value of the collateral portfolio at time t is equal to (1 + ht)Ct,

where ht is the appropriate haircut applied to the collateral portfolio.

2.2 Bilateral Credit Valuation Adjustment

In this section, we shall compute the CVA on a CDS contract, subject to a bilateral margin

agreement.

Definition 2.7. The bilateral Credit Valuation Adjustment process on a CDS contract

maturing at time T is defined as

CVAt = St − SCt , (5)

for every t ∈ [0, T ].

We now present an alternative representation for the bilateral CVA, which is convenient

for computational purposes.

Proposition 2.8. The bilateral CVA process on a CDS contract maturing at time T satisfies

CVAt = BtEQ

(
I{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+∣∣∣Gt)
−BtEQ

(
I{t<τ=τ3≤T}B

−1
τ (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−∣∣∣Gt) , (6)

for every t ∈ [0, T ].
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Proof. We begin by observing that∫
]t,T ]

B−1
u δ̃iu (1−Hu−) dH i

u = B−1
τ δ̃iτ I{t<τ=τ i≤T},

for i = 1, 2, 3. Consequently,∫
]t,T ]

B−1
u dDC

u = B−1
τ δ̃1

τ I{t<τ=τ1≤T} +B−1
τ δ̃2

τ I{t<τ=τ2≤T}

+B−1
τ δ̃3

τ I{t<τ=τ3≤T} +B−1
τ δ̃4

τ I{t<τ=τ2=τ3≤T}

+B−1
τ δ̃5

τ I{t<τ=τ∗=τ1≤T} +B−1
τ Cτ I{t<τ≤T}

− κ
∫

]t,T ]
B−1
u I{τ>u}du. (7)

Using the definitions of the close-out cash-flows δ̃iτ , i = 1, . . . , 5, we get from (7)∫
]t,T ]

B−1
u dDC

u = B−1
τ

(
δ1
τ − Cτ

)
I{t<τ=τ1≤T}

− κ
∫

]t,T ]
B−1
u I{τ>u}du+B−1

τ Cτ I{t<τ≤T} (8)

+B−1
τ

(
R2

(
Sτ+I{τ=τ1}δ

1
τ − Cτ

)+
−
(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−) I{t<τ=τ2≤T}

+B−1
τ

((
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+
−R3

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−) I{t<τ=τ3≤T}

−B−1
τ

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)
I{t<τ=τ2=τ3≤T}

−B−1
τ

(
δ1
τ − Cτ

)
I{t<τ=τ∗=τ1≤T}.

Since

I{t<τ≤T} = I{t<τ=τ1≤T} + I{t<τ=τ2≤T} + I{t<τ=τ3≤T}

− I{t<τ=τ2=τ3≤T} − I{t<τ∗=τ1≤T},

using the equality

Ri (Sτ − Cτ )+ − (Sτ − Cτ )− + Cτ = Sτ − (1−Ri) (Sτ − Cτ )+

and observing that I{τ=τ1}Sτ = 0, we can rearrange the terms in (8) as follows,∫
]t,T ]

B−1
u dDC

u = B−1
τ δ1

τ I{t<τ=τ1≤T} − κ
∫

]t,T ]
B−1
u I{τ>u}du (9)

+B−1
τ Sτ

(
I{t<τ=τ2≤T} + I{t<τ=τ3≤T}

−I{t<τ=τ2=τ3≤T}
)
I{τ 6=τ1}

−B−1
τ (1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+ I{t<τ=τ2≤T}

+B−1
τ (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)− I{t<τ=τ3≤T}.

11



Now, combining (9) with (1) we see that

SCt = BtEQ

((
I{t<τ=τ1≤T} + I{τ>T}

) ∫
]t,T ]

B−1
u dDu

∣∣∣∣∣Gt
)

+BtEQ
((

I{t<τ=τ2≤T} + I{t<τ=τ3≤T}

−I{t<τ=τ2=τ3≤T}
)
I{τ 6=τ1}

)
EQ

(∫
]τ,T ]

B−1
u dDu

∣∣∣∣∣Gτ
)∣∣∣∣∣Gt

)
−BtEQ

(
I{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+∣∣∣Gt)
+BtEQ

(
I{t<τ=τ3≤T}B

−1
τ (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−∣∣∣Gt) .
From here, observing that

I{τ≤t} + I{τ>T} + I{t<τ=τ1≤T} +
(
I{t<τ=τ2≤T} + I{t<τ=τ3≤T} − I{t<τ=τ2=τ3≤T}

)
I{τ 6=τ1} = 1,

we get

SCt = BtEQ

(∫
]t,T ]

B−1
u dDu

∣∣∣∣∣Gt
)

−BtEQ
(
I{t<τ=τ2≤T}B

−1
τ (1−R2) (Sτ − Cτ )+

∣∣Gt)
+BtEQ

(
I{t<τ=τ3≤T}B

−1
τ (1−R3) (Sτ − Cτ )−

∣∣Gt) ,
(10)

which is

SCt = St −BtEQ
(
I{t<τ=τ2≤T}B

−1
τ (1−R2) (Sτ − Cτ )+

∣∣Gt)
+BtEQ

(
I{t<τ=τ3≤T}B

−1
τ (1−R3) (Sτ − Cτ )−

∣∣Gt) .
This proves the result.

Remark 2.9. The above results shows that the value of the bilateral CVA is the same as

the sum of the value of a long position in a zero-strike call option on the uncollateralized

amount and the value of a short position in a zero-strike put option on the uncollateralized

amount.

2.2.1 Unilateral CVA and Debt Value Adjustment

The bilateral nature of the counterparty risk is a consequence of possible default of the coun-

terparty and the possible default of the investor. The values of potential losses associated

with these two components are called unilateral CVA (UCVA) and debt value adjustment

(DVA), respectively, and defined below.

12



Definition 2.10. The Unilateral Credit Value Adjustment is defined as,

UCVAt = BtEQ

(
I{t<τ=τ2≤T}B

−1
τ (1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+∣∣∣Gt) , t ∈ [0, T ] ,

and symmetrically the Debt Value Adjustment is defined as,

DVAt = BtEQ

(
I{t<τ=τ3≤T}B

−1
τ (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−∣∣∣Gt) , t ∈ [0, T ] .

Remark 2.11. DVA accounts for the risk of investor’s own default, and it represents the

value of any potential outstanding liabilities of the investors that will not be honored at the

time of the investor’s default:

In fact, at time of his/her default, the investor only pays to the counterparty the recov-

ery amount, that is R3

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−
. Therefore, the investor gains the remaining

amount, which is equal to (1−R3)
(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−
, on his/her outstanding liabili-

ties by defaulting. Risk management of this component is of great importance for financial

institutions.

When considering the unilateral counterparty risk DVA is set to zero.

In view of Proposition 2.8 and of the above definition we have that

CVAt = UCVAt −DVAt, t ∈ [0, T ].

Note that the bilateral CVA amount may be negative for the investor due to “own

default risk”. This also indicates that the price SC of counterparty risky CDS contract may

be greater than the price S of counterparty risk-free contract.

Remark 2.12. (Upfront CDS Conversion)

After the “CDS Big Bang” (cf. [Mar09]) a process has been originated to replace

standard CDS contracts with so called upfront CDS contracts. An upfront CDS contract is

composed of an upfront payment, which is an amount to be exchanged upon the inception

of the contract, and of a fixed spread. The fixed spread, say κ̂, will be 100bps for investment

grade CDS contracts, and 500bps for high yield CDS contracts. The recovery rate is also

standardized to two possible values: 20% or 40%, depending on the credit worthiness of the

reference name. The corresponding cumulative dividend process of a counterparty-risk-free

CDS contract is described in the following definition.

Definition 2.13. The cumulative dividend process D̂ of a counterparty-risk-free upfront CDS

contract, maturing at time T , is given as

D̂t =

∫
]0,t]

δ1
udH

1
u −UP− κ̂

∫
]0,t]

(
1−H1

u

)
du , t ∈ [0, T ] ,

where UP is the upfront payment, and κ̂ is the fixed spread.

Recall that the spread κ0 of a standard CDS contract is set such that the protection leg

PL0 and fixed leg κ0DV 010 are equal at initiation (making the price of the contract to be

13



zero). Similarly, in the case of an upfront CDS contract, with κ̂ being fixed, the upfront

payment UP is chosen such that the contract has zero value at initiation. It is easy to

convert the conventional spread κ0 into an upfront payment PU and vise versa. Indeed,

directly from the Definition 2.13, and definitions of PL0 and DV 010, we have

PL0 − UP − κ̂DV 010 = PL0 − κ0DV 010 = 0 ,

which implies the following representations

UP = (κ0 − κ̂)DV 010, κ0 =
UP

DV 010
+ κ̂ .

In view of the conversion formulae presented above the discussion of CVA, DVA and

UCVA done for standard CDS contracts can be adopted to the case of the upfront CDS

contracts in a straightforward manner.

2.2.2 CVA via Credit Exposures

Credit exposure is defined as the potential loss that may be suffered by either one of the

counterparties due to the other party’s default. Here, we discuss some measures commonly

used to quantify credit exposure, such as Potential Future Exposure (PFE), Expected Posi-

tive Exposure (EPE) and Expected Negative Exposure (ENE), and their relation to CVA.

Potential Future Exposure is the basic measure of credit exposure:

Definition 2.14. Potential Future Exposure of a CDS contract with a bilateral margin

agreement is defined as follows,

PFE = I{τ=τ2} (1−R2)
(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+
− I{τ=τ3} (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−
.

Note that there exists several forms in which the potential future exposure is defined by

financial institutions. The PFE definition given above, as a random variable, is in line with

the PFE definitions in (cf. [DPR]), as opposed to the rather classical definition of the PFE

as the quantile of the exposure distribution (cf. [CAC10]).

Remark 2.15. Observe that the CVA is related to PFE as follows,

CV At = BtEQ
(
I{t<τ≤T}B−1

τ PFE
∣∣Gt) , t ∈ [0, T ] .

Expected Positive Exposure is defined as the expected amount the investor will lose if

the counterparty default happens at time t, and Expected Negative Exposure is defined as

the expected amount the investor will lose if his own default happens at time t. Note that

the losses are conditional on default at time t. EPE and ENE are necessary quantities to

price and hedge counterparty risk.
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Definition 2.16. The Expected Positive Exposure of a CDS contract with a bilateral

margin agreement is defined as,

EPEt = EQ

(
(1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+∣∣∣ τ = τ2 = t
)
,

and the Expected Negative Exposure is defined as,

ENEt = EQ

(
(1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)− ∣∣∣ τ = τ3 = t
)

for every t ∈ [0, T ].

2.3 Dynamics of CVA

In this section we derive the dynamics for CVA. This is important for deriving formulae for

dynamic hedging of counterparty risk, the issue that will be discussed in a different paper.

We begin with defining some auxiliary stopping times, that will come handy later on:

τ{1} :=

{
τ1 if τ1 6= τ2, τ1 6= τ3

∞ otherwise
, τ{2} :=

{
τ2 if τ2 6= τ1, τ2 6= τ3

∞ otherwise
,

τ{3} :=

{
τ3 if τ3 6= τ1, τ3 6= τ2

∞ otherwise
, τ{4} :=

{
τ2 if τ2 = τ3, τ2 6= τ1

∞ otherwise
,

τ{5} :=

{
τ1 if τ1 = τ2, τ1 6= τ3

∞ otherwise
, τ{6} :=

{
τ1 if τ1 = τ3, τ1 6= τ2

∞ otherwise
,

τ{7} :=

{
τ1 if τ1 = τ2 = τ3

∞ otherwise
.

Accordingly, we define the default indicator processes:

H
{1}
t : = I{τ1≤t,τ1 6=τ2,τ1 6=τ3} = I{τ{1}≤t,}, H

{2}
t : = I{τ2≤t,τ2 6=τ1,τ2 6=τ3} = I{τ{2}≤t,},

H
{3}
t : = I{τ3≤t,τ3 6=τ1,τ3 6=τ2} = I{τ{3}≤t,}, H

{4}
t : = I{τ2=τ3≤t,τ1 6=τ2} = I{τ{4}≤t,},

H
{5}
t : = I{τ1=τ2≤t,τ1 6=τ3} = I{τ{5}≤t,}, H

{6}
t : = I{τ1=τ3≤t,τ1 6=τ2} = I{τ{6}≤t,},

H
{7}
t := I{τ1=τ2=τ3≤t} = I{τ{7}≤t}.

Remark 2.17. Note that one can represent processes H
{i}
t , i = 1, . . . , 7, as follows

H
{7}
t =

[[
H1, H2

]
, H3

]
t
, H

{6}
t =

[
H1, H3

]
t
−H{7}t ,

H
{5}
t =

[
H1, H2

]
t
−H{7}t , H

{4}
t =

[
H2, H3

]
t
−H{7}t ,

H
{3}
t = H3

t −H
{4}
t −H{6}t −H{7}t ,

H
{2}
t = H2

t −H
{4}
t −H{5}t −H{7}t ,

H
{1}
t = H1

t −H
{5}
t −H{6}t −H{7}t .
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In particular, these processes are G-adapted processes.

Let G(t) = Q (τ > t| Ft) be the survival probability process of τ with respect to filtration

F. It is a F supermartingale and it admits unique Doob-Meyer decomposition G = µ − ν
where µ is the martingale part and ν is a predictable increasing process. We assume that G

is a continuous process and v is absolutely continuous with respect to the Lebesgue measure,

so that dνt = vtdt for some F-progressively measurable, non-negative process v. We denote

by l the F-progressively measurable process defined as lt = G(t)−1vt. Finally, we assume

that all F martingales are continuous.

We assume that hazard process of each stopping time τ{i} admits an (F,G)-intensity

process qi for every i = 1, . . . , 7, so that the process M{i}, given by the formula,

M
{i}
t = H

{i}
t −

∫ t

0

(
1−H{i}u

)
qiudu

is a G-martingale for every t ∈ [0, T ] and i = 1, . . . , 7.

We now have the following technical result,

Lemma 2.18. The processes

M i
t := M

{i}
t∧τ = H

{i}
t∧τ −

∫ t∧τ

0
liudu, t ≥ 0, i = 1, 2, . . . , 7,

and

Mt := Ht∧τ −
∫ t∧τ

0
ludu, t ≥ 0,

where

lit = I{τ≥t}qit and lt =
7∑
i=1

lit t ≥ 0, i = 1, 2, . . . , 7,

are G-martingales

Proof. Fix i = 1, . . . , 7. Process M i follows a G-martingale, since it is G-martingale M{i}

stopped at the G stopping time τ. Moreover, we have that Mt =
∑7

i=1M
i
t , so that process

M is also a G-martingale.

We shall now proceed with deriving some useful representations for the processes SC

and S.

Lemma 2.19. The ex-dividend price process, SC , of a counterparty risky CDS contract,

given in (4), can be represented as follows,

SCt = BtEQ

(
B−1
τ

7∑
i=1

I{t<τ=τ{i}≤T}δ
i
τ − κ

∫
]t,T ]

B−1
u I{τ>u}du

∣∣∣∣∣Gt
)

(11)
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where

δ
1
t = δ1

t , δ
2
t = St − (1−R2) (St − Ct)+

δ
3
t = St + (1−R3) (St − Ct)− ,
δ

4
t = St − (1−R2) (St − Ct)+ + (1−R3) (St − Ct)−

δ
5
t = δ1

t − (1−R2)
(
δ1
t − Ct

)+
, δ

6
t = δ1

t + (1−R3)
(
δ1
t − Ct

)−
δ

7
t = δ1

t − (1−R2)
(
δ1
t − Ct

)+
+ (1−R3)

(
δ1
t − Ct

)−
.

Proof. Let us rewrite (9) in the following form,

SCt = BtEQ

B−1
τ δ1

τ

∑
i=1,5,6,7

I{t<τ=τ{i}≤T} +B−1
τ Sτ

∑
i=2,3,4

I{t<τ=τ{i}≤T}

−B−1
τ (1−R2)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)+ ∑
i=2,4,5,7

I{t<τ=τ{i}≤T}

+B−1
τ (1−R3)

(
Sτ + I{τ=τ1}δ

1
τ − Cτ

)−
∑

i=3,4,6,7

I{t<τ=τ{i}≤T} − κ
∫

]t,T ]
B−1
u I{τ>u}du

∣∣∣∣∣∣Gt
 ,

which, after rearranging terms, leads to

SCt = BtEQ

(
B−1
τ δ1

τ I{t<τ=τ{1}≤T} +B−1
τ

(
St − (1−R2) (Sτ − Cτ )+) I{t<τ=τ{2}≤T}

+B−1
τ

(
Sτ + (1−R3) (Sτ − Cτ )−

)
I{t<τ=τ{3}≤T}

+B−1
τ

(
Sτ − (1−R2) (Sτ − Cτ )+ + (1−R3) (Sτ − Cτ )−

)
I{t<τ=τ{4}≤T}

+B−1
τ

(
δ1
τ − (1−R2)

(
δ1
τ − Cτ

)+) I{t<τ=τ{5}≤T}

+B−1
τ

(
δ1
τ + (1−R3)

(
δ1
τ − Cτ

)−) I{t<τ=τ{6}≤T}

+B−1
τ

(
δ1
τ − (1−R2)

(
δ1
τ − Cτ

)+
+ (1−R3)

(
δ1
τ − Cτ

)−) I{t<τ=τ{7}≤T}

−κ
∫

]t,T ]
B−1
u I{τ>u}du

∣∣∣∣∣Gt
)
.

This proves the result.

In case when R2 = R3 = 1 process S is the same as process SC . Thus, we obtain from the

above

Corollary 2.20. The ex-dividend price process S of a counterparty risk-free CDS contract,

can be represented as follows 4,

St = BtEQ

(
B−1
τ

7∑
i=1

I{t<τ=τ{i}≤T}δ̂
i
τ − κ

∫
]t,T ]

B−1
u I{τ>u}du

∣∣∣∣∣Gt
)
, (12)

4We note that formula (13) provides a representation of St, which is convenient for our purposes. The
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where δ̂1
t = δ̂5

t = δ̂6
t = δ̂7

t = δ1
t , and δ̂2

t = δ̂3
t = δ̂4

t = St. Thus,

St = BtEQ

(
B−1
τ I{t<τ=τ1≤T}δ

1
τ +B−1

τ

4∑
i=2

I{t<τ=τ{i}≤T}Sτ (13)

−κ
∫

]t,T ]
B−1
u I{τ>u}du

∣∣∣∣∣Gt
)
.

The following result is borrowed from [BJR08] (see Lemma 3.1 therein)

Lemma 2.21. The following equality holds (Q a.s.)

BtEQ

(
I{t<τ=τ{i}≤T}B

−1
τ δ

i
τ

∣∣∣Gt) = I{t<τ}
Bt
G(t)

EQ

(∫ T

t
B−1
u liuδ

i
uG (u) du

∣∣∣∣Ft) , (14)

for every t ∈ [0, T ].

The pre-default ex-dividend price processes, say S̃ and S̃C , are defined as the (unique)

F-adapted processes (cf. [BJR08]) such that

SCt = I{t<τ}S̃Ct , St = I{t<τ}S̃t.

In view of the above we thus obtain the following result

Lemma 2.22. We have that, for every t ∈ [0, T ],

S̃Ct =
Bt
G(t)

EQ

(∫ T

t
B−1
u G (u)

(
7∑
i=1

liuδ
i
u − κ

)
du

∣∣∣∣∣Ft
)
, (15)

and

S̃t =
Bt
G(t)

EQ

(∫ T

t
B−1
u G (u)

(
7∑
i=1

liuδ̂
i
u − κ

)
du

∣∣∣∣∣Ft
)
. (16)

Proof. From Lemma 2.19 we have that

SCt = BtEQ

(
B−1
τ

7∑
i=1

I{t<τ=τ{i}≤T}δ
i
t

∣∣∣∣∣Gt
)
− κBtEQ

(∫
]t,T ]

B−1
u I{τ>u}du

∣∣∣∣∣Gt
)
.

Now, in view of (14) we see that

BtEQ

(
B−1
τ

7∑
i=1

I{t<τ=τ{i}≤T}δ
i
t

∣∣∣∣∣Gt
)

= I{t<τ}
Bt
G(t)

EQ

(
7∑
i=1

∫ T

t
B−1
u liuδ

i
uG (u) du

∣∣∣∣∣Ft
)
.

traditional representation of St, typically used in the context of counterparty risk free CDS contracts is

St = BtEQ

(
B−1
τ1 I{t<τ1≤T}δ

1
τ1 − κ

∫
]t,T ]

B−1
u I{τ1>u}du

∣∣∣∣∣Gt
)

.
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Let us now fix t ≥ 0, and define Ys := −κ
∫

]t,s]B
−1
u du for s ≥ t. Thus, we get

−κBtEQ

(∫
]t,T ]

B−1
u I{τ>u}du

∣∣∣∣∣Gt
)

= BtEQ
(
I{τ>T}YT

∣∣Gt)
+BtEQ

(
I{t<τ≤T}Yτ

∣∣Gt) .
It is known from [BJR08], that

BtEQ
(
I{t<τ≤T}Yτ

∣∣Gt) = −I{t<τ}
Bt
G(t)

EQ

(∫ T

t
YudG(u)

∣∣∣∣Ft)
and

BtEQ
(
I{τ>T}YT

∣∣Gt) = I{t<τ}
Bt
G(t)

EQ (G(T )YT | Ft) .

Finally, since Y is of finite variation, (15) follows by applying the integration by parts

formula

G(t)YT −
∫ T

t
YsdG (s) =

∫ T

t
G (s) dYs = −κ

∫ T

t
G (s)B−1

u du.

Equality (16) is obtained as a special case of (15), by setting R2 = R3 = 1.

We are ready now to derive dynamics of the pre-default price processes, that we shall

use in order to derive the dynamics of the CVA process.

Lemma 2.23. (i) The pre-default ex-dividend price of a counterparty risky CDS contract

follows the dynamics given as

dS̃Ct =

(
(rt + lt) S̃

C
t −

(
7∑
i=1

litδ
i
t − κ

))
dt+G−1(t)

(
Btdm

C
t − S̃Ct dµ

)
+G−2(t)

(
S̃Ct d 〈µ〉t −Btd

〈
µ,mC

〉
t

)
, t ∈ [0, T ],

where

mC
t = EQ

(∫ T

0
B−1
u G (u)

(
7∑
i=1

liuδ
i
u − κ

)
du

∣∣∣∣∣Ft
)

(ii) The pre-default ex-dividend price of a counterparty risk-free CDS contract follows the

dynamics given as

dS̃t =

(
(rt + lt) S̃t −

(
7∑
i=1

litδ̂
i
t − κ

))
dt+G−1(t)

(
Btdmt − S̃tdµ

)
+G−2(t)

(
S̃td 〈µ〉t −Btd 〈µ,m〉t

)
, t ∈ [0, T ],

where

mt = EQ

(∫ T

0
B−1
u G (u)

(
7∑
i=1

liuδ̂
i
u − κ

)
du

∣∣∣∣∣Ft
)
.
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Proof. The argument below follows the one in the proof of Proposition 1.2 in [BJR08].

In view of (15) we may write S̃Ct as

S̃Ct = BtG
−1(t)Ut,

where

Ut = mC
t −

∫ t

0
B−1
u G (u)

(
7∑
i=1

liuδ
i
u − κ

)
du.

Since G = µ− v, then applying Itô’s formula one obtains

d
(
G−1(t)Ut

)
= G−1(t)dmC

t −B−1
t

(
7∑
i=1

litδ
i
t − κ

)
dt

+ Ut
(
G−3(t)d 〈µ〉t −G

−2(t) (dµt − dvt)
)

−G−2(t)d
〈
µ,mC

〉
t
.

Consequently,

dS̃Ct = BtG
−1(t)dmC

t −

(
7∑
i=1

litδ
i
t − κ

)
dt

+BtUt
(
G−3(t)d 〈µ〉t −G

−2(t) (dµt − ltG(t)dt)
)

−BtG−2(t)d
〈
µ,mC

〉
+ rtBtG

−1(t)Utdt

=

(
(rt + lt) S̃

C
t −

(
7∑
i=1

litδ
i
t − κ

))
dt+G−1(t)

(
Btdm

C
t − S̃tdµ

)
+G−2(t)

(
S̃td 〈µ〉t −Btd

〈
µ,mC

〉
t

)
,

which verifies the result stated in (i).

Starting from (16), and using computations analogous to the ones done in (i), one can

derive the result stated in (ii).

The dynamics of the CVA process are easily derived with help of the above lemma,

Proposition 2.24. The bilateral CVA process satisfies,

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)dnt −G−1(t)CVAtdµt +G−2(t)CVAtd 〈µ〉t

− (1−Ht)G
−2(t)Bt

(
d 〈µ,m〉t − d

〈
µ,mC

〉
t

)
,

where

nt = EQ

(∫ T

0
B−1
u G (u)

(
7∑
i=1

liuξ
i
u

)
du

∣∣∣∣∣Ft
)
, t ∈ [0, T ],
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with

ξ1
t = 0, ξ2

t = (1−R2) (St − Ct)+ , ξ3
t = − (1−R3) (St − Ct)− ,

ξ4
t = (1−R2) (St − Ct)+ − (1−R3) (St − Ct)− ,
ξ5
t = (1−R2)

(
δ1
t − Ct

)+
, ξ6

t = − (1−R3)
(
δ1
t − Ct

)−
,

ξ7
t = (1−R2)

(
δ1
t − Ct

)+ − (1−R3)
(
δ1
t − Ct

)−
.

Proof. Applying the integration by parts formula we get that

dCVAt = (1−Ht)
(
dS̃t − dS̃Ct

)
−
(
S̃t − S̃Ct

)
dHt.

This together with Lemma 2.23 implies

dCVAt = −
(
St− − SCt−

)
dMt + (1−Ht)

(
rt
(
St − SCt

)
−

7∑
i=1

lit

(
δ̂it − δ

i
t

))
dt

+ (1−Ht)BtG
−1(t)

(
dmt − dmC

t

)
− (1−Ht)G

−1(t)
(
St − SCt

)
dµt

+ (1−Ht)G
−2(t)

(
St − SCt

)
d 〈µ〉t

− (1−Ht)G
−2(t)Bt

(
d 〈µ,m〉t − d

〈
µ,mC

〉
t

)
,

which proves the result.

2.3.1 Dynamics of CVA when the immersion property holds

Here we adapt the results derived above to the case when the immersion property holds

between filtrations F and G, that is the case when every F-martingale is a G-martingale

under Q. In this case, the continuous martingale µ in the Doob-Meyer decomposition of G

vanishes, so that the survival process G is a non-increasing process represented as G = −v.
Frequently, the immersion property is referred to as Hypothesis (H). For an excellent

discussion of the immersion property we refer to [JLC09].

Assumption 2.25. Hypothesis (H) holds between the filtrations F and G under Q.

In view of the results (and the notation) from Proposition 2.24 we obtain

Corollary 2.26. Assume that Assumption 2.25 is satisfied. Then,

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)dnt, t ∈ [0, T ].

Remark 2.27. If we assume that the filtration F is generated by a Brownian motion, then,

in view of the Brownian martingale representation theorem, there exists an F-predictable

process ζ such that dnt = ζtdWt and

dCVAt = rtCVAtdt− CVAt−dMt − (1−Ht)

(
7∑
i=1

litξ
i
t

)
dt

+ (1−Ht)BtG
−1(t)ζtdWt.
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2.4 Fair Spread Value Adjustment

Let us fix t ∈ [0, T ], and let us denote by κt the market spread of the counterparty risk-free

CDS contract at time t; that is, κt is this level of spread that makes the pre-default values

of the two legs of a counterparty risk-free CDS contract equal to each other at time t,

S̃t (κt) = 0. (17)

It is convenient to write the above equation in the form that is common in practice:

PLt − κtRDV 01t = 0, (18)

where PL and RDV 01 are processes representing (pre-default) values of the protection leg

and the risky annuity, respectively, so that 5

PLt =
Bt

G1 (t)
EQ

∫
]t,T ]

B−1
u G1 (u) δ1

u

 ∑
i=1,5,6,7

liu

 du

∣∣∣∣∣∣Ft
 , (19)

and

RDV 01t =
Bt
G1(t)

EQ

(∫
]t,T ]

B−1
u G1 (u) du

∣∣∣∣∣Ft
)
, (20)

where

G1(t) = Q (τ1 > t| Ft) .

Therefore, we get,

κt =
EQ

(∫
]t,T ]B

−1
u G1 (u) δ1

u

(∑
i=1,5,6,7 l

i
u

)
du
∣∣∣Ft)

EQ

(∫
]t,T∧τ1]B

−1
u G1 (u) du

∣∣∣Ft) . (21)

We denote by κCt the spread which makes the values of the two pre-first-default legs of

a counterparty risky CDS contract equal to each other at every t ∈ [0, T ] as

S̃Ct
(
κCt
)

= PLCt − κCt RDV 01Ct = 0. (22)

Similarly, we use the spread κC0 initiated at time t = 0 in order to compute the fair price

of a counterparty risky CDS contract at any time t ∈ [0, T ]. Using Lemma 3.1, κCt admits

the following representation for every t ∈ [0, T ] ,

κCt =
PLCt

RDV 01Ct
,

5We note that formula (19) provides a representation of PLt, which is convenient for our purposes. The

traditional representation of PLt, typically used in the context of counterparty risk free CDS contracts is

PLt =
Bt

G1 (t)
EQ

(∫
]t,T ]

B−1
u G1 (u) δ1uλ

1
udu

∣∣∣∣∣Ft
)
,

where λ1 is the F intensity of τ1.

22



where

PLCt =
Bt
G (t)

EQ

(∫ T

t
B−1
u G (u)

(
7∑
i=1

liuδ
i
u

)
du

∣∣∣∣∣Ft
)

(23)

and

RDV 01Ct =
Bt
G (t)

EQ

(∫
]t,T ]

B−1
u G (u) du

∣∣∣∣∣Ft
)
. (24)

We may now introduce the following definition,

Definition 2.28. The Spread Value Adjustment process of a counterparty risky CDS con-

tract maturing at time T is defined as,

SVAt = κt − κCt

for every t ∈ [0, T ] .

Monitoring SVA is of great importance since it provides a more practical way to quantify

the counterparty risk. Moreover, the spread difference is a very useful indicator for the

trading decisions in practice (cf. [Gre09]).

Proposition 2.29. The SVA of a counterparty risky CDS contract maturing at time T

equals,

SVAt =
C̃VAt

BtG−1(t)EQ

(∫
]t,T ]B

−1
u G (u) du

∣∣∣Ft)
for every t ∈ [0, T ] , where the pre-first-default bilateral Credit Valuation Adjustment process

C̃VA is given as

C̃VAt = S̃t − S̃Ct , (25)

for every t ∈ [0, T ].

Proof. Let us rewrite PLC as

PLCt = PLCt − κtRDV 01Ct + κtRDV 01Ct

by a simple modification. Now, using (5) and (22), we conclude that

PLCt = S̃Ct (κt) + κtRDV 01Ct

= S̃t(κt)− C̃VAt + κtRDV 01Ct .

Since S̃t(κt) = 0, then κCt has the following form,

κCt =
−C̃VAt + κtRDV 01Ct

RDV 01Ct
,

which is

κCt = − C̃VAt

RDV 01Ct
+ κt.
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2.4.1 SVA Dynamics

Applying Itô formula one obtains the dynamics of the fair spread process and of the coun-

terparty risk adjusted spread process as

dκt =
1

R̃DV 01t

(
B−1
t G1 (t)

(
κt − δ1

t l
1
t

)
dt+

κt

R̃DV 01t
d
〈
η2
〉
t

(26)

− 1

R̃DV 01t
d
〈
η1, η2

〉
t

)
+

1

R̃DV 01t

(
dη1

t − κtdη2
t

)
, t ∈ [0, T ],

where

R̃DV 01t := EQ

(∫
]t,T ]

B−1
u G1 (u) du

∣∣∣∣∣Ft
)
,

η1
t := EQ

(∫
]0,T ]

B−1
u G1 (u) δ1

ul
1
udu

∣∣∣∣∣Ft
)
,

η2
t = EQ

(∫
]0,T ]

B−1
u G1 (u) du

∣∣∣∣∣Ft
)

= R̃DV 01t +

∫
]0,t]

B−1
u G1 (u) du,

and

dκCt =
1

R̃DV 01
C

t

B−1
t G(t)

(
κCt −

7∑
i=1

δ̃itl
i
t

)
dt+

κCt

R̃DV 01
C

t

d
〈
ζ2
〉
t

(27)

− 1

R̃DV 01
C

t

d
〈
ζ1, ζ2

〉
t

+
1

R̃DV 01
C

t

(
dζ1
t − κCt dζ2

t

)
,

where

R̃DV 01t = EQ

(∫
]t,T ]

B−1
u G1 (u) du

∣∣∣∣∣Ft
)
,

with

ζ1
t = EQ

(∫
]0,T ]

B−1
u G (u)

(
7∑
i=1

liuδ
i
u

)
du

∣∣∣∣∣Ft
)
,

and

ζ2
t = EQ

(∫
]0,T ]

B−1
u G (u) du

∣∣∣∣∣Ft
)

= R̃DV 01
C

t +

∫
]0,t]

B−1
u G (u) du.

Combining the above results, we find the dynamics of the SVA process:

dSVAt = dκt − dκCt , t ∈ [0, T ].

Dynamics of the SVA is of great importance for observing the behavior of the difference

between the fair spread and the counterparty risk adjusted spread. Counterparty risk

dynamics can be assessed in a more intuitive manner by computing the SVA dynamics.
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3 Multivariate Markovian Default Model

In this section, we propose an underlying stochastic model following the lines of [BCJZ11].

Towards this end we define a Markovian model of multivariate default times with factor

processes X =
(
X1, X2, X3

)
which will have the following key features,

• The pair (X,H) is Markov in its natural filtration,

• Each pair
(
Xi, H i

)
is a Markov process,

• At every instant, either each counterparty defaults individually or simultaneously with

other counterparties.

Note that the second property grants quick valuation of the CDS and independent

calibration of each model marginal
(
Xi, H i

)
, whereas the third property will allow us to

account for dependence between defaults. We present here some numerical results as an

application of above theory. The default intensities are assumed to be of the affine form

li
(
t,Xi

t

)
= ai +Xi

t ,

where ai is a constant and Xi is a homogenous CIR process generated by,

dXi
t = ζi

(
µi −Xi

t

)
dt− σi

√
Xi
tdW

i
t ,

for i = 1, 2, 3. Each collection of the parameters (ζi, µi, σi) may take values corresponding

to a low, a medium or a high regime which are given as follows.

Credit Risk Level ζ µ σ X0

Low 0.9 0.001 0.01 0.001

Medium 0.8 0.02 0.1 0.02

High 0.5 0.05 0.2 0.05

Moreover, following the methodology in [BCJZ11], we specify the marginal default in-

tensity processes as follows

q1
t = l1t + l5t + l6t + l7t , q

2
t = l2t + l4t + l5t + l7t , q

3
t = l3t + l4t + l6t + l7t

where the related survival probabilities are found as

Q (τi > t) = EQ

(
e−

∫ t
0 q

i
udu
)

and Q (τ > t) = EQ

(
e−

∫ t
0 ludu

)
.

For a detailed discussion including implementation and the calibration of the model, we

refer to [BCJZ11] and [ABCJ11].
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3.1 Results

Our aim here is to assess by means of numerical experiments the impact of collateralization

on the counterparty risk exposure. We present numerical results for different collateraliza-

tion regimes distinguished by different threshold values. The numerical experiments below

have been done using the three factor (2F) parametrization given in [BCJZ11], the recovery

rates are fixed to 40%, the risk-free rate r is taken as 0 and the maturity is set to T = 5

years.

Table 3.1 shows the values of CVA0 and SVA0 for different threshold regimes. Threshold

values are chosen as a fraction of the notional (cf. [Pyk09]). Computations are done

assuming that (refer to Table 3) the underlying entity, the counterparty, and the investor

has high risk levels. Simulated fair spread without counterparty risk is found as 153bps.

Case A represents the uncollateralized regime where there is no collateral exchanged (this

is done by setting the thresholds infinity), whereas other Case F corresponds to the full

collateralization where the thresholds are set to 0. In each case, computations are done

by setting MTA to zero and assuming there is no margin period. One can observe that

decreasing threshold value dramatically decreases the initial CVA and therefore the SVA

values.

Γcpty Γinv CVA0 SVA0

Case A ∞ -∞ 1.01× 10−4 0.2153

Case B 1.5× 10−3 0.4× 10−3 6.13× 10−5 0.1305

Case C 1× 10−3 0.2× 10−3 4.36× 10−5 0.0931

Case D 0.5× 10−3 0.1× 10−3 2.18× 10−5 0.0464

Case E 0.25× 10−3 0.05× 10−3 1.14× 10−5 0.0243

Case F 0 0 0 0

In Figure 1, we present the EPE and ENE curves for each case A to F, and we also

plot the mean collateral values. Computations are carried out by running 104 Monte Carlo

simulations. It is apparent that the behavior of the EPE and ENE values decreases as a

result of increased collateralization. Note that there are peaks in the collateral value in the

very beginning and through the maturity. This effect can be explained as follows: Observe

from Table 1 that the investor has lower threshold than the counterparty in each cases from

A to F. As a result, having a lower threshold value, investor will be posting collateral before

the counterparty. Therefore, until the counterparty’s exposure reaches the threshold, the

collateral value remains negative; meaning that there will be margin calls for the investor

before the counterparty.

Figure 2 plots the mean of sample CVA paths. Starting from CVA0 we compute the

mean sample paths in each case. The behavior of CVA as a credit hybrid option, as indicated

in Remark 2.9, can be clearly observed in the graphs. CVA values decrease over time as

a result of time decay since the expected loss decreases close to the expiration. The effect

of collateralization on the CVA values is apparent in the graphs. Observe that increased
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initial threshold values are of great importance since one can significantly reduce the future

CVA values by appropriately setting the collateral thresholds. Moreover, one can also use

dynamic thresholds by linking the threshold values to the counterparties’ default intensities

or credit ratings. In this way, counterparties will have more control on the future values

of the CVA of the CDS contract and dynamically manage the CVA since the collateral

thresholds will be reacting to the changes in the default intensities or credit ratings. This

approach will be further investigated in a future research.
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Figure 1: EPE, ENE and the Collateral curves for Case A, B, C, D, E, and F

4 Conclusion

In this paper, we discussed the modeling of counterparty risk in the presence of bilateral

margin agreements. We defined an appropriate collateral process which takes various margin

agreement parameters into account. The dynamics of the counterparty risk adjustment,

CVA, has been found for the bilateral case. This achievement helps us to better understand

and monitor the behavior of the bilateral CVA as well as the unilateral CVA and the DVA.

We observed the impact of collateral agreements on counterparty risk adjustments as

well as the credit exposures such as the EPE and the ENE. The presence of simultaneous

defaults in our model represents the wrong way risk involved in the CDS contracts. We

formulate the fair spread value adjustment, which is named as SVA, that indicates the
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Figure 2: Forward CVA curves for Case A, B, C, D, E, and F

additional spread value to incorporate the counterparty risk into the fair spread value.

Moreover, we derive the dynamics of the fair spread and the counterparty risky spread and

therefore the spread value adjustment, SVA. Finally, as in [BCJZ11] and [ABCJ11], we

present our numerical results using a Markovian model of counterparty credit risk.
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