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§The research of M. Rutkowski was supported by the 2005 Faculty Research Grant PS06987.

1



2 Valuation of Basket Credit Derivatives

Contents

1 Introduction 3

1.1 Conditional Expectations Associated with Credit Derivatives . . . . . . . . . . . . . . . . . . 3

1.2 Existing Methods of Modelling Dependent Defaults . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Notation and Preliminary Results 6

2.1 Credit Migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Markovian Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Markovian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Markovian Market Model 9

3.1 Specification of Credit Ratings Transition Intensities . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Conditionally Independent Migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Changes of Measures and Markovian Numeraires 12

4.1 Markovian Change of a Probability Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Markovian Numeraires and Valuation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Examples of Markov Market Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1 Markov Chain Migration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.2 Diffusion-type Factor Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.3 CDS Spread Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Valuation of Single Name Credit Derivatives 17

5.1 Survival Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Credit Default Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Default Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.2 Premium Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Forward CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3.1 Default Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.2 Premium Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 CDS Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4.1 Conditionally Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Valuation of Basket Credit Derivatives 20

6.1 kth-to-default CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.1 Default Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.2 Premium Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Forward kth-to-default CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Default Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.2 Premium Payment Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Model Implementation 23

7.1 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Recursive Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2.1 Simulation Algorithm: Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Estimation and Calibration of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.4 Portfolio Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



T.R. Bielecki, M. Jeanblanc and M. Rutkowski 3

1 Introduction

The goal of this work is to present some methods and results related to the valuation and hedging of
basket credit derivatives, as well as of portfolios of credits/loans, in the context of several possible
credit ratings of underlying credit instruments. Thus, we are concerned with modeling dependent
credit migrations and, in particular, with modeling dependent defaults. On the mathematical level,
we are concerned with modeling dependence between random times and with evaluation of func-
tionals of (dependent) random times; more generally, we are concerned with modeling dependence
between random processes and with evaluation of functionals of (dependent) random processes.
Modeling of dependent defaults and credit migrations was considered by several authors, who pro-
posed several alternative approaches to this important issue. Since the detailed analysis of these
methods is beyond the scope of this text, let us only mention that they can be roughly classified as
follows:

• modeling correlated defaults in a static framework using copulae (Hull and White (2001),
Gregory and Laurent (2004)),

• modeling dependent defaults in a “dynamic” framework using copulae (Schönbucher and Schu-
bert (2001), Laurent and Gregory (2003), Giesecke (2004)),

• dynamic modelling of credit migrations and dependent defaults via proxies (Douady and Jean-
blanc (2002), Chen and Filipovic (2003), Albanese et al. (2003), Albanese and Chen (2004a,
2004b)),

• factor approach (Jarrow and Yu (2001), Yu (2003), Frey and Backhaus (2004), Bielecki and
Rutkowski (2003)),

• modeling dependent defaults using mixture models (Frey and McNeil (2003), Schmock and
Seiler (2002)),

• modeling of the joint dynamics of credit ratings by a voter process (Giesecke and Weber
(2002)),

• modeling dependent defaults by a dynamic approximation (Davis and Esparragoza (2004)).

The classification above is rather arbitrary and by no means exhaustive. In the next section, we
shall briefly comment on some of the above-mentioned approaches. In this work, we propose a
fairly general Markovian model that, in principle, nests several models previously studied in the
literature. In particular, this model covers jump-diffusion dynamics, as well as some classes of Lévy
processes. On the other hand, our model allows for incorporating several credit names, and thus it is
suitable when dealing with valuation of basket credit products (such as, basket credit default swaps
or collateralized debt obligations) in the multiple credit ratings environment. Another practically
important feature of the model put forward in this paper is that it refers to market observables only.
In contrast to most other papers in this field, we carefully analyze the issue of preservation of the
Markovian structure of the model under equivalent changes of probability measures.

1.1 Conditional Expectations Associated with Credit Derivatives

We present here a few comments on evaluation of functionals of random times related to financial
applications, so to put into perspective the approach that we present in this paper. In order to
smoothly present the main ideas we shall keep technical details to a minimum.

Suppose that the underlying probability space is (Ω,G,P) endowed with some filtration G (see
Section 2 for details). Let τl, l = 1, 2, . . . , L be a family of finite and strictly positive random
times defined on this space. Let also real-valued random variables X and X̃, as well as real-valued
processes A (of finite variation) and Z be given. Next, consider an Rk

+-valued random variable
ζ := g(τ1, τ2, . . . , τL) where g : RL

+ → Rk
+ is some measurable function. In the context of valuation
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of credit derivatives, it is of interest to evaluate conditional expectations of the form

EPβ

( ∫

]t,T ]

β−1
u dDu

∣∣∣Gt

)
, (1)

for some numeraire process β, where the dividend process D is given by the following generic formula:

Dt = (Xα1(ζ) + X̃α2(ζ))11{t≥T} +
∫

]0,t]

α3(u; ζ) dAu +
∫

]0,t]

Zu dα4(u; ζ),

where the specification of αis depends on a particular application. The probability measure Pβ ,
equivalent to P, is the martingale measure associated with a numeraire β (see Section 4.2 below).
We shall now illustrate this general set-up with four examples. In each case, it is easy to identify
the processes A,Z as well as the αis.

Example 1.1 Defaultable bond. We set L = 1 and τ = τ1, and we interpret τ as a time of default
of an issuer of a corporate bond (we set here ζ = τ = τ1). The face value of the bond (the promised
payment) is a constant amount X that is paid to bondholder at maturity T , provided that there was
no default by the time T . In addition, a coupon is paid continuously at the instantaneous rate ct

up to default time or bond’s maturity, whichever comes first. In case default occurs by the time T ,
a recovery payment is paid, either as the lump sum X̃ at bond’s maturity, or as a time-dependent
rebate Zτ at the default time. In the former case, the dividend process of the bond equals

Dt = (X(1−HT ) + X̃HT )11{t≥T} +
∫

]0,t]

(1−Hu)cu du,

where Ht = 11{τ≤t}, and in the latter case, we have that

Dt = X(1−HT )11{t≥T} +
∫

]0,t]

(1−Hu)cu du +
∫

]0,t]

Zu dHu.

Example 1.2 Step-up corporate bonds. These are corporate coupon bonds for which the
coupon payment depends on the issuer’s credit quality: the coupon payment increases when the
credit quality of the issuer declines. In practice, for such bonds, credit quality is reflected in credit
ratings assigned to the issuer by at least one credit ratings agency (such as Moody’s-KMV, Fitch
Ratings or Standard & Poor’s). Let Xt stand for some indicator of credit quality at time t. Assume
that ti, i = 1, 2, . . . , n are coupon payment dates and let ci = c(Xti−1) be the coupons (t0 = 0). The
dividend process associated with the step-up bond equals

Dt = X(1−HT )11{t≥T} +
∫

]0,t]

(1−Hu) dAu + possible recovery payment

where τ , X and H are as in the previous example, and At =
∑

ti≤t ci.

Example 1.3 Default payment leg of a CDO tranche. We consider a portfolio of L credit
names. For each l = 1, 2, . . . , L, the nominal payment is denoted by Nl, the corresponding default
time by τl and the associated loss given default by Ml = (1− δl)Nl, where δl is the recovery rate for
the lth credit name. We set H l

t = 11{τl≤t} for every l = 1, 2, . . . , L, and ζ = (τ1, τ2, . . . , τL). Thus,
the cumulative loss process equals

Lt(ζ) =
L∑

l=1

MlH
l
t .

Similarly as in Laurent and Gregory (2003), we consider a cumulative default payments process on
the mezzanine tranche of the CDO:

Mt(ζ) = (Lt(ζ)− a)11[a,b](Lt(ζ)) + (b− a)11]b,N ](Lt(ζ)),

where a, b are some thresholds such that 0 ≤ a ≤ b ≤ N :=
∑L

l=1 Nl. If we assume that M0 = 0
then the dividend process corresponding to the default payment leg on the mezzanine tranche of the
CDO is Dt =

∫
]0,t]

dMu(ζ).
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Example 1.4 Default payment leg of a kth-to-default CDS. Consider a portfolio of L reference
defaultable bonds. For each defaultable bond, the notional amount is taken to be deterministic
and denoted as Nl; the corresponding recovery rate δl is also deterministic. We suppose that the
maturities of the bonds are Ul and the maturity of the swap is T < min{U1, U2, . . . , UL}. Here, we
set ζ = (τ1, τ2, . . . , τL, τ (k)), where τ (k) is the kth order statistics of the collection {τ1, τ2, . . . , τL}.

A special case of the kth-to-default-swap is the case when the protection buyer is protected
against only the last default (i.e. the kth default). In this case, the dividend process associated with
the default payment leg is

Dt = (1− δι(k))Nι(k)11{τ(k)≤T}H
(k)
t ,

where H
(k)
t = 11{τ(k)≤t} and ι(k) stands for the identity of the kth defaulting credit name. This can

be also written as Dt =
∫
]0,t]

dNu(ζ), where

Nt(ζ) =
∫

]0,t]

L∑

l=1

(1− δl)Nl11τl
(u) dH(k)

u .

1.2 Existing Methods of Modelling Dependent Defaults

It is apparent that in order to evaluate the expectation in (1) one needs to know, among other things,
the conditional distribution of ζ given Gt. This, in general, requires the knowledge of conditional
dependence structure between random times τl, τ2, . . . , τL, so that it is important to be able to
appropriately model dependence between these random times. This is not an easy task, in general.
Typically, the methodologies proposed in the literature so far handle well the task of evaluating the
conditional expectation in (1) for ζ = τ (1) = min {τ1, τ2, . . . , τL}, which, in practical applications,
corresponds to first-to-default or first-to-change type credit derivatives. However, they suffer from
more or less serious limitations when it comes to credit derivatives involving subsequent defaults
or changes in credit quality, and not just the first default or the first change, unless restrictive
assumptions are made, such as conditional independence between the random times in question.
In consequence, the existing methodologies would not handle well computation of expectation in
(1) with process D as in Examples 1.3 and 1.4, unless restrictive assumptions are made about the
model. Likewise, the existing methodologies can’t typically handle modeling dependence between
credit migrations, so that they can’t cope with basket derivatives whose payoffs explicitly depend
on changes in credit ratings of the reference names.

Arguably, the best known and the most widespread among practitioners is the copula approach
(cf. Li (2000), Schubert and Schönbucher (2001), and Laurent and Gregory (2003), for example).
Although there are various versions of this approach, the unifying idea is to use a copula function
so to model dependence between some auxiliary random variables, say υ1, υ2, . . . , υL, which are
supposed to be related in some way to τl, τ2, . . . , τL, and then to infer the dependence between the
latter random variables from the dependence between the former.

It appears that the major deficiency of the copula approach, as it stands now, is its inability to
compute certain important conditional distributions. Let us illustrate this point by means of a simple
example. Suppose that L = 2 and consider the conditional probability P(τ2 > t + s | Gt). Using the
copula approach, one can typically compute the above probability (in terms of partial derivatives
of the underlying copula function) on the set {τ1 = t1} for t1 ≤ t, but not on the set {τ1 ≤ t1}.
This means, in particular, that the copula approach is not “Markovian”, although this statement
is rather vague without further qualifications. In addition, the copula approach, as it stands now,
can’t be applied to modeling dependence between changes in credit ratings, so that it can’t be used
in situations involving, for instance, baskets of corporate step-up bonds (cf. Example 1.2). In fact,
this approach can’t be applied to valuation and hedging of basket derivatives if one wants to account
explicitly on credit ratings of the names in the basket. Modeling dependence between changes in
credit ratings indeed requires modeling dependence between stochastic processes.
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Another methodology that gained some popularity is a methodology of modeling dependence
between random times in terms of some proxy processes, typically some Lévy processes (cf. Hull
and White (2000), Albanese et al. (2002) and Chen and Filipović (2004), for example). The major
problem with these approaches is that the proxy processes are latent processes whose states are
unobservable virtual states. In addition, in this approach, when applied to modeling of credit
quality, one can’t model a succession of credit ratings, e.g., the joint evolution of the current and
immediately preceding credit ratings (see Remark 2.1 (ii) below).

2 Notation and Preliminary Results

The underlying probability space containing all possible events over a finite time horizon is denoted
by (Ω,G,P), where P is a generic probability measure. Depending on the context, we shall consider
various (mutually equivalent) probability measures on the space (Ω,G). The probability space
(Ω,G,P) is endowed with a filtration G = H̃ ∨ F, where the filtration H̃ carries the information
about evolution of credit events, such as changes in credit ratings of respective credit names, and
where F is some reference filtration. We shall be more specific about both filtrations later on; at this
point, we only postulate that they both satisfy the so-called “usual conditions”.

The credit events of fundamental interest to us are changes in credit ratings, in particular – the
default event. The evolution of credit ratings can be modeled in terms of an appropriate stochastic
process defined on (Ω,G,P). Various approaches to the choice of this process have been already
proposed in the literature. We shall focus here on the Markov approach, in the sense explained in
Section 2.1.1 below.

2.1 Credit Migrations

We consider L obligors (or credit names). We assume that current credit rating of the lth reference
entity can be classified to one of Kl different rating categories. We let Kl = {1, 2, . . . , Kl} to
denote the set of such categories. However, without a loss of generality, we assume that Kl = K :=
{1, 2, . . . , K} for every l = 1, 2, . . . , L. By convention, the category K corresponds to default.

Let X l, l = 1, 2, . . . , L be some processes on (Ω,G,P) with values in K. A process X l represents
the evolution of credit ratings of the lth reference entity.

Let us write X = (X1, X2, . . . , XL). The state space of X is X := KL; the elements of X will
be denoted by x. We call the process X the (joint) migration process. We assume that X l

0 6= K for
every l = 1, 2, . . . , L, and we define the default time τl of the lth reference entity by setting

τl = inf{ t > 0 : X l
t = K} (2)

with the usual convention that inf ∅ = ∞. We assume that the default state K is absorbing, so
that for each name the default event can only occur once. Put another way, for each l the process
X l is stopped at τl. Since we are considering a continuous time market then, without loss of
practical generality, we assume that simultaneous defaults are not allowed. Specifically, the equality
P(τl′ = τl) = 0 will hold for every l′ 6= l in our model.

Remarks. (i) In the special case when K = 2, only two categories are distinguished: pre-default
(j = 1) and default (j = 2). We then have X l

t = H l
t + 1, where H l

t = 11{τl≤t}.

(ii) Each credit rating j may include a “history” of transitions. For example, j may be a two-
dimensional quantity, say j = (j′, j′′), where j′ represents the current credit rating, whereas j′′

represents the immediately preceding credit rating.
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2.1.1 Markovian Set-up

From now on, we set H̃ = FX , so that the filtration H̃ is the natural filtration of the process X.
Arguably, the most convenient set-up to work with is the one where the reference filtration F is the
filtration FY generated by relevant (vector) factor process, say Y , and where the process (X, Y ) is
jointly Markov under P with respect to its natural filtration G = FX ∨FY = H̃∨F, so that we have,
for every 0 ≤ t ≤ s, x ∈ X and any set Y from the state space of Y ,

P(Xs = x, Ys ∈ Y | Gt) = P(Xs = x, Ys ∈ Y |Xt, Yt). (3)

This is the general framework adopted in the present paper. A specific Markov market model will
be introduced in Section 3 below.

Of primary importance in this paper will be the kth default time for an arbitrary k = 1, 2, . . . , L.
Let τ (1) < τ (2) < · · · < τ (L) be the ordering (for each ω) of the default times τ1, τ2, . . . , τL. By
definition, the kth default time is τ (k).

It will be convenient to represent some probabilities associated with the kth default time in terms
of the cumulative default process H, defined as the increasing process

Ht =
L∑

l=1

H l
t ,

where H l
t = 11{Xl

t=K} = 11{τl≤t} for every t ∈ R+. Evidently H ⊆ H̃, where H is the filtration
generated by the cumulative default process H. It is obvious that the process S := (H, X, Y ) has
the Markov property under P with respect to the filtration G. Also, it is useful to observe that
we have {τ (1) > t} = {Ht = 0}, {τ (k) ≤ t} = {Ht ≥ k} and {τ (k) = τl} = {Hτl

= k} for every
l, k = 1, 2, . . . , L.

2.2 Conditional Expectations

Although we shall later focus on a Markovian set-up, in the sense of equality (3), we shall first
derive some preliminary results in a more general set-up. To this end, it will be convenient to use
the notation FX,t = σ(Xs; s ≥ t) and FY,t = σ(Ys; s ≥ t) for the information generated by the
processes X and Y after time t. We postulate that for any random variable Z ∈ FX,t ∨FY

∞ and any
bounded measurable function g, it holds that

EP(g(Z) | Gt) = EP(g(Z) |σ(Xt) ∨ FY
t ). (4)

This implies, in particular, that the migration process X is conditionally Markov with regard to the
reference filtration FY , that is, for every 0 ≤ t ≤ s and x ∈ X ,

P(Xs = x | Gt) = P(Xs = x |σ(Xt) ∨ FY
t ). (5)

Note that the Markov condition (3) is stronger than condition (4). We assume from now on that
t ≥ 0 and x ∈ X are such that px(t) := P(Xt = x | FY

t ) > 0. We begin the analysis of conditional
expectations with the following lemma.

Lemma 2.1 Let k ∈ {1, 2, . . . , L}, x ∈ X , and let Z ∈ FX,t∨FY
∞ be an integrable random variable.

Then we have, for every 0 ≤ t ≤ s,

11{Xt=x} EP(11{Hs<k}Z | Gt) = 11{Ht<k, Xt=x}
EP(11{Hs<k, Xt=x}Z | FY

t )
px(t)

. (6)

Consequently,

EP(11{Hs<k}Z | Gt) = 11{Ht<k}
∑

x∈X
11{Xt=x}

EP(11{Hs<k, Xt=x}Z | FY
t )

px(t)
. (7)
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Proof. Let At be an arbitrary event from Gt. We need to check that

EP
(
11At

11{Xt=x}11{Hs<k}Z
)

= EP

(
11At

11{Ht<k, Xt=x}
EP(11{Hs<k, Xt=x}Z | FY

t )
px(t)

)
.

Since {Hs < k} ⊂ {Ht < k} and the random variable Z̃ := 11{Hs<k, Xt=x}Z belongs to FX,t ∨ FY
∞,

the left-hand side is equal to

EP
(
EP(11At11{Ht<k, Xt=x}11{Hs<k}Z | Gt)

)
= EP

(
11At11{Ht<k, Xt=x} EP(11{Hs<k, Xt=x}Z | Gt)

)

= EP
(
11At

11{Ht<k, Xt=x} EP(11{Hs<k, Xt=x}Z |σ(Xt) ∨ FY
t )

)

= EP

(
11At

11{Ht<k, Xt=x}
EP(11{Hs<k, Xt=x}Z | FY

t )
px(t)

)
,

where the second equality is a consequence of (4), and the last one follows from the equality

11{Xt=x} EP(Ẑ |σ(Xt) ∨ FY
t ) = 11{Xt=x}

EP(11{Xt=x}Ẑ | FY
t )

P(Xt = x | FY
t )

,

which is valid for any integrable random variable Ẑ. Equality (7) is an immediate consequence of
(6). ¤

In the case of a single credit name, that is, in the case of L = 1, we have for any t ≥ 0 that
{Ht < 1} = {Ht 6= 1} = {Xt 6= K}. This leads to the following result.

Corollary 2.1 Let L = 1 and let Z ∈ FX,t ∨ FY
∞ be an integrable random variable. Then we have,

for any 0 ≤ t ≤ s,

EP(11{Xs6=K}Z | Gt) =
K−1∑
x=1

11{Xt=x}
EP(11{Xs 6=K, Xt=x}Z | FY

t )
px(t)

. (8)

For any 0 ≤ t ≤ s, we write

qk,x;t(s) = P(Hs < k, Xt = x | FY
t ) = P(τ (k) > s, Xt = x | FY

t ),

pk,x;t(s) = P(Hs ≥ k, Xt = x | FY
t ) = P(τ (k) ≤ s, Xt = x | FY

t ),

so that formally dpk,x;t(s) = P(τ (k) ∈ ds,Xt = x | FY
t ). The following proposition extends Lemma

2.1.

Proposition 2.1 Let k ∈ {1, 2, . . . , L} and let Z be an integrable, FY -predictable process. Then we
have, for every 0 ≤ t ≤ s,

EP(11{t<τ(k)≤s}Zτ(k) | Gt) = 11{Ht<k}
∑

x∈X

11{Xt=x}
px(t)

EP

(∫

]t,s]

Zu dpk,x;t(u)
∣∣∣FY

t

)
. (9)

Proof. Let t < α < β < s. Let us first establish (9) for a process Z of the form Zu = 11]α,β](u)Zα

where Zα is a FY
α -measurable, integrable random variable. In this case, we have

EP(11{t<τ(k)≤s}Zτ(k) | Gt) = EP(11{α<τ(k)≤β}Zα | Gt)
= EP(11{Hα<k}Zα | Gt)− EP(11{Hβ<k}Zα | Gt)

= 11{Ht<k}
∑

x∈X

11{Xt=x}
px(t)

EP
(
Zα[qk,x,t(α)− qk,x,t(β)] | FY

t

)

= 11{Ht<k}
∑

x∈X

11{Xt=x}
px(t)

EP

(∫

]t,s]

Zu dpk,x;t(u)
∣∣∣FY

t

)
,

where the third equality follows easily from (7) and the definitions of qk,x;t(s) and pk,x;t(s). The
general case follows by standard approximation arguments. ¤
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Corollary 2.2 Let L = 1 and let Z be an integrable, FY -predictable stochastic process. Then we
have, for every 0 ≤ t ≤ s,

EP(11{t<τ≤s}Zτ | Gt) = 11{Xt 6=K}
K−1∑
x=1

11{Xt=x}
px(t)

EP

(∫

]t,s]

Zu dp1,k;t(u)
∣∣∣FY

t

)
. (10)

For K = 2, Corollaries 2.1 and 2.2 coincide with Lemma 5.1.2 (i) and Proposition 5.1.1 (i) in
Bielecki and Rutkowski (2002a), respectively.

2.2.1 Markovian Case

Let us now assume the Markovian set-up of Section 2.1.1. Let Z be a Gt = FX,t ∨FY,t-measurable,
integrable random variable. Then formula (7) yields, for every 0 ≤ t ≤ s,

EP(11{Hs<k}Z | Gt) = 11{Ht<k}
∑

x∈X

11{Xt=x}
p̄x(t)

EP(11{Hs<k, Xt=x}Z |Yt), (11)

where p̄x(t) = P(Xt = x |Yt), and formula (9) becomes

EP(11{t<τ(k)≤s}Zτ(k) | Gt) = 11{Ht<k}
∑

x∈X

11{Xt=x}
p̄x(t)

EP

(∫

]t,s]

Zu dp̄k,x;t(u)
∣∣∣ Yt

)
, (12)

where
p̄k,x;t(u) = P(Hu ≥ k, Xt = x |Yu) = P(τ (k) ≤ u, Xt = x |Yu).

3 Markovian Market Model

We assume that the factor process Y takes values in Rn so that the state space for the process
M = (X, Y ) is X × Rn. At the intuitive level, we wish to model the process M = (X, Y ) as a
combination of a Markov chain X modulated by the Lévy-like process Y and a Lévy-like process Y
modulated by a Markov chain X. To be more specific, we postulate that the infinitesimal generator
A of M is given as

Af(x, y) = (1/2)
n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +
n∑

i=1

bi(x, y)∂if(x, y)

+ γ(x, y)
∫

Rn

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′) +

∑

x′∈X
λ(x, x′; y)f(x′, y),

where λ(x, x′; y) ≥ 0 for every x = (x1, x2, . . . , xL) 6= (x′1, x′2, . . . , x′L) = x′, and

λ(x, x; y) = −
∑

x′∈X , x′ 6=x

λ(x, x′; y).

Here ∂i denotes the partial derivative with respect to the variable yi. The existence and uniqueness
of a Markov process M with the generator A will follow (under appropriate technical conditions)
from the respective results regarding martingale problems. Specifically, one can refer to Theorems
4.1 and 5.4 in Chapter 4 of Ethier and Kurtz (1986).

We find it convenient to refer to X (Y , respectively) as the Markov chain component of M (the
jump-diffusion component of M , respectively). At any time t, the intensity matrix of the Markov
chain component is given as Λt = [λ(x, x′; Yt)]x,x′∈X . The jump-diffusion component satisfies the
SDE:

dYt = b(Xt, Yt) dt + σ(Xt, Yt) dWt +
∫

Rn

g(Xt−, Yt−, y′)π(Xt−, Yt−; dy′, dt),
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where, for a fixed (x, y) ∈ X × Rn, π(x, y; dy′, dt) is a Poisson measure with the intensity measure
γ(x, y)Π(x, y; dy′)dt, and where σ(x, y) satisfies the equality σ(x, y)σ(x, y)T = a(x, y).

Remarks. If we take g(x, y, y′) = y′, and we suppose that the coefficients σ = [σij ], b = [bi], γ, and
the measure Π do not depend on x and y then the factor process Y is a Poisson-Lévy process with
the characteristic triplet (a, b, ν), where the diffusion matrix is a(x, y) = σ(x, y)σ(x, y)T, the “drift”
vector is b(x, y), and the Lévy measure is ν(dy) = γΠ(dy). In this case, the migration process X
is modulated by the factor process Y , but not vice versa. We shall not study here the “infinite
activity” case, that is, the case when the jump measure π is not a Poisson measure, and the related
Lévy measure is an infinite measure.

We shall provide with more structure the Markov chain part of the generator A. Specifically, we
make the following standing assumption.

Asumption (M). The infinitesimal generator of the process M = (X,Y ) takes the following form

Af(x, y) = (1/2)
n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +
n∑

i=1

bi(x, y)∂if(x, y)

+ γ(x, y)
∫

Rn

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′) (13)

+
L∑

l=1

∑

xl′∈K
λl(x, x′l; y)f(x′l, y),

where we write x′l = (x1, x2, . . . , xl−1, x′l, xl+1, . . . , xL).

Note that x′l is the vector x = (x1, x2, . . . , . . . , xL) with the lth coordinate xl replaced by x′l. In
the case of two obligors (i.e., for L = 2), the generator becomes

Af(x, y) = (1/2)
n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +
n∑

i=1

bi(x, y)∂if(x, y)

+ γ(x, y)
∫

Rn

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′)

+
∑

x′1∈K
λ1(x, x′1; y)f(x′1, y) +

∑

x′2∈K
λ2(x, x′2; y)f(x′2, y),

where x = (x1, x2), x′1 = (x′1, x2) and x′2 = (x1, x′2). In this case, coming back to the general form,
we have for x = (x1, x2) and x′ = (x′1, x′2)

λ(x, x′; y) =





λ1(x, x′1; y), if x2 = x′2,
λ2(x, x′2; y), if x1 = x′1,
0, otherwise.

Similar expressions can be derived in the case of a general value of L. Note that the model specified
by (13) does not allow for simultaneous jumps of the components X l and X l′ for l 6= l′. In other
words, the ratings of different credit names may not change simultaneously. Nevertheless, this is not
a serious lack of generality, as the ratings of both credit names may still change in an arbitrarily
small time interval. The advantage is that, for the purpose of simulation of paths of process X,
rather than dealing with X ×X intensity matrix [λ(x, x′; y)], we shall deal with L intensity matrices
[λl(x, x′l; y)], each of dimension K×K (for any fixed y). The structure (13) is assumed in the rest of
the paper. Let us stress that within the present set-up the current credit rating of the credit name
l directly impacts the intensity of transition of the rating of the credit name l′, and vice versa. This
property, known as frailty, may contribute to default contagion.

Remarks. (i) It is clear that we can incorporate in the model the case when some – possibly all –
components of the factor process Y follow Markov chains themselves. This feature is important, as
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factors such as economic cycles may be modeled as Markov chains. It is known that default rates
are strongly related to business cycles.

(ii) Some of the factors Y 1, Y 2, . . . , Y d may represent cumulative duration of visits of rating processes
X l in respective rating states. For example, we may set Y 1

t =
∫ t

0
11{X1

s =1} ds. In this case, we have
b1(x, y) = 11{x1=1}(x), and the corresponding components of coefficients σ and g equal zero.

(iii) In the area of structural arbitrage, so called credit–to–equity (C2E) models and/or equity–to–
credit (E2C) models are studied. Our market model nests both types of interactions, that is C2E
and E2C. For example, if one of the factors is the price process of the equity issued by a credit name,
and if credit migration intensities depend on this factor (implicitly or explicitly) then we have a E2C
type interaction. On the other hand, if credit ratings of a given obligor impact the equity dynamics
(of this obligor and/or some other obligors), then we deal with a C2E type interaction.

As already mentioned, S = (H, X, Y ) is a Markov process on the state space {0, 1, . . . , L}×X ×
Rd with respect to its natural filtration. Given the form of the generator of the process (X, Y ),
we can easily describe the generator of the process (H,X, Y ). It is enough to observe that the
transition intensity at time t of the component H from the state Ht to the state Ht + 1 is equal
to

∑L
l=1 λl(Xt,K; X(l)

t , Yt), provided that Ht < L (otherwise, the transition intensity equals zero),
where we write X

(l)
t = (X1

t , . . . , X l−1
t , X l+1

t , . . . , XL
t ) and we set λl(xl, x′l;x(l), y) = λl(x, x′l; y).

3.1 Specification of Credit Ratings Transition Intensities

One always needs to find a compromise between realistic features of a financial model and its com-
plexity. This issue frequently nests the issues of functional representation of a model, as well as
its parameterization. We present here an example of a particular model for credit ratings tran-
sition rates, which is rather arbitrary, but is nevertheless relatively simple and should be easy to
estimate/calibrate.

Let X̄t be the average credit rating at time t, so that

X̄t =
1
L

L∑

l=1

X l
t .

Let L = {l1, l2, . . . , lbL} be a subset of the set of all obligors, where L̂ < L. We consider L to be a
collection of “major players” whose economic situation, reflected by their credit ratings, effectively
impacts all other credit names in the pool. The following exponential-linear “regression” model
appears to be a plausible model for the rating transition intensities:

ln λl(x, x′l; y) = αl,0(xl, x′l) +
n∑

j=1

αl,j(xl, x′l)yj + βl,0(xl, x′l)h

+
L̄∑

i=1

βl,i(xl, x′l)xi + β̃l(xl, x′l)x̄ + β̂l(xl, x′l)(xl − x′l), (14)

where h represents a generic value of Ht, so that h =
∑L

l=1 11{K}(xl), and x̄ represents a generic
value of X̄t, that is, x̄ = 1

L

∑L
l=1 xl.

The number of parameters involved in (14) can easily be controlled by the number of model
variables, in particular – the number of factors and the number of credit ratings, as well as structure of
the transition matrix (see Section 7.2 below). In addition, the reduction of the number of parameters
can be obtained if the pool of all L obligors is partitioned into a (small) number of homogeneous
sub-pools. All of this is a matter of practical implementation of the model. Assume, for instance,
that there are L̃ << L homogeneous sub-pools of obligors, and the parameters α, β, β̃ and β̂ in (14)
do not depend on xl, x′l. Then the migration intensities (14) are parameterized by L̃(n + L̂ + 4)
parameters.
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3.2 Conditionally Independent Migrations

Suppose that the intensities λl(x, x′l; y) do not depend on x(l) = (x1, x2, . . . , xl−1, xl+1, . . . , xL) for
every l = 1, 2, . . . , L. In addition, assume that the dynamics of the factor process Y do not depend
on the the migration process X. It turns out that in this case, given the structure of our generator as
in (13), the migration processes X l, l = 1, 2, . . . , L, are conditionally independent given the sample
path of the process Y .

We shall illustrate this point in the case of only two credit names in the pool (i.e., for L = 2) and
assuming that there is no factor process, so that conditional independence really means independence
between migration processes X1 and X2. For this, suppose that X1 and X2 are independent Markov
chains, each taking values in the state space K, with infinitesimal generator matrices Λ1 and Λ2,
respectively. It is clear that the joint process X = (X1, X2) is a Markov chain on K × K. An easy
calculation reveals that the infinitesimal generator of the process X is given as

Λ = Λ1 ⊗ IdK + IdK ⊗ Λ2,

where IdK is the identity matrix of order K and ⊗ denotes the matrix tensor product. This agrees
with the structure (13) in the present case.

4 Changes of Measures and Markovian Numeraires

In financial applications, one frequently deals with various absolutely continuous probability mea-
sures. In order to exploit – for pricing applications – the Markovian structure of the market model
introduced above, we need that the model is Markovian under a particular pricing measure corre-
sponding to some particular numeraire process β that is convenient to use for some reasons. The
model does not have to be Markovian under some other equivalent probability measures, such as
the statistical probability, say Q, or the spot martingale measure, say Q∗. Nevertheless, it may
be sometimes desirable that the Markovian structure of the market model is preserved under an
equivalent change of a probability measure, for instance, when we change a numeraire from β to β′.
In this section, we shall provide some discussion of the issue of preservation of the Markov property
of the process M .

Let T ∗ > 0 be a fixed horizon date, and let η be a strictly positive, GT∗-measurable random
variable such that EPη = 1. We define an equivalent probability measure Pη on (Ω,GT∗) by the
equality

dPη

dP
= η, P-a.s.

4.1 Markovian Change of a Probability Measure

We place ourselves in the set-up of Section 2.1.1, and we follow Palmowski and Rolski (2002) in
the presentation below. The standing assumption is that the process M = (X, Y ) has the Markov
property under P with respect to the filtration G. Let (A,D(A)) be the extended generator of M .
This means that the process

Mf
t = f(Mt)−

∫ t

0

Af(Ms) ds (15)

is a local G-martingale for any function f in D(A).

For any strictly positive function h ∈ D(A), we define an auxiliary process ηh by setting

ηh
t =

h(Mt)
h(M0)

exp
(
−

∫ t

0

(Ah)(Ms)
h(Ms)

ds

)
, t ∈ [0, T ∗]. (16)

Any function h for which the process ηh is a martingale is called a good function for A. Observe
that for any such function h, the equality EP(ηh

t ) = 1 holds for every t ∈ [0, T ∗]. Note also that any
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constant function h is a good function for A; in this case we have, of course, that ηh ≡ 1. The next
lemma follows from results of Palmowski and Rolski (2002) (see Lemma 3.1 therein).

Lemma 4.1 Let h be a good function for A. Then the process ηh is given as Doléans exponential
martingale

ηh
t = Et(Nh),

where the local martingale Nh is given as

Nh
t =

∫ t

0

κh
s− dMh

s

with κh
t = 1/h(Mt). In other words, the process ηh satisfies the SDE

dηh
t = ηh

t−κh
t− dMh

t , ηh
0 = 1. (17)

Proof. An application of Itô’s formula yields

dηh
t =

1
h(M0)

exp
(
−

∫ t

0

(Ah)(Ms)
h(Ms)

ds

)
dMh

t ,

where the local martingale Mh is given by (15). This proves formula (17). ¤

For any good function h for A, we define an equivalent probability measure Ph on (Ω,GT∗) by
setting

dPh

dP
= ηh

T∗ , P-a.s. (18)

From Kunita and Watanabe (1963), we deduce that the process M preserves its Markov property
with respect to the filtration G when the probability measure P is replaced by Ph. In order to find
the extended generator of M under Ph, we set

Ahf =
1
h

[A(fh)− fA(h)] ,

and we define the following two sets:

Dh
A =

{
f ∈ D(A) : fh ∈ D(A) and

∫ T∗

0

|Ahf(Ms)| ds < ∞, Ph-a.s.

}

and

Dh−1

Ah =

{
f ∈ D(Ah) : fh−1 ∈ D(Ah) and

∫ T∗

0

|Af(Ms)| ds < ∞, P-a.s.

}
.

Then the following result holds (see Theorem 4.2 in Palmowski and Rolski (2002)).

Theorem 4.1 Suppose that Dh
A = D(A) and Dh−1

Ah = D(Ah). Then the process M is Markovian
under Ph with the extended generator Ah and D(Ah) = D(A).

We now apply the above theorem to our model. The domain of D(A) contains all functions
f(x, y) with compact support that are twice continuously differentiable with respect to y. Let h be
a good function. Under mild assumptions on the coefficients of A, the assumptions of Theorem 4.1
are satisfied. It follows that the generator of M under Ph is given as

Ahf(x, y) = (1/2)
n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +
n∑

i=1

bh
i (x, y)∂if(x, y)

+ γ(x, y)
∫

Rn

(f(x, y + g(x, y, y′))− f(x, y))Πh(x, y; dy′) +
∑

x′∈X
λh(x, x′; y)f(x′, y),
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where

bh
i (x, y) = bi(x, y) +

1
h(x, y)

n∑

i,j=1

aij(x, y)∂jh(x, y),

Πh(x, y; dy′) =
h(x, y + g(x, y, y′))

h(x, y)
Π(x, y; dy′), (19)

λh(x, x′; y) = λ(x, x′; y)
h(x′, y)
h(x, y)

, x 6= x′, λh(x, x; y) = −
∑

x′ 6=x

λh(x, x′; y).

Before we proceed to the issue of valuation of credit derivatives, we state the following useful result,
whose easy proof is omitted.

Lemma 4.2 Let h and h′ be two good functions for A. Then φ(h, h′) := h′/h is a good function for
Ah. Moreover, we have that

dPh′

dPh
= η

φ(h,h′)
T∗ , Ph-a.s. (20)

where the process ηφ(h,h′) is defined in analogy to (16) with A replaced with Ah.

4.2 Markovian Numeraires and Valuation Measures

Let us first consider a general set-up. We use here the notation and terminology of Jamshidian
(2004). We fix the horizon date T ∗, and we assume that G = GT∗ . Let us fix some (G-adapted)
deflator process ξ, that is, a strictly positive, integrable semimartingale, with ξ0 = 1. Any G-
measurable random variable C such that ξT∗C is integrable under P is called a claim. The price
process Ct, t ∈ [0, T ∗], of a claim C is formally defined as

Ct = ξ−1
t EP(ξT∗C | Gt),

so that, in particular, CT∗ = C. It is implicitly assumed here that the information carried by the
filtration G is available to all trading agents.

Suppose that we are interested in providing valuation formulae for some financial products, and
suppose that we find it convenient to use a particular numeraire (that is, a strictly positive claim),
denoted by β. Let Pβ be the corresponding valuation measure, defined on (Ω,G) as

dPβ

dP
=

ξT∗β

β0
=

ξT∗βT∗

β0
, P-a.s. (21)

From the abstract Bayes rule, it follows that the price process C can be expressed as follows:

Ct = βt EPβ (β−1
T∗C | Gt).

As before, we assume that our market model M is Markovian under P, where P might be
the statistical probability measure Q, the spot martingale measure Q∗, or some other martingale
measure. We want the process M to remain a time-homogeneous Markov process under Pβ .

Definition 4.1 A valuation measure Pβ is said to be a Markovian if the process M remains a time-
homogeneous Markov process under Pβ . Any numeraire process β such that the valuation measure
Pβ is Markovian is called a Markovian numeraire.

In view of results of Section 4.1, for a valuation measure Pβ to be Markovian, it suffices that the
Radon-Nikodým derivative process ηβ

t = dPβ

dP
∣∣
Gt

satisfies

ηβ
t =

hβ(Mt)
hβ(M0)

exp
(
−

∫ t

0

(Ahβ)(Ms)
hβ(Ms)

ds

)
, t ∈ [0, T ∗],



T.R. Bielecki, M. Jeanblanc and M. Rutkowski 15

for some good function hβ for A. The corresponding deflator process is then given as ξβ
t = β0β

−1
t ηβ

t ,
that is, for any claim C we have that

Ct = βt EPβ (β−1
T∗C | Gt) = (ξβ

t )−1 EP(ξβ
T∗C | Gt).

If β and β′ are two such numeraires, and hβ and hβ′ are the corresponding good functions then, in
view of Lemma 4.2, we have

dPβ′

dPβ
= η

φ(hβ ,hβ′ )
T∗ , Pβ-a.s. (22)

An interesting question arises: under what conditions on ξ and β the probability measure Pβ is
a Markovian valuation measure? In order to partially address this question, we shall consider the
case where the valuation measure Pβ is a Markovian for any constant numeraire β, that is, for any
β ≡ const > 0.

Proposition 4.1 Assume that the deflator process satisfies ξ = ηh for some good function h for A.
Then the following statements are true:
(i) for any constant numeraire β, the valuation measure Pβ is Markovian,
(ii) if a numeraire β is such that β = β0η

χ
T∗/ηh

T∗ for some good function χ for A, then the valuation
measure Pβ is Markovian,
(iii) if numeraires β and β′ are such that β = β0η

χ
T∗/ηh

T∗ and β′ = β′0η
χ′

T∗/ηh
T∗ for some good functions

χ and χ′ for A, then
dPβ′

dPβ
=

β′/β′0
β/β0

=
ηχ′

T∗

ηχ
T∗

, Pξ,β′-a.s. (23)

Proof. Let ξ = ηh for some good function h, where ηh is given by (16). Then for any constant
numeraire β we get Pβ = Ph and thus, by results of Kunita and Watanabe (1963), the process M is
Markovian under the valuation measure Pβ . This proves part (i). To establish the second part, it
suffices to note that

dPβ

dP
=

ξT∗β

β0
= ηχ

T∗ ,

and to use again the result of Kunita and Watanabe (1963). Formula (23) follows easily from (21)
(it can also be seen as a special case of (22)). This completes the proof. ¤

4.3 Examples of Markov Market Models

We shall now present three pertinent examples of Markov market models. We assume here that a
numaraire β is given; the choice of β depends on the problem at hand.

4.3.1 Markov Chain Migration Process

We assume here that there is no factor process Y . Thus, we only deal with a single migration process
X. In this case, an attractive and efficient way to model credit migrations is to postulate that X
is a birth-and-death process with absorption at state K. In this case, the intensity matrix Λ is tri-
diagonal. To simplify the notation, we shall write pt(k, k′) = Pβ(Xs+t = k′ |Xs = k). The transition
probabilities pt(k, k′) satisfy the following system of ODEs, for t ≥ 0 and k′ ∈ {1, 2, . . . , K},

dpt(1, k′)
dt

= −λ(1, 2)pt(1, k′) + λ(1, 2)pt(2, k′),

dpt(k, k′)
dt

= λ(k, k − 1)pt(k − 1, k′)− (λ(k, k − 1) + λ(k, k + 1))pt(k, k′) + λ(k, k + 1)pt(k + 1, k′)

for k = 2, 3, . . . , K − 1, and
dpt(K, k′)

dt
= 0,
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with initial conditions p0(k, k′) = 11{k=k′}. Once the transition intensities λ(k, k′) are specified, the
above system can be easily solved. Note, in particular, that pt(K, k′) = 0 for every t if k′ 6= K. The
advantage of this representation is that the number of parameters can be kept small.

A slightly more flexible model is produced if we allow for jumps to the default state K from any
other state. In this case, the master ODEs take the following form, for t ≥ 0 and k′ ∈ {1, 2, . . . , K},

dpt(1, k′)
dt

= −(λ(1, 2) + λ(1,K))pt(1, k′) + λ(1, 2)pt(2, k′) + λ(1,K)pt(K, k′),

dpt(k, k′)
dt

= λ(k, k − 1)pt(k − 1, k′)− (λ(k, k − 1) + λ(k, k + 1) + λ(k, K))pt(k, k′)

+λ(k, k + 1)pt(k + 1, k′) + λ(k, K)pt(K, k′)

for k = 2, 3, . . . , K − 1, and
dpt(K, k′)

dt
= 0,

with initial conditions p0(k, k′) = 11{k=k′}. Some authors model migrations of credit ratings using
a (proxy) diffusion, possibly with jumps to default. The birth-and-death process with jumps to
default furnishes a Markov chain counterpart of such proxy diffusion models. The nice feature of the
Markov chain model is that the credit ratings are (in principle) observable state variables – whereas
in case of the proxy diffusion models they are not.

4.3.2 Diffusion-type Factor Process

We now add a factor process Y to the model. We postulate that the factor process is a diffusion
process and that the generator of the process M = (X,Y ) takes the form

Af(x, y) = (1/2)
n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +
n∑

i=1

bi(x, y)∂if(x, y)

+
∑

x′∈K, x′ 6=x

λ(x, x′; y)(f(x′, y)− f(x, y)).

Let φ(t, x, y, x′, y′) be the transition probability of M . Formally,

φ(t, x, y, x′, y′) dy′ = Pβ(Xs+t = x′, Ys+t ∈ dy′ |Xs = x, Ys = y).

In order to determine the function φ, we need to study the following Kolmogorov equation

dv(s, x, y)
ds

+ Av(s, x, y) = 0. (24)

For the generator A of the present form, equation (24) is commonly known as the reaction-diffusion
equation. Existence and uniqueness of classical solutions for such equations were recently studied by
Becherer and Schweizer (2003). It is worth mentioning that a reaction-diffusion equation is a special
case of a more general integro-partial-differential equation (IPDE). In a future work, we shall deal
with issue of practical solving of equations of this kind.

4.3.3 CDS Spread Factor Model

Suppose now that the factor process Yt = κ(1)(t, TS , TM ) is the forward CDS spread (for the
definition of κ(1)(t, TS , TM ), see Section 5.3 below), and that the generator for (X, Y ) is

Af(x, y) = (1/2)y2a(x)
d2f(x, y)

dy2
+

∑

x′∈K, x′ 6=x

λ(x, x′)(f(x′, y)− f(x, y)).
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Thus, the credit spread satisfies the following SDE

dκ(1)(t, TS , TM ) = κ(1)(t, TS , TM )σ(Xt) dWt

for some Brownian motion process W , where σ(x) =
√

a(x). Note that in this example κ(1)(t, TS , TM )
is a conditionally log-Gaussian process given a sample path of the migration process X, so that we
are in the position to make use of Proposition 5.1 below.

5 Valuation of Single Name Credit Derivatives

We maintain the Markovian set-up, so that M = (X,Y ) follows a Markov process with respect to G
under P. In this section, we only consider one underlying credit name, that is, we set L = 1. Basket
credit derivatives will be studied in Section 6 below.

5.1 Survival Claims

Suppose that β is a Markovian numeraire, in the sense of Definition 4.1. Let us fix t ∈ [0, T ],
and let us assume that a claim C and the random variable βt/βT∗ are measurable with respect to
Gt = FX,t ∨ FY,t. Then we deduce easily that Ct = Vξ,β

t (C), where

Vξ,β
t (C) = EPβ

(
βtβ

−1
T∗C

∣∣ Mt

)
.

A claim C such that C = 0 on the set {τ ≤ T}, so that

C = 11{τ>T}C = 11{XT 6=K}C = 11{HT <1}C,

is termed a T -survival claim. For a survival claim, a more explicit expression for the price can be
established. Since most standard credit derivatives can be seen as survival claims, the following
simple result will prove useful in what follows.

Lemma 5.1 Assume that a claim C and that the random variable βt/βT∗ are measurable with
respect to Gt. If C is a T -survival claim then we have

Ct = 11{Xt 6=K} Vξ,β
t (C) =

K−1∑
x=1

11{Xt=x}
EPβ (11{Xt=x}βtβ

−1
T∗C |Yt)

Pβ(Xt = x |Yt)
.

Proof. The first equality is clear. To derive the second equality above, it suffices to apply formula
(11) with L = 1, s = T, k = 1 and Z = C. ¤

Remark. Assume that K = 2, so that only the pre-default state (x = 1) and the default state
(x = 2) are recognized. Then we have, for any T -survival claim C,

Ct = 11{Xt 6=2} Vξ,β
t (C) =

11{Xt=1}V
ξ,β
t (C)

Pβ(Xt = 1 |Yt)
,

where V ξ,β
t (C) = EPβ (βtβ

−1
T∗C |Yt). In the paper by Jamshidian (2004), the process V ξ,β

t (C) is
termed the preprice of C.

5.2 Credit Default Swaps

The standing assumption is that β is a Markovian numeraire and βt/βs is Gt-measurable for any
t ≤ s. For simplicity, we shall discuss a vanilla credit default swap (CDS, for short) written on
a corporate discount bond under the fractional recovery of par covenant. We suppose that the
maturity of the reference bond is U , and the maturity of the swap is T < U .
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5.2.1 Default Payment Leg

Let N = 1 be a notional amount of the bond, and let δ be a deterministic recovery rate in case of
default. The recovery is paid at default, so that the cash flow associated with the default payment
leg – also known as the reference leg – is given by (1− δ)11{τ≤T}11τ (t) per unit of a notional amount,
where τ is the default time of a reference credit name. Consequently, the time-t value of the default
payment leg is equal to

A
(1)
t = (1− δ)EPβ

(
11{t<τ≤T}βtβ

−1
τ |Mt

)

= (1− δ)
K−1∑
x=1

11{Xt=x}
EPβ

(
11{Xt=x,XT =K}βtβ

−1
τ |Yt

)

Pβ(Xt = x |Yt)
.

The notation A(1) refers to the first default, which is formally the case here, since we currently deal
with one name only. Since L = 1, the cumulative default process H takes values in the set {0, 1},
and we have that {Ht = 1} = {Xt = K}.

Since the process S = (H,X, Y ) is a Markov process under Pβ , and the transition intensity at
time t of a jump from Ht = 0 to Ht + 1 is λ(Xt,K; Yt). Hence, it is easy to write down the form
of the generator of the process S. Using the Chapman-Kolmogorov equation, we can thus compute
the conditional probability (recall that conditioning on St is equivalent to conditioning on Mt)

Pβ(τ ≤ s |St) = Pβ(τ ≤ s |Mt).

Knowing the conditional density Pβ(τ ∈ ds |Mt), we can evaluate the conditional expectation

EPβ

(
11{t<τ≤T}βtβ

−1
τ |Mt

)
.

For example, if β is a deterministic function of time then we have

EPβ

(
11{t<τ≤T}βtβ

−1
τ |Mt

)
= βt

∫ T

t

β−1
s Pβ(τ ∈ ds |Mt).

5.2.2 Premium Payment Leg

Let T = {T1, T2, . . . , TJ} be the tenor of the premium payment, where 0 = T0 < T1 < · · · < TJ < T .
If the premium accrual covenant is in force, then the cash flows associated with the premium payment
leg are

κ




J∑

j=1

11{Tj<τ}11Tj (t) +
J∑

j=1

11{Tj−1<τ≤Tj}11τ (t)
t− Tj−1

Tj − Tj−1


 ,

where κ is the CDS premium (also known as the CDS spread). Thus, the time-t value of the premium
payment leg equals κB

(1)
t , where

B
(1)
t = EPβ


11{t<τ}

[
J∑

j=j(t)

βt

βTj

11{Tj<τ} +
J∑

j=j(t)

βt

βτ
11{Tj−1<τ≤Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣∣∣ Mt


 ,

where j(t) is the smallest integer such that Tj(t) > t. Again, since we know the conditional density
Pβ(τ ∈ ds |Mt), this expectation can be computed given our assumption about the numeraire β.

5.3 Forward CDS

As before, the reference claim is a defaultable bond maturing at time U . We now consider a forward
(start) CDS with the maturity date TM < U and the start date TS < TM . If default occurs prior
to or at time TS the contract is terminated with no exchange of payments. Therefore, the two legs
of this CDS are manifestly TS-survival claims, and the valuation of a forward CDS is not much
different from valuation a straight CDS discussed above.
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5.3.1 Default Payment Leg

As before, we let N = 1 be the notional amount of the bond, and we let δ be a deterministic recovery
rate in case of default. The recovery is paid at default, so that the cash flow associated with the
default payment leg of the forward CDS can be represented as follows

(1− δ)11{T S<τ≤T M}11τ (t).

For any t ≤ TS , the time-t value of the default payment leg is equal to

A
(1),T S

t = (1− δ)EPβ

(
11{T S<τ≤T M}βtβ

−1
τ |Mt

)
.

As explained above, we can compute this conditional expectation. If β is a deterministic function
of time then simply

EPβ

(
11{T S<τ≤T M}βtβ

−1
τ |Mt

)
= βt

∫ T M

T S

β−1
s Pβ(τ ∈ ds |Mt).

5.3.2 Premium Payment Leg

Let T = {T1, T2, . . . , TJ} be the tenor of premium payment, where TS < T1 < · · · < TJ < TM . As
before, we assume that the premium accrual covenant is in force, so that the cash flows associated
with the premium payment leg are

κ




J∑

j=1

11{Tj<τ}11Tj (t) +
J∑

j=1

11{Tj−1<τ≤Tj}11τ (t)
t− Tj−1

Tj − Tj−1


 .

Thus, for any t ≤ TS the time-t value of the premium payment leg is κB
(1),T S

t , where

B
(1),T S

t = EPβ


11{TS<τ}

[
J∑

j=1

βt

βTj

11{Tj<τ} +
J∑

j=1

βt

βτ
11{Tj−1<τ≤Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣∣∣ Mt


 .

Again, knowing the conditional density Pβ(τ ∈ ds |Mt), we can evaluate this conditional expectation.

5.4 CDS Swaptions

We consider a forward CDS swap starting at TS and maturing at TM > TS , as described in the
previous section. We shall now value the corresponding CDS swaption with expiry date T < TS .
Let K be the strike CDS rate of the swaption. Then the swaption cash flow at expiry date T equals

(
A

(1),T S

T −KB
(1),T S

T

)+
,

so that the price of the swaption equals, for any t ≤ T ,

EPβ

(
βtβ

−1
T

(
A

(1),T S

T −KB
(1),T S

T

)+
∣∣∣ Mt

)
= EPβ

(
βtβ

−1
T B

(1),T S

T

(
κ(1)(t, TS , TM )−K

)+
∣∣∣ Mt

)
,

where κ(1)(t, TS , TM ) := A
(1),T S

t /B
(1),T S

t is the forward CDS rate. Note that the random variables
A

(1),T S

t and B
(1),T S

t are strictly positive on the set {τ > T} for t ≤ T < TS , so that κ(1)(t, TS , TM )
enjoys the same property.
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5.4.1 Conditionally Gaussian Case

We shall now provide a more explicit representation for the value of a CDS swaption. To this end,
we fix a Markovian numeraire β and we assume that the forward CDS swap rates κ(1)(t, TS , TM ) are
conditionally log-Gaussian under Pβ for t ≤ T (for an example of such a model, see Section 4.3.3).
Then we have the following result.

Proposition 5.1 Suppose that, on the set {τ > T} and for arbitrary t < t1 < · · · < tn ≤ T , the
conditional distribution

Pβ
(
κ(1)(t1, TS , TM ) ≤ k1, κ

(1)(t2, TS , TM ) ≤ k2, . . . , κ
(1)(tn, TS , TM ) ≤ kn

∣∣∣ σ(Mt) ∨ FX
T

)

is Pβ-a.s. log-Gaussian. Let σ(s, TS , TM ), s ∈ [t, T ], denote the conditional volatility of the process
κ(1)(s, TS , TM ), s ∈ [t, T ], given the σ-field σ(Mt) ∨FX

T . Then the price of a CDS swaption equals,
for t < T ,

EPβ

(
βtβ

−1
T

(
A

(1),T S

T −KB
(1),T S

T

)+
∣∣∣ Mt

)

= EPβ

(
11{τ>T}βtβ

−1
T B

(1),T S

T

[
κ(1)(t, TS , TM )N

(
ln κ(1)(t,T S ,T M )

K

υt,T
+

υt,T

2

)

−KN

(
ln κ(1)(t,T S ,T M )

K

υt,T
− υt,T

2

)] ∣∣∣∣∣ Mt

)
,

where

υ2
t,T = υ(t, T, TS , TM )2 :=

∫ T

t

σ(s, TS , TM )2 ds.

Proof. We have

EPβ

(
βtβ

−1
T

(
A

(1),T S

T −KB
(1),T S

T

)+
∣∣∣ Mt

)
= EPβ

(
11{τ>T}βtβ

−1
T

(
A

(1),T S

T −KB
(1),T S

T

)+
∣∣∣ Mt

)

= EPβ

(
11{τ>T}βtβ

−1
T EPβ

((
A

(1),T S

T −KB
(1),T S

T

)+ |σ(Mt) ∨ FX
T

) ∣∣∣ Mt

)

= EPβ

(
11{τ>T}βtβ

−1
T B

(1),T S

T EPβ

((
κ(1)(T, TS , TM )−K

)+ |σ(Mt) ∨ FX
T

) ∣∣∣ Mt

)
.

In view of our assumptions, we obtain

EPβ

((
κ(1)(T, TS , TM )−K

)+
∣∣∣ σ(Mt) ∨ FX

T

)

= κ(1)(t, TS , TM )N

(
ln κ(1)(t,T S ,T M )

K

υt,T
+

υt,T

2

)
−KN

(
ln κ(1)(t,T S ,T M )

K

υt,T
− υt,T

2

)
.

By combining the above equalities, we arrive at the stated formula. ¤

6 Valuation of Basket Credit Derivatives

In this section, we shall discuss the case of credit derivatives with several underlying credit names.
Feasibility of closed-form calculations, such as analytic computation of relevant conditional expected
values, depends to great extend on the type and amount of information one wants to utilize. Typ-
ically, in order to efficiently deal with exact calculations of conditional expectations, one will need
to amend specifications of the underlying model so that information used in calculations is given by
a coarser filtration, or perhaps by some proxy filtration.
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6.1 kth-to-default CDS

We shall now discuss the valuation of a generic kth-to-default credit default swap relative to a portfolio
of L reference defaultable bonds. The deterministic notional amount of the ith bond is denoted as
Ni, and the corresponding deterministic recovery rate equals δi. We suppose that the maturities of
the bonds are U1, U2, . . . , UL, and the maturity of the swap is T < min {U1, U2, . . . , UL}.

As before, we shall only discuss a vanilla basket CDS written on such a portfolio of corporate
bonds under the fractional recovery of par covenant. Thus, in the event that τ (k) < T , the buyer of
the protection is paid at time τ (k) a cumulative compensation

∑

i∈Lk

(1− δi)Ni,

where Lk is the (random) set of all reference credit names that defaulted in the time interval ]0, τ (k)].
This means that the protection buyer is protected against the cumulative effect of the first k defaults.
Recall that, in view of our model assumptions, the possibility of simultaneous defaults is excluded.

6.1.1 Default Payment Leg

The cash flow associated with the default payment leg is given by the expression
∑

i∈Lk

(1− δi)Ni11{τ(k)≤T}11τ(k)(t),

so that the time-t value of the default payment leg is equal to

A
(k)
t = EPβ

(
11{t<τ(k)≤T}βtβ

−1
τ(k)

∑

i∈Lk

(1− δi)Ni

∣∣∣ Mt

)
.

In general, this expectation will need to be evaluated numerically by means of simulations.

A special case of a kth-to-default-swap is when the protection buyer is protected against losses
associated with the last default only. In the case of a last-to-default credit default swap, the cash
flow associated with the default payment leg is given by the expression

(1− δι(k))Nι(k)11{τ(k)≤T}11τ(k)(t) =
L∑

i=1

(1− δi)Ni11{Hτi
=k}11{τ(i)≤T}11τ(i)(t),

where ι(k) stands for the identity of the kth defaulting credit name. Assuming that the numeraire
process β is deterministic, we can represent the value at time t of the default payment leg as follows:

A
(k)
t =

L∑

i=1

EPβ

(
11{t<τi≤T}11{Hτi

=k}βtβ
−1
τi

(1− δi)Ni |Mt

)

=
L∑

i=1

βt(1− δi)Ni

∫ T

t

β−1
s Pβ(Hs = k | τi = s,Mt)Pβ(τi ∈ ds |Mt).

Note that the conditional probability Pβ(Hs = k | τi = s,Mt) can be approximated as

Pβ(Hs = k | τi = s,Mt) ≈
Pβ(Hs = k,Xi

s−ε 6= K, Xi
s = K |Mt)

Pβ(Xi
s−ε 6= K, Xi

s = K |Mt)
.

Hence, if the number L of credit names is small, so that the Kolmogorov equations for the condi-
tional distribution of the process (H, X, Y ) can be solved, the value of A

(k)
t can be approximated

analytically.
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6.1.2 Premium Payment Leg

Let T = {T1, T2, . . . , TJ} denote the tenor of the premium payment, where 0 = T0 < T1 < · · · <
TJ < T . If the premium accrual covenant is in force, then the cash flows associated with the premium
payment leg admit the following representation:

κ(k)




J∑

j=1

11{Tj<τ(k)}11Tj
(t) +

J∑

j=1

11{Tj−1<τ(k)≤Tj}11τ(k)(t)
t− Tj−1

Tj − Tj−1


 ,

where κ(k) is the CDS premium. Thus, the time-t value of the premium payment leg is κ(k)B
(k)
t ,

where

B
(k)
t = EPβ


11{t<τ(k)}

N∑

j=j(t)

βt

βTj

11{Tj<τ(k)}

∣∣∣∣∣ Mt




+ EPβ


11{t<τ(k)}

J∑

j=j(t)

βt

βτ(k)
11{Tj−1<τ(k)}≤Tj}

τ (k) − Tj−1

Tj − Tj−1

∣∣∣∣∣ Mt


 ,

where j(t) is the smallest integer such that Tj(t) > t. Again, in general, the above conditional
expectation will need to be approximated by simulation. And again, for a small portfolio size L,
if either exact or numerical solution of relevant Kolmogorov equations can be derived, then an
analytical computation of the expectation can be done. This is left for a future study.

6.2 Forward kth-to-default CDS

Forward kth-to-default CDS is an analogous structure to the forward CDS. The notation used here
is consistent with the notation used previously in Sections 5.3 and 6.1.

6.2.1 Default Payment Leg

The cash flow associated with the default payment leg can be expressed as follows
∑

i∈Lk

(1− δi)Ni11{T S<τ(k)≤T M}11τ(k)(t).

Consequently, the time-t value of the default payment leg equals, for every t ≤ TS ,

A
(k),T S

t = EPβ

(
11{T S<τ(k)≤T M}βtβ

−1
τ(k)

∑

i∈Lk

(1− δi)Ni

∣∣∣ Mt

)
.

6.2.2 Premium Payment Leg

As before, let T = {T1, T2, . . . , TJ} be the tenor of a generic premium payment leg, where TS <
T1 < · · · < TJ < TM . Under the premium accrual covenant, the cash flows associated with the
premium payment leg are

κ(k)




J∑

j=1

11{Tj<τ(k)}11Tj (t) +
J∑

j=1

11{Tj−1<τ(k)≤Tj}11τ(k)(t)
t− Tj−1

Tj − Tj−1


 ,

where κ(k) is the CDS premium. Thus, the time-t value of the premium payment leg is κ(k)B
(k),T S

t ,
where

B
(k),T S

t = EPβ


11{t<τ (k)}

[
N∑

j=1

βt

βTj

11{Tj<τ} +
J∑

j=1

βt

βτ
11{Tj−1<τ(k)≤Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣∣∣ Mt


 .
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7 Model Implementation

The last section is devoted to a brief discussion of issues related to the model implementation.

7.1 Curse of Dimensionality

When one deals with basket products involving multiple credit names, direct computations may
not be feasible. The cardinality of the state space K for the migration process X is equal to KL.
Thus, for example, in case of K = 18 rating categories, as in Moody’s ratings,1 and in case of a
portfolio of L = 100 credit names, the state space K has 18100 elements.2 If one aims at closed-
form expressions for conditional expectations, but K is large, then it will typically be infeasible to
work directly with information provided by the state vector (X, Y ) = (X1, X2, . . . , XL, Y ) and with
the corresponding generator A. A reduction in the amount of information that can be effectively
used for analytical computations will be needed. Such reduction may be achieved by reducing the
number of distinguished rating categories – this is typically done by considering only two categories:
pre-default and default. However, this reduction may still not be sufficient enough, and further
simplifying structural modifications to the model may need to be called for. Some types of additional
modifications, such as homogeneous grouping of credit names and the mean-field interactions between
credit names, are discussed in Frey and Backhaus (2004).3

7.2 Recursive Simulation Procedure

When closed-form computations are not feasible, but one does not want to give up on potentially
available information, an alternative may be to carry approximate calculations by means of either
approximating some involved formulae and/or by simulating sample paths of underlying random
processes. This is the approach that we opt for.

In general, a simulation of the evolution of the process X will be infeasible, due to the curse
of dimensionality. However, the structure of the generator A that we postulate (cf. (13)) makes
it so that simulation of the evolution of process X reduces to recursive simulation of the evolution
of processes X l whose state spaces are only of size K each. In order to facilitate simulations even
further, we also postulate that each migration process X l behaves like a birth-and-death process
with absorption at default, and with possible jumps to default from every intermediate state (cf.
Section 4.3.1). Recall that X

(l)
t = (X1

t , . . . , X l−1
t , X l+1

t , . . . , XL
t ). Given the state (x(l), y) of the

process (X(l), Y ), the intensity matrix of the lth migration process is sub-stochastic and is given as:




1 2 3 · · · K − 1 K
1 λl(1, 1) λl(1, 2) 0 · · · 0 λl(1,K)
2 λl(2, 1) λl(2, 2) λl(2, 3) · · · 0 λl(2,K)
3 0 λl(3, 2) λl(3, 3) · · · 0 λl(3,K)

...
...

...
...

. . .
...

...
K − 1 0 0 0 · · · λl(K − 1,K − 1) λl(K − 1,K)
K 0 0 0 · · · 0 0




,

where we set λl(xl, x′l) = λl(x, x′l; y). Also, we find it convenient to write λl(xl, x′l; x(l), y) =
λl(x, x′l; y) in what follows.

1We think here of the following Moody’s rating categories: Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3,
Ba1, Ba2, Ba3, B1, B2, B3, Caa, D(efault).

2The number known as Googol is equal to 10100. It is believed that this number is greater than the number of
atoms in the entire observed Universe.

3Homogeneous grouping was also introduced in Bielecki (2003).
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Then the diagonal elements are specified as follows, for xl 6= K,

λl(x, x; y) = −λl(xl, xl − 1; x(l), y)− λl(xl, xl + 1; x(l), y)− λl(xl,K;x(l), y)

−
∑

i 6=l

(
λi(xi, xi − 1;x(i), y) + λi(xi, xi + 1; x(i), y) + λi(xi, K; x(i), y)

)

with the convention that λl(1, 0;x(l), y) = 0 for every l = 1, 2, . . . , L.

It is implicit in the above description that λl(K, xl; x(l), y) = 0 for any l = 1, 2, . . . , L and
xl = 1, 2, . . . , K. Suppose now that the current state of the process (X,Y ) is (x, y). Then the
intensity of a jump of the process X equals

λ(x, y) := −
L∑

l=1

λl(x, x; y).

Conditional on the occurrence of a jump of X, the probability distribution of a jump for the com-
ponent X l, l = 1, 2, . . . , L, is given as follows:

• probability of a jump from xl to xl − 1 equals pl(xl, xl − 1; x(l), y) := λl(xl,xl−1;x(l),y)
λ(x,y) ,

• probability of a jump from xl to xl + 1 equals pl(xl, xl + 1; x(l), y) := λl(xl,xl+1;x(l),y)
λ(x,y) ,

• probability of a jump from xl to K equals pl(xl,K;x(l), y) := λl(xl,K;x(l),y)
λ(x,y) .

As expected, we have that

L∑

l=1

(
pl(xl, xl − 1; x(l), y) + pl(xl, xl + 1; x(l), y) + pl(xl,K; x(l), y)

)
= 1.

For a generic state x = (x1, x2, . . . , xL) of the migration process X, we define the jump space
J (x) =

⋃L
l=1 {(xl−1, l), (xl +1, l), (K, l)} with the convention that (K +1, l) = (K, l). The notation

(a, l) refers to the lth component of X. Given that the process (X, Y ) is in the state (x, y), and
conditional on the occurrence of a jump of X, the process X jumps to a point in the jump space J (x)
according to the probability distribution denoted by p(x, y) and determined by the probabilities pl

described above. Thus, if a random variable J has the distribution given by p(x, y) then, for any
(x′l, l) ∈ J (x), we have that Prob(J = (x′l, l)) = pl(xl, x′l; x(l), y).

7.2.1 Simulation Algorithm: Special Case

We shall now present in detail the case when the dynamics of the factor process Y do not depend
on the credit migrations process X. The general case appears to be much harder.

Under the assumption that the dynamics of the factor process Y do not depend on the process
X, the simulation procedure splits into two steps. In Step 1, a sample path of the process Y is
simulated; then, in Step 2, for a given sample path Y , a sample path of the process X is simulated.
We consider here simulations of sample paths over some generic time interval, say [t1, t2], where
0 ≤ t1 < t2. We assume that the number of defaulted names at time t1 is less than k, that is
Ht1 < k. We conduct the simulation until the kth default occurs or until time t2, whichever occurs
first.

Step 1: The dynamics of the factor process are now given by the SDE

dYt = b(Yt) dt + σ(Yt) dWt +
∫

Rn

g(Yt−, y)π(Yt−; dy, dt), t ∈ [t1, t2].
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Any standard procedure can be used to simulate a sample path of Y (the reader is referred, for
example, to Kloeden and Platen (1995)). Let us denote by Ŷ the simulated sample path of Y .

Step 2: Once a sample path of Y has been simulated, simulate a sample path of X on the interval
[t1, t2] until the kth default time.

We exploit the fact that, according to our assumptions about the infinitesimal generator A,
the components of the process X do not jump simultaneously. Thus, the following algorithm for
simulating the evolution of X appears to be feasible:

Step 2.1: Set the counter n = 1 and simulate the first jump time of the process X in the time
interval [t1, t2]. Towards this end, simulate first a value, say η̂1, of a unit exponential random
variable η1. The simulated value of the first jump time, τX

1 , is then given as

τ̂X
1 = inf

{
t ∈ [t1, t2] :

∫ t

t1

λ(Xt1 , Ŷu) du ≥ η̂1

}
,

where by convention the infimum over an empty set is +∞. If τ̂X
1 = +∞, set the simulated

value of the kth default time to be τ̂ (k) = +∞, stop the current run of the simulation procedure
and go to Step 3. Otherwise, go to Step 2.2.

Step 2.2: Simulate the jump of X at time τ̂X
1 by drawing from the distribution p(Xt1 , ŶbτX

1 −) (cf.

discussion in Section 7.2). In this way, one obtains a simulated value X̂bτX
1

, as well as the

simulated value of the number of defaults ĤbτX
1

. If ĤbτX
1

< k then let n := n+1 and go to Step
2.3; otherwise, set τ̂ (k) = τ̂X

1 and go to Step 3.

Step 2.3: Simulate the nth jump of process X. Towards this end, simulate a value, say η̂n, of a
unit exponential random variable ηn. The simulated value of the nth jump time τX

n is obtained
from the formula

τ̂X
n = inf

{
t ∈ [τ̂X

n−1, t2] :
∫ t

bτX
n−1

λ(XbτX
n−1

, Ŷu) du ≥ η̂n

}
.

In case τ̂X
n = +∞, let the simulated value of the kth default time to be τ̂ (k) = +∞; stop the

current run of the simulation procedure, and go to Step 3. Otherwise, go to Step 2.4.

Step 2.4: Simulate the jump of X at time τ̂X
n by drawing from the distribution p(XbτX

n−1
, ŶbτX

n −).

In this way, produce a simulated value X̂bτX
n

, as well as the simulated value of the number of
defaults ĤbτX

n
. If ĤbτX

n
< k, let n := n + 1 and go to Step 2.3; otherwise, set τ̂ (k) = τ̂X

n and go
to Step 3.

Step 3: Calculate a simulated value of a relevant functional. For example, in case of the kth-to-
default CDS, compute

Â
(k)
t1 = 11{t1<bτ(k)≤T}β̂t1 β̂

−1
bτ(k)

∑

i∈ bLk

(1− δi)Ni (25)

and

β̂
(k)
t1 =

N∑

j=j(t1)

β̂t1

β̂Tj

11{Tj<bτ(k)} +
J∑

j=j(t1)

β̂t1

β̂bτ(k)

11{Tj−1<bτ(k)≤Tj}
τ̂ (k) − Tj−1

Tj − Tj−1
, (26)

where, as usual, the ‘hat’ indicates that we deal with simulated values.
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7.3 Estimation and Calibration of the Model

Our market model (13) has the same structure under either the pricing probability measure or the
statistical measure. The model parameters corresponding to the two measures (or any other two
measures for that matter) are related via (19).

Estimation of the statistical parameters of the model, that is, the parameters corresponding to
the statistical measure, can be split into two separate problems – the estimation of the dynamics
of the factor process Y , and the estimation of the transition intensities of the process X. With
regard to the former: typically, the estimation of parameters of the drift function and the estimation
of parameters of the Poisson measure is not easy; the estimation of parameters of the volatility
function σ(x, y) is rather straightforward, as it can be done via estimation of the quadratic variation
process of the diffusion component. Estimates of parameters involved in the transition intensities
can, in principle, be obtained from the statistical estimates of transition probability matrices that
are produced by major rating agencies.

Calibration of the pricing parameters of the model, that is, the parameters corresponding to the
pricing measure, depends on the types of the market quotes data used for calibration. Since, in case
of basket credit derivatives, we typically will not have access to closed-form pricing formulae, the
calibration of the model parameters will need to be done via simulation. For example, if the model
is calibrated to market quotes for the kth-to-default basket swaps, in order to select the best fitted
model, we shall use simulated averages of expressions (25) and (26) obtained for various parametric
settings. Then, the market prices of credit risk can be obtained from estimated and calibrated values
of the parameters and from formula (19). We shall deal with the issues of model estimation and
calibration in a future work, which will be devoted to model implementation.

7.4 Portfolio Credit Risk

The issue of evaluating functionals associated with multiple credit migrations, defaults in particular,
is also prominent with regard to portfolio credit risk. In some segments of the credit markets, only
the deterioration of the value of a portfolio of debts (bonds or loans) due to defaults is typically
considered. In fact, such is the situation regarding various tranches of (cash or synthetic) collateral-
ized debt obligations (CDOs), as well as with various tranches of recently introduced CDS indices,
such as, DJ CDX NA IG or DJ iTraxx Europe.4 Nevertheless, it is rather apparent that a valuation
model reflecting the possibility of intermediate credit migrations, and not only defaults, is called for
in order to better account for changes in creditworthiness of the reference credit names. Likewise,
for the purpose of managing risks of a debt portfolio, it is necessary to account for changes in value
of the portfolio due to changes in credit ratings of the components of the portfolio.

The problem of valuation of tranches of a CDO (or tranches of a CDS index) is closely related to
the problem of valuation of the kth-to-default swap. In a future work, we shall focus on implementa-
tion of our model to all these problems. It is perhaps worth mentioning though that we have already
done some numerical tests of our model so to see whether the model can reproduce so called market
correlation skews. The picture below shows that the model performs very well in this regard5:
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