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Gaussian Graphical Models

Graphical models are a flexible framework for building statistical
models on large collections of random variables.

Edges of different types represent different types of interactions
between neighboring random variables.

directed edges: i→j
bidirected edges: i↔ j
undirected edges: i − j

Graph is used to express both
conditional independence structures
parametric representations of the model.

For jointly normal random variables, graph structure relates
variables to their neighbors via linear relationships with possibly
correlated error terms.
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Mixed Graphs

G = (V ,B,D) graph with directed edges D (i→j) and bidirected
edges B (i↔ j)
Vertex set V = [m] := {1,2, . . .m}
G is acyclic: i→j ∈ D implies i < j .

1 2 3 4
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Gaussian Graphical Models

Gaussian graphical model is a statistical model that associates a
family of normal distributions to the graph G = (V ,B,D).

PDm = cone of symmetric positive definite matrices
Let PD(B) := {M ∈ PDm : Mij = 0 if i 6= j and i↔ j /∈ B}
ε ∈ Rm, ε ∼ N (0,Ω) with Ω ∈ PD(B)

For i→j ∈ D, let λij ∈ R
Define X ∈ Rm recursively by

Xj =
∑

i:i→j∈D

λijXi + εj .
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Example

1 2 3 4

ε ∼ N (0,Ω) Ω =


ω11 0 0 0
0 ω22 0 ω24
0 0 ω33 0
0 ω42 0 ω44



X1 = ε1, X2 = λ12X1 + ε2, X3 = λ13X1 + λ23X2 + ε3, X4 = λ34X3 + ε4
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Matrix Factorization

Let Λ m ×m upper triangular matrix such that

Λij =

{
λij if i→j ∈ D
0 otherwise.

Proposition
X from the graph G = (V ,B,D) is distributed N (0,Σ) where

Σ = (I − Λ)−T Ω(I − Λ)−1.

Note that (I − Λ)−1 = I + Λ + Λ2 + · · ·+ Λm−1.
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The Algebraic Perspective

Let RD = {Λ ∈ Rm×m : λij = 0 if i→j /∈ D}
PD(B) := {M ∈ PDm : Mij = 0 if i 6= j and i↔ j /∈ B}

Definition
The Gaussian graphical modelMG ⊆ PDm consists of all covariance
matrices Σ, that arise for some choice of Λ ∈ RD and Ω ∈ PD(B).

More algebraically, we have a polynomial map

φG : RD × PD(B)→ PDm, φG(Λ,Ω) = (I − Λ)−T Ω(I − Λ)−1.

MG = imφG.

We would like to “understand” φG andMG.
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Constraints on Gaussian Graphical Models

Problem
Find a generating set or Gröbner basis of

IG = I(MG) = {f ∈ R[σij : i , j ∈ [m]] : f (Σ) = 0 for all Σ ∈MG}.

1 2

3 4 IG = 〈|Σ12,13|, |Σ123,234|〉

1 2 3 4

IG = 〈 σ12σ13σ14σ23 − σ11σ14σ
2
23 − σ12σ

2
13σ24 + σ11σ13σ23σ24

−σ2
12σ14σ33 + σ11σ14σ22σ33 + σ2

12σ13σ34 − σ11σ13σ22σ34 〉
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Trek Separation

A trek from i to j is a path in G from i to j with no sequence of
edges k→l←m, k↔ l←m, k→l↔m, or k↔ l↔m.

Definition
Let A, B, C, and D be four subsets of V (G) (not necessarily disjoint).
We say that (C,D) t-separates A from B if every trek from A to B
passes through either a vertex in C on the A-side of the trek, or a
vertex in D on the B-side of the trek.

C

A

D

B
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Theorem (S-Talaska-Draisma)

The matrix ΣA,B has rank ≤ d if and only if there are C,D ⊂ [n] with
#C + #D ≤ d such that (C,D) t-separate A from B in G. Then all
(d + 1)× (d + 1) minors of ΣA,B belong to IG.

Example

A

c

B

({c}, {c}) t-separates A from B.
ΣA,B has rank at most 2. All 3× 3 minors of ΣA,B belong to IG.
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When do Determinantal Constraints Generate IG?

Question
What conditions on the graph G guarantee that the t-separation
determinantal constraints generate IG?

Theorem (Sullivant 2008)
If G is a tree, then IG is generated in
degree 1 and 2 by conditional
independence constraints. In particular, IG
generated by the t-separation
determinantal constraints.

1 2

3

4 5

Proof Sketch.
For trees IG is a toric ideal. Do binomial manipulations.
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1 2 3 4 5 6

Definition
A generalized Markov chain is a mixed graph G = (V ,B,D) such that:

If i→ j ∈ D then i < j ,
If i→ j ∈ D and i ≤ k < l ≤ j then k→ l ∈ D, and
If i ↔ j ∈ B and i ≤ k < l ≤ j then k ↔ l ∈ B.

Theorem (Fink-Rajchgot-S (2015))
If G is a generalized Markov chain then IG is generated by the
t-separation determinantal constraints implied by G, and they form a
Gröbner basis in a suitable lexicographic term order.

Proof Sketch.
Relate generalized Markov chain parametrization to parametrization of
type B matrix Schubert varieties.
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Further Results and Open Problems

We have extended t-separation characterization of determinantal
constraints to ancestral graphs and AMP chain graphs.
Connections to toric varieties and matrix Schubert varieties allow
us to characterize the vanishing ideals for some graphs.
How to determine general combinatorial descriptions of other
hidden variable constraints?

1 2 3 4

∣∣∣∣∣∣∣∣
σ11 σ11 σ12 σ13
σ12 σ12 σ22 σ23
0 σ13 σ23 σ33
0 σ14 σ24 σ34

∣∣∣∣∣∣∣∣ = 0
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