Gröbner Bases of Gaussian Graphical Models

Alex Fink, Jenna Rajchgot, Seth Sullivant

Queen Mary University, University of Michigan, North Carolina State University

October 4, 2015

Seth Sullivant (NCSU)

Gaussian Graphical Models

- Graphical models are a flexible framework for building statistical models on large collections of random variables.
- Edges of different types represent different types of interactions between neighboring random variables.
 - directed edges: $i \rightarrow j$
 - bidirected edges: $i \leftrightarrow j$
 - undirected edges: i − j
- Graph is used to express both
 - conditional independence structures
 - parametric representations of the model.
- For jointly normal random variables, graph structure relates variables to their neighbors via linear relationships with possibly correlated error terms.

- G = (V, B, D) graph with directed edges D (i→j) and bidirected edges B (i ↔ j)
- Vertex set *V* = [*m*] := {1, 2, ... *m*}
- *G* is acyclic: $i \rightarrow j \in D$ implies i < j.

Gaussian graphical model is a statistical model that associates a family of normal distributions to the graph G = (V, B, D).

- *PD_m* = cone of symmetric positive definite matrices
- Let $PD(B) := \{M \in PD_m : M_{ij} = 0 \text{ if } i \neq j \text{ and } i \leftrightarrow j \notin B\}$
- $\epsilon \in \mathbb{R}^m$, $\epsilon \sim \mathcal{N}(0, \Omega)$ with $\Omega \in PD(B)$
- For $i \rightarrow j \in D$, let $\lambda_{ij} \in \mathbb{R}$
- Define $X \in \mathbb{R}^m$ recursively by

$$X_j = \sum_{i: i \to j \in D} \lambda_{ij} X_i + \epsilon_j.$$

Example

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \Omega)$$
 $\Omega = \begin{pmatrix} \omega_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \omega_{22} & \mathbf{0} & \omega_{24} \\ \mathbf{0} & \mathbf{0} & \omega_{33} & \mathbf{0} \\ \mathbf{0} & \omega_{42} & \mathbf{0} & \omega_{44} \end{pmatrix}$

 $X_1 = \epsilon_1, \ X_2 = \lambda_{12}X_1 + \epsilon_2, \ X_3 = \lambda_{13}X_1 + \lambda_{23}X_2 + \epsilon_3, \ X_4 = \lambda_{34}X_3 + \epsilon_4$

Let $\Lambda m \times m$ upper triangular matrix such that

$$\Lambda_{ij} = \begin{cases} \lambda_{ij} & \text{if } i \rightarrow j \in D \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

X from the graph G = (V, B, D) is distributed $\mathcal{N}(0, \Sigma)$ where

$$\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}.$$

Note that $(I - \Lambda)^{-1} = I + \Lambda + \Lambda^2 + \dots + \Lambda^{m-1}$.

• Let
$$\mathbb{R}^D = \{ \Lambda \in \mathbb{R}^{m \times m} : \lambda_{ij} = 0 \text{ if } i \rightarrow j \notin D \}$$

•
$$PD(B) := \{M \in PD_m : M_{ij} = 0 \text{ if } i \neq j \text{ and } i \leftrightarrow j \notin B\}$$

Definition

The Gaussian graphical model $\mathcal{M}_G \subseteq PD_m$ consists of all covariance matrices Σ , that arise for some choice of $\Lambda \in \mathbb{R}^D$ and $\Omega \in PD(B)$.

More algebraically, we have a polynomial map

 $\phi_{\mathbf{G}}: \mathbb{R}^{D} \times PD(\mathbf{B}) \to PD_{m}, \qquad \phi_{\mathbf{G}}(\Lambda, \Omega) = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}.$

 $\mathcal{M}_{\boldsymbol{G}} = \mathrm{im}\phi_{\boldsymbol{G}}.$

We would like to "understand" ϕ_{G} and \mathcal{M}_{G} .

Constraints on Gaussian Graphical Models

Problem

Find a generating set or Gröbner basis of

 $I_G = \mathcal{I}(\mathcal{M}_G) = \{ f \in \mathbb{R}[\sigma_{ij} : i, j \in [m]] : f(\Sigma) = 0 \text{ for all } \Sigma \in \mathcal{M}_G \}.$

$$\textit{I}_{G}=\langle|\Sigma_{12,13}|,|\Sigma_{123,234}|\rangle$$

Constraints on Gaussian Graphical Models

Problem

Find a generating set or Gröbner basis of

 $I_G = \mathcal{I}(\mathcal{M}_G) = \{ f \in \mathbb{R}[\sigma_{ij} : i, j \in [m]] : f(\Sigma) = 0 \text{ for all } \Sigma \in \mathcal{M}_G \}.$

Seth Sullivant (NCSU)

Trek Separation

A trek from *i* to *j* is a path in *G* from *i* to *j* with no sequence of edges k→l←m, k ↔ l←m, k→l ↔ m, or k ↔ l ↔ m.

Definition

Let *A*, *B*, *C*, and *D* be four subsets of V(G) (not necessarily disjoint). We say that (C, D) t-separates *A* from *B* if every trek from *A* to *B* passes through either a vertex in *C* on the *A*-side of the trek, or a vertex in *D* on the *B*-side of the trek.

Theorem (S-Talaska-Draisma)

The matrix Σ_{AB} has rank \leq d if and only if there are C, D \subset [n] with $\#C + \#D \le d$ such that (C, D) t-separate A from B in G. Then all $(d+1) \times (d+1)$ minors of Σ_{AB} belong to I_G .

Example $(\{c\}, \{c\})$ t-separates A from B.

 Σ_{AB} has rank at most 2. All 3 × 3 minors of Σ_{AB} belong to I_{G} .

Seth Sullivant (NCSU)

Gaussian Graphical Models

Question

What conditions on the graph *G* guarantee that the *t*-separation determinantal constraints generate I_G ?

Theorem (Sullivant 2008)

If G is a tree, then I_G is generated in degree 1 and 2 by conditional independence constraints. In particular, I_G generated by the t-separation determinantal constraints.

Proof Sketch.

For trees I_G is a toric ideal. Do binomial manipulations.

Definition

A generalized Markov chain is a mixed graph G = (V, B, D) such that:

- If $i \rightarrow j \in D$ then i < j,
- If $i \rightarrow j \in D$ and $i \leq k < l \leq j$ then $k \rightarrow l \in D$, and
- If $i \leftrightarrow j \in B$ and $i \leq k < l \leq j$ then $k \leftrightarrow l \in B$.

Theorem (Fink-Rajchgot-S (2015))

If G is a generalized Markov chain then I_G is generated by the *t*-separation determinantal constraints implied by G, and they form a Gröbner basis in a suitable lexicographic term order.

Proof Sketch.

Relate generalized Markov chain parametrization to parametrization of type B matrix Schubert varieties.

Seth Sullivant (NCSU)

Gaussian Graphical Models

Further Results and Open Problems

- We have extended *t*-separation characterization of determinantal constraints to ancestral graphs and AMP chain graphs.
- Connections to toric varieties and matrix Schubert varieties allow us to characterize the vanishing ideals for some graphs.
- How to determine general combinatorial descriptions of other hidden variable constraints?

$$\begin{vmatrix} \sigma_{11} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{12} & \sigma_{22} & \sigma_{23} \\ 0 & \sigma_{13} & \sigma_{23} & \sigma_{33} \\ 0 & \sigma_{14} & \sigma_{24} & \sigma_{34} \end{vmatrix} = 0$$

A. Fink, J. Rajchgot, S. Sullivant. Symmetric matrix Schubert varieties and Gaussian graphical models. (2015) In preparation.

Knutson, Allen; Miller, Ezra. Gröbner geometry of Schubert polynomials. Ann. of Math. (2) 161 (2005), no. 3, 1245–1318.

S. Sullivant. Algebraic geometry of Gaussian Bayesian networks. *Adv. in Appl. Math.* **40** (2008), no. 4, 482–513. 0704.0918

S. Sullivant, K. Talaska and J. Draisma. Trek separation for Gaussian graphical models. *Annals of Statistics* **38** no.3 (2010) **1665-1685** 0812.1938